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Voting
• n voters
• m candidates or alternatives
• n >>> m
• Voters rank the alternatives
• Preference profile: a vector of rankings

• Voting rule: a mapping of each preference profile to a 
winner, or a set of winners, or a ranking
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Condorcet criterion
• Alternative x beats y in a pairwise election if the majority of 

voters prefers x to y
• Alternative x is a Condorcet winner if x beats any other 

alternative in a pairwise election
• Condorcet paradox: A Condorcet winner may not exist
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Dodgson’s voting rule
• Choose an alternative as close as possible to being a 

Condorcet winner according to some proximity measure
• Dodgson score of x: scD(x,R)

– the minimum number of exchanges between adjacent 
alternatives needed to make x a Condorcet winner

– alternatively: the total number of positions the voters push x



Dodgson’s voting rule
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def (x,b,R) = 1
def (x,c,R) = 0
def (x,d,R) = 1
def (x,e,R) = 2

scD(x,R) = 4



Dodgson’s voting rule
• Choose an alternative as close as possible to being a 

Condorcet winner according to some proximity measure
• Dodgson score of x: scD(x,R)

– the minimum number of exchanges between adjacent 
alternatives needed to make x a Condorcet winner

– alternatively: the total number of positions the voters push x
• Dodgson ranking:

– ranking of the alternatives in non-decreasing order of their 
Dodgson score

• Dodgson winner:
– an alternative with the minimum Dodgson score



Related combinatorial problems
• Dodgson score (decision version):

– Given a preference profile R, a particular alternative x,
and an integer K, is the Dodgson score of x at most K? 
I.e., scD(x,R) ≤ K?

• Dodgson score (optimization version):
– Given a preference profile and a particular alternative x,

what is the Dodgson score of x?
• Dodgson winner:

– Given a preference profile and a particular alternative x,
is x a Dodgson winner?

• Hard problems:
– Bartholdi, Tovey, and Trick (Social Choice & Welfare, 

1989)
– Hemaspaandra, Hemaspaandra, and Rothe (J. ACM, 

1997)



Approximation algorithms
• Approximation algorithms compute approximate Dodgson 

scores
• An algorithm V is a Dodgson approximation with 

approximation ratio ρ if given a preference profile R and a 
particular alternative x, computes a score scV(x,R) for x such 
that
– scD(x,R) ≤ scV(x,R) ≤ ρ scD(x,R)

• There exist polynomial-time Dodgson approximations with 
approx. ratio at most Hm-1 ≤ 1+lnm
– A greedy combinatorial algorithm
– An algorithm based on linear programming

• Hard to approximate the Dodgson score within a factor 
better than (1/2-ε)lnm
– C., Covey, Feldman, Homan, Kaklamanis, Karanikolas, Procaccia, 

Rosenschein (SODA 09)



Approximation algorithms as 
voting rules

• Dodgson approximations are new voting rules
– Simply rank the alternatives according to their score

• How good are they as voting rules?
– Any Dodgson approximation with finite approx. ratio is Condorcet

consistent
– What about other social choice properties?



Compare to Dodgson
• The Dodgson rule satisfies

– Condorcet consistency (by definition)
• but not

– Monotonicity
– Homogeneity
– Combinativity
– Smith consistency
– Mutual majority consistency
– Invariant loss consistency
– Independence of clones

• Fishburn (SIDMA 77), Tideman (2006), Brandt (Math. 
Logic Q. 09)



The main question
• What is the best possible approx. ratio of Dodgson 

approximations that satisfy
– Monotonicity?
– Homogeneity?
– Combinativity?
– Smith consistency?
– Mutual majority consistency?
– Invariant loss consistency?
– Independence of clones?

• In other words, how far is Dodgson’s voting rule from these 
properties?



Overview of results

Trivial upper bound 
of O(nm)

Ω(n)
Mutual majority consistency
Invariant loss consistency
Independence of clones
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Monotonicity
• A voting rule is monotonic when for any profile R’ and 

a profile R that is obtained from R’ by pushing a single 
alternative x upwards in the preferences of some 
voters, the following holds:
– If x is a winner in R’, it is also a winner in R
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Monotonization

• What modifications a voting rule requires in order to become 
monotonic?

• E.g., for Dodgson:
– Construct a new voting rule by considering all profiles
– First decide which the winning set W(R) of alternatives for 

each profile R should be so that monotonicity is preserved

– Then adjust the scores accordingly so that the resulting rule 
is a Dodgson approximation (with good approx. ratio, if 
possible)
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Monotonization

x y x y z x y

x z x y x x y

z

xy

xx y

zy z

x y

• A non-monotonic voting rule



Monotonization
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• Propagate x through the blue arcs, and similarly for y and z



Monotonization
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• A monotonic voting rule M



Monotonization

• Adjust the scores in order to obtain M:
– Let Δ be the maximum Dodgson score of the alternatives in W(R)
– Set scM(x,R) = Δ for each alternative in W(R)
– Set scM(y,R) = max{Δ+1,scD(y,R)} for any other alternative



Upper bounds for monotonic 
Dodgson approximations

• Monotonizing Dodgson yields a Dodgson approximation 
with approx. ratio 2
– Intuition: pushing an alternative upwards can decrease the 

Dodgson score of another alternative up to half
– Optimal approx. ratio
– Polynomial-time if m is constant
– Exponential-time in general 

• Monotonizing the LP-based Dodgson approximation can 
be done in polynomial-time
– Yields an approximation ratio of 2Hm-1

– Using a tool we call pessimistic estimator



Pessimistic estimators

• Given a profile R with winning alternatives W(R) according 
to the LP-based Dodgson approximation, and an 
alternative x not in W(R)
– is there any profile R’ so that R is obtained from R’ by pushing x

upwards in some voters 
– so that x wins some alternative in W(R) in R’?

• Our pessimistic estimators work in polynomial time by 
solving linear programs and are correct when answering 
NO

• Loss of an extra factor of 2 in the approx. ratio

W(R)

RR’
?
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Homogeneity
• A voting rule is homogeneous when for each profile R with a 

winning alternative x, x is also a winning alternative in any 
profile which is produced by replicating R

• Tideman (2006)
– If there exists a Condorcet winner, then this is the winner
– Otherwise, set

– and rank the alternatives according to this score

• This rule is homogeneous and monotonic
• Is it a Dodgson approximation?

– At first glance: No
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Tideman’s simplified Dodgson 
rule

• An alternative definition
– If x is a Condorcet winner, then sctd(x,R) = 0
– Otherwise sctd(x,R) = m td(x,R) + mlogm

• The alternative definition of Tideman’s simplified voting rule 
yields a Dodgson approximation with approx. ratio 
O(mlogm)



Are there better homogeneous 
Dodgson approximations?

• No! Any homogeneous Dodgson approximation has 
approx. ratio Ω(mlogm)

• Proof idea: Construction of a profile so that
– An alternative x is tied against Ω(m) other alternatives and has 

Dodgson score Θ(mlogm) 
– Another alternative y has deficit 2 against some alternative 

and Dodgson score 2
– By duplicating the profile, the Dodgson score of x stays 
Θ(mlogm) but the Dodgson score of y pumps up

– Still, due to homogeneity, the winner in the original profile 
should be a winner in the duplicated one



Social Choice and Computational 
Complexity

• Computational Complexity Theory provides the tools to 
understand computational aspects of voting rules
– Negative results: Hardness of computation/approximation (e.g., 

Dodgson’s voting rule)
– Positive results: Approximation algorithms that could be used as

alternative voting rules

• Besides statements about efficiency of computation, 
what other feedback can CCT give to SCT?
– Are there approximation algorithms for a given voting rule that 

can be used as alternative voting rules with desirable social 
choice properties?

– How far from a desirable social choice property is a given voting 
rule?



Open problems

• What about approximations of other voting rules?
• Different notions of approximation (additive, differential, 

approximation of rankings, etc.)
• Approximability of a voting rule by known rules that have 

good social choice properties (e.g., Copeland, Maximin)


