Online Network Design with Outliers

Aris Anagnostopoulos

Dept. of Computer and System Sciences Sapienza University of Rome

Joint work with:

Fabrizio Grandoni, Stefano Leonardi, and Piotr Sankowski

Background: Online Stochastic Network Design

Solve a network design problem **on the fly** as requests arrive according to a stochastic process.

This talk: Focus on Steiner tree.

Model:

- Metric space (M, d) and a root $r \in M$
- Input distribution (known or unknown) *D* on *M*.
- *t* requests arrive IID from *D* (*t* is known)
- When each request arrives it should be connected to an ongrowing Steiner tree

Algorithm Performance

Let:

- $\omega \in D^t$: Sample of *t* IID requests from *D*
- ALG(ω, r): Cost of (online) ALG for input ω and random choices r
- OPT(ω): Optimal (offline) cost for input ω

Performance measure (others are possible):

Ratio of Expectations =
$$\sup_{D,t} \frac{\mathbf{E}_{\omega \in D^{t},r}[\mathsf{ALG}(\omega,r)]}{\mathbf{E}_{\omega \in D^{t}}[\mathsf{OPT}(\omega)]}$$

Algorithm Performance

Theorem [Garg, Gupta, Leonardi, Sankowski, SODA 08]

There is an algorithm with Ratio of Expectations = O(1).

This Work: Online Stochastic Network Design with Outliers

Model:

- Metric space (M, d) and a root $r \in M$
- Input distribution (known or unknown) D on M.
- *t* requests arrive from *D* (*t* is known)
- $k \le t$ requests must be satisfied (k is known)
- When each request arrives, the algorithm
 - Decides whether to satisfy the request
 - If yes, then it connects it to an ongrowing Steiner tree
- At the end *k* requests must have been satisfied

Algorithm Performance

Let:

- $\omega \in D^t$: Sample of *t* IID requests from *D*
- ALG(ω, r): Cost of (online) ALG for input ω and random choices r
- OPT(ω): Optimal (offline) cost for input ω

Performance measure (others are possible):

Ratio of Expectations =
$$\sup_{D,t} \frac{\mathbf{E}_{\omega \in D^{t},r}[\mathsf{ALG}(\omega,r)]}{\mathbf{E}_{\omega \in D^{t}}[\mathsf{OPT}(\omega)]}$$

Algorithm Performance

Let:

- $\omega \in D^t$: Sample of t IID requests from D
- ALG(ω , r): Cost of (online) ALG for input ω and random choices *r*OPT(ω): Optimal (offlin select different
- points

Performance measure (others are possible):

Ratio of Expectations =
$$\sup_{D,t} \frac{\mathbf{E}_{\omega \in D^{t},r}[\mathsf{ALG}(\omega,r)]}{\mathbf{E}_{\omega \in D^{t}}[\mathsf{OPT}(\omega)]}$$

General Network Design

Online Stochastic Network Design with Outliers

- We need to solve an network design problem
- *t* requests arrive online
- We need to satisfy **k** out of **t** requests
- Online Facility location, Online TSP, ...

Motivation

Might not want to satisfy everybody if it is too expensive but say 90% of the population

Inapproximability:

• k = t - 1: Arbitrarily bad (contrast with k = t).

Inapproximability:

- k = t 1: Arbitrarily bad (contrast with k = t).
- k = 1: Exponentially worse (contrast with secretary)

Inapproximability:

- k = t 1: Arbitrarily bad (contrast with k = t).
- k = 1: Exponentially worse (contrast with secretary)

Inapproximability:

- k = t 1: Arbitrarily bad (contrast with k = t).
- k = 1: Exponentially worse (contrast with secretary)

So we look into bicriteria:

- Allow online ALG to select $(1-\varepsilon)k$ request
- Compare with OPT that selects *k* requests

So we look into bicriteria:

- Allow online ALG to select $(1-\varepsilon)k$ request
- Compare with OPT that selects *k* requests

Lower bound: RoE =
$$\Omega\left(\frac{\ln n}{\ln \ln n}\right)$$

Upper bound: $RoE = O(\ln^2 n)$

if $\mathbf{k} = \Theta(\mathbf{t})$: RoE = $O(\ln n \ln \ln n)$

Upper Bound

Theorem. There exists an algorithm such that for every $0 \le \epsilon \le 1$ selects $(1 - \epsilon)k$ request whp. with

Ratio of Expectations = $O(\ln^2 n)$.

Algorithm ALG Assumes Uniform distribution (can generalize)

- 1. Embed metric space into a Bartal tree
- 2. Group the nodes into groups of size $s = \frac{n}{t} \ln n$
- 3. Sample *t* (**light blue**) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (**blue** points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group color it red
- 8. Connect it to current Steiner tree

Algorithm ALG Assumes Uniform distribution (can generalize)

- 1. Embed metric space into a Bartal tree
- 2. Group the n Sample sand $\frac{n}{t}$ build 3. Sample t (light blue) here and $\frac{n}{t}$ build
- 4. Create anticipatory solution
 5. Blue group = group with at least on blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group color it red
- 8. Connect it to current Steiner tree

Algorithm ALG Assumes Uniform distribution (can generalize)

1	Embed metric space into a Bartal tree
2.	Group the n September of size $n = \frac{n}{2} \mu_0 n$
3.	Sample t (light blue) nodes
4.	Create approximate in Steiner trace (and of the print in the points)
5.	Blue group = group with at least on blue point
6.	Receive <i>t</i> input points (orange)
7.	AccReceive actual requests
8.	Connect it to current Steiner tree

- Create the Bartal tree 1.
- Group the leaves into groups of size $s=\frac{n}{-}\ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group - color it red
- 8. Connect it to current Steiner tree

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = -\ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group - color it red
- 8. Connect it to current Steiner tree

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate k-Steiner tree of k out of t points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group - color it red
- 8. Connect it to current Steiner tree

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate k-Steiner tree of k out of t points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group - color it red
- 8. Connect it to current Steiner tree

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- Create approximate *k*-Steiner tree of *k* out of *t* points (blue points) 4.
- 5. **Blue** group = group with at least one **blue** point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group - color it red
- 8. Connect it to current Steiner tree

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group - color it red
- 8. Connect it to current Steiner tree

t = 7, k = 4

 $^{\circ}$

O

С

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- Accept a point if it is in a blue group color it red 7.
- 8. Connect it to current Steiner tree

Create the Bartal tree 1.

 \bigcirc

А

- 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- Accept a point if it is in a blue group color it red 7.
- 8. **Connect it to current Steiner tree**

Aris Anagnostopoulos **Online Network Design with Outliers** ACAC 2010

t = 7, k = 4

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group - color it red
- 8. Connect it to current Steiner tree

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group - color it red
- 8. Connect it to current Steiner tree

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group - color it red
- 8. Connect it to current Steiner tree

t = 7, k = 4

O

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- Accept a point if it is in a blue group color it red 7.
- 8. Connect it to current Steiner tree

t = 7, k = 4

Create the Bartal tree 1.

 \bigcirc

- 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5.
- 6. Receive *t* input points (orange)
- 7.
- 8.

t = 7, k = 4

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- Accept a point if it is in a blue group color it red 7.
- 8. **Connect it to current Steiner tree**

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- 4. Create approximate *k*-Steiner tree of *k* out of *t* points (blue points)
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- 7. Accept a point if it is in a blue group - color it red
- 8. Connect it to current Steiner tree

t = 7, k = 4

00

С

- Create the Bartal tree 1.
- Group the leaves into groups of size $s = \frac{n}{-} \ln n$ 2.
- 3. Sample *t* (light blue) nodes
- Create approximate *k*-Steiner tree of *k* out of *t* points (blue points) 4.
- 5. Blue group = group with at least one blue point
- 6. Receive *t* input points (orange)
- Accept a point if it is in a blue group color it red 7.
- 8. **Connect it to current Steiner tree**

Anticipatory	Real
t LightBlue	t Orange
k Blue	(<i>k</i>) Red

Theorem. There exists an algorithm such that for every $0 \le \epsilon \le 1$ selects $(1 - \epsilon)k$ request whp. with Ratio of Expectations = $O(\ln^2 n)$.

We show:

- ALG selects $(1 \varepsilon)k$ requests (**Red** points) whp.
- $\mathbf{E}[\text{Cost}(\text{ALG})] \leq \mathbf{E}[\text{Cost}(\text{OPT})] \cdot O(\ln^2 n)$

Number of Points

Anticipatory	Real
<i>t</i> LightBlue	t Orange
k Blue	(<i>k</i>) Red

We show: ALG selects $(1 - \varepsilon)k$ requests (Red points) whp.

• Size of group
$$s = \frac{n}{t} \ln n$$

- \Rightarrow Pr(LightBlue in a given group) $= \frac{s}{n} = \frac{1}{t} \ln n$
- \Rightarrow E[# LightBlue in a given group] = ln n
- Whp (Chernoff):

LightBlue in a group $\approx \ln n$

• Whp:

Orange in a group $\approx \ln n$

Number of Points

Anticipatory	Real
t LightBlue	t Orange
k Blue	(<i>k</i>) Red

We show: ALG selects $(1 - \varepsilon)k$ requests (Red points) whp.

- # LightBlue in a group $\approx \ln n$
- # Blue in a group \leq # LightBlue in a group $\approx \ln n$
- k **Blue** points
- \Rightarrow # Blue groups $\gtrsim \frac{k}{\ln n}$
- Also: # Orange in a group $\approx \ln n$
- $\bullet \Rightarrow$

Red points = # **Orange** points in **Blue** groups

$$\gtrsim rac{k}{\ln n} \cdot \ln n \ pprox k \ (\geq (1 - \epsilon)k)$$

Anticipatory	Real
t LightBlue	t Orange
k Blue	(<i>k</i>) Red

Theorem. There exists an algorithm such that for every $0 \le \epsilon \le 1$ selects $(1 - \epsilon)k$ request whp. with Ratio of Expectations = $O(\ln^2 n)$.

We show:

- ALG selects $(1 \varepsilon)k$ requests (**Red** points) whp. \checkmark
- $\mathbf{E}[Cost(ALG)] \le \mathbf{E}[Cost(OPT)] \cdot O(\ln^2 n)$

Red Cost

We show: $E[Cost(ALG)] \le E[Cost(OPT)] \cdot O(\ln^2 n)$

- Charge connecting red node v to an edge e_v of the Bartal tree
 - Connection cost of $v \leq \text{cost}$ of edge e_v
 - Charge at most O(In *n*) red nodes to each Bartal tree edge

Red Cost

To each tree edge we charge O(ln *n*) red nodes

 $\Rightarrow E[\text{Red Cost}] = O(\ln n) \cdot E[\text{Blue Cost on Bartal tree})]$ $= O(\ln^2 n) \cdot E[\text{Blue Cost (on the metric)}]$

Red Cost

To each tree edge we charge O(In *n*) red nodes

 $\Rightarrow E[\text{Red Cost}] = O(\ln n) \cdot E[\text{Blue Cost on Bartal tree})]$ $= O(\ln^2 n) \cdot E[\text{Blue Cost (on the metric)}]$

Anticipatory	Real
t LightBlue	t Orange
k Blue	(<i>k</i>) Red

Theorem. There exists an algorithm such that for every $0 \le \epsilon \le 1$ selects $(1 - \epsilon)k$ request whp. with Ratio of Expectations = $O(\ln^2 n)$.

We show:

- ALG selects $(1 \varepsilon)k$ requests (**Red** points) whp. \bigvee
- $\mathbf{E}[\text{Cost}(\text{ALG})] \leq \mathbf{E}[\text{Cost}(\text{OPT})] \cdot O(\ln^2 n)$

Additional Results

For online Steiner tree with outliers:

- if $k = \Theta(t)$: $O(\ln n \ln \ln n)$
- Unknown distribution:
 - Upper bound: Same result ($O(\ln^2 n)$), under assumptions
 - Lower bound: $\Omega(\ln n)$

Same results for Online TSP Same results for Facility Location

Conclusions

- Introduced the family of problems of online network design with outliers
- Much harder than versions without outliers
- Connection with secretary problems:
 - Minimization is strictly harder than maximization
- Studied problems of
 - Steiner tree
 - Facility location
 - TSP
- Gave approximation algorithms and close lower bounds

Open Problems

- Match upper and lower bounds
- Look at other problems
 - Price collecting Steiner tree
 - Set cover

Thanks!

Questions, etc.:

http://aris.me