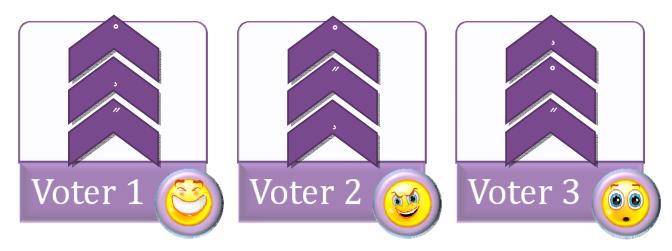
Socially desirable approximations for Dodgson's voting rule

Ioannis Caragiannis (University of Patras) Christos Kaklamanis (University of Patras) Nikos Karanikolas (University of Patras) Ariel D. Procaccia (Harvard University)

Voting

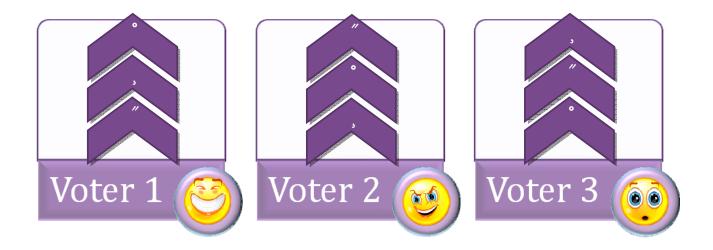
- n voters
- m candidates or alternatives
- n >>> m
- Voters rank the alternatives
- Preference profile: a vector of rankings



• Voting rule: a mapping of each preference profile to a winner, or a set of winners, or a ranking

Condorcet criterion

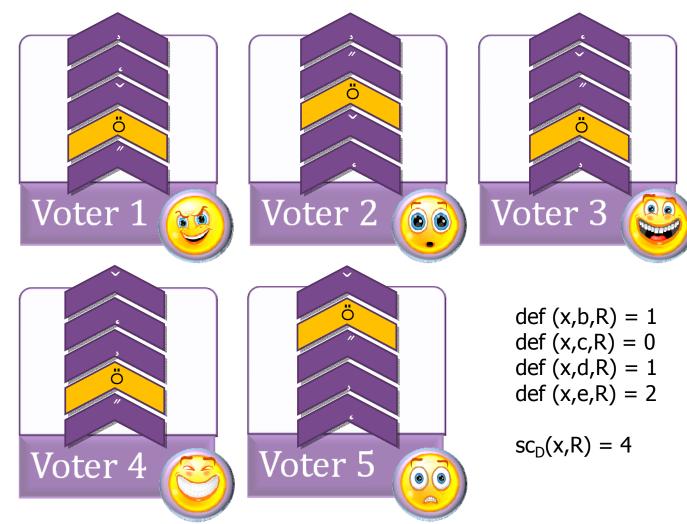
- Alternative x beats y in a pairwise election if the majority of voters prefers x to y
- Alternative x is a Condorcet winner if x beats any other alternative in a pairwise election
- Condorcet paradox: A Condorcet winner may not exist



Dodgson's voting rule

- Choose an alternative as close as possible to being a Condorcet winner according to some proximity measure
- Dodgson score of x: sc_D(x,R)
 - the minimum number of exchanges between adjacent alternatives needed to make x a Condorcet winner
 - alternatively: the total number of positions the voters push x

Dodgson's voting rule



Dodgson's voting rule

- Choose an alternative as close as possible to being a Condorcet winner according to some proximity measure
- Dodgson score of x: sc_D(x,R)
 - the minimum number of exchanges between adjacent alternatives needed to make x a Condorcet winner
 - alternatively: the total number of positions the voters push x
- Dodgson ranking:
 - ranking of the alternatives in non-decreasing order of their Dodgson score
- Dodgson winner:
 - an alternative with the minimum Dodgson score

Related combinatorial problems

- Dodgson score (decision version):
 - Given a preference profile R, a particular alternative x, and an integer K, is the Dodgson score of x at most K?
 I.e., sc_D(x,R) ≤ K?
- Dodgson score (optimization version):
 - Given a preference profile and a particular alternative x, what is the Dodgson score of x?
- Dodgson winner:
 - Given a preference profile and a particular alternative x, is x a Dodgson winner?
- Hard problems:
 - Bartholdi, Tovey, and Trick (Social Choice & Welfare, 1989)
 - Hemaspaandra, Hemaspaandra, and Rothe (J. ACM, 1997)

Approximation algorithms

- Approximation algorithms compute approximate Dodgson scores
- An algorithm V is a Dodgson approximation with approximation ratio ρ if given a preference profile R and a particular alternative x, computes a score sc_V(x,R) for x such that
 - $sc_D(x,R) \le sc_V(x,R) \le \rho sc_D(x,R)$
- There exist polynomial-time Dodgson approximations with approx. ratio at most $H_{m-1} \leq 1 + Inm$
 - A greedy combinatorial algorithm
 - An algorithm based on linear programming
- Hard to approximate the Dodgson score within a factor better than (1/2-ε)Inm
 - C., Covey, Feldman, Homan, Kaklamanis, Karanikolas, Procaccia, Rosenschein (SODA 09)

Approximation algorithms as voting rules

- Dodgson approximations are new voting rules
 - Simply rank the alternatives according to their score
- How good are they as voting rules?
 - Any Dodgson approximation with finite approx. ratio is Condorcet consistent
 - What about other social choice properties?

Compare to Dodgson

- The Dodgson rule satisfies
 - Condorcet consistency (by definition)
- but not
 - Monotonicity
 - Homogeneity
 - Combinativity
 - Smith consistency
 - Mutual majority consistency
 - Invariant loss consistency
 - Independence of clones
- Fishburn (SIDMA 77), Tideman (2006), Brandt (Math. Logic Q. 09)

The main question

- What is the best possible approx. ratio of Dodgson approximations that satisfy
 - Monotonicity?
 - Homogeneity?
 - Combinativity?
 - Smith consistency?
 - Mutual majority consistency?
 - Invariant loss consistency?
 - Independence of clones?
- In other words, how far is Dodgson's voting rule from these properties?

Overview of results

Social Choice property	Approx. ratio lower bound	Approx. ratio upper bound	Time
Monotonicity	2 (1/2-ε)lnm	2 2H _{m-1}	exp. poly
Homogeneity	Ω(mlnm)	O(mlnm)	poly
Combinativity Smith consistency	Ω(nm)	Trivial upper bound of O(nm)	
Mutual majority consistency Invariant loss consistency Independence of clones	Ω(n)		

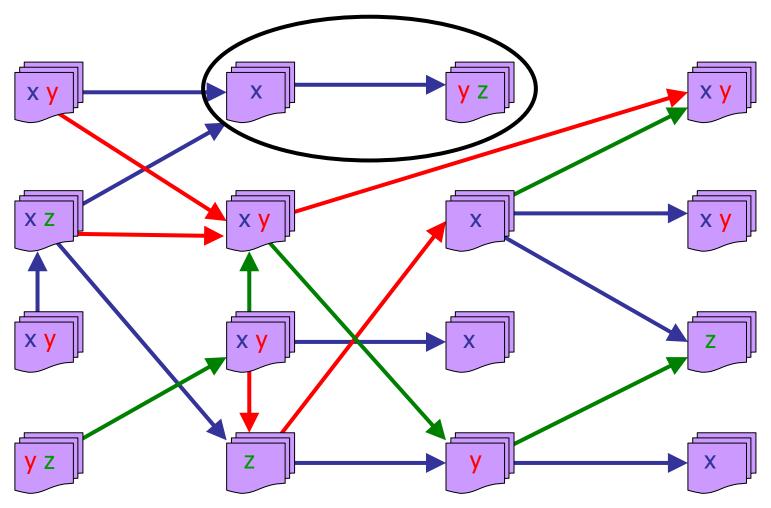
Monotonicity

- A voting rule is monotonic when for any profile R' and a profile R that is obtained from R' by pushing a single alternative x upwards in the preferences of some voters, the following holds:
 - If x is a winner in R', it is also a winner in R

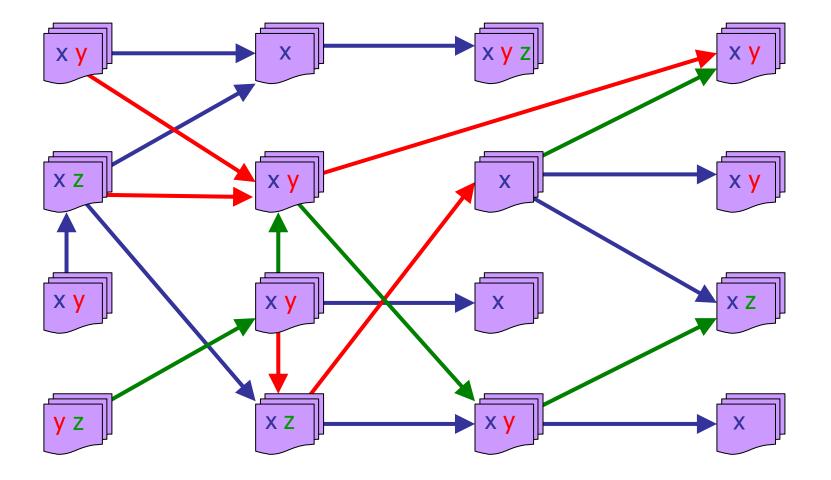
- What modifications a voting rule requires in order to become monotonic?
- E.g., for Dodgson:
 - Construct a new voting rule by considering all profiles
 - First decide which the winning set W(R) of alternatives for each profile R should be so that monotonicity is preserved

Then adjust the scores accordingly so that the resulting rule is a Dodgson approximation (with good approx. ratio, if possible)

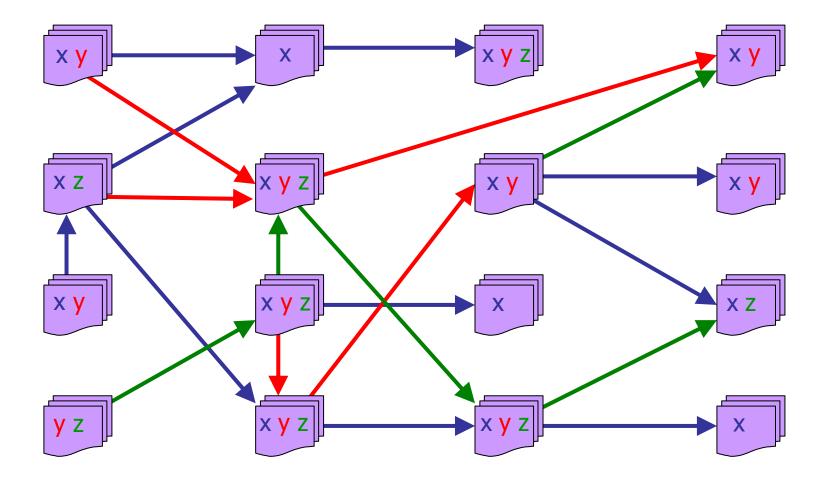
• A non-monotonic voting rule



• Propagate x through the blue arcs, and similarly for y and z



• A monotonic voting rule M



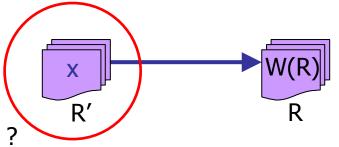
- Adjust the scores in order to obtain M:
 - Let Δ be the maximum Dodgson score of the alternatives in W(R)
 - Set $sc_M(x,R) = \Delta$ for each alternative in W(R)
 - Set $sc_M(y,R) = max{\Delta+1,sc_D(y,R)}$ for any other alternative

Upper bounds for monotonic Dodgson approximations

- Monotonizing Dodgson yields a Dodgson approximation with approx. ratio 2
 - Intuition: pushing an alternative upwards can decrease the Dodgson score of another alternative up to half
 - Optimal approx. ratio
 - Polynomial-time if m is constant
 - Exponential-time in general
- Monotonizing the LP-based Dodgson approximation can be done in polynomial-time
 - Yields an approximation ratio of 2H_{m-1}
 - Using a tool we call pessimistic estimator

Pessimistic estimators

- Given a profile R with winning alternatives W(R) according to the LP-based Dodgson approximation, and an alternative x not in W(R)
 - is there any profile R' so that R is obtained from R' by pushing x upwards in some voters
 - so that x wins some alternative in W(R) in R'?



- Our pessimistic estimators work in polynomial time by solving linear programs and are correct when answering NO
- Loss of an extra factor of 2 in the approx. ratio

Homogeneity

- A voting rule is homogeneous when for each profile R with a winning alternative x, x is also a winning alternative in any profile which is produced by replicating R
- Tideman (2006)
 - If there exists a Condorcet winner, then this is the winner
 - Otherwise, set

$$td(x,R) = \sum_{y \in A^{-}\{x\}} max\{0, losses(x, y, R\} - wins(x, y, R)\}$$

- and rank the alternatives according to this score
- This rule is homogeneous and monotonic
- Is it a Dodgson approximation?
 - At first glance: No

Tideman's simplified Dodgson rule

- An alternative definition
 - If x is a Condorcet winner, then $sc_{td}(x,R) = 0$
 - Otherwise $sc_{td}(x,R) = m td(x,R) + mlogm$
- The alternative definition of Tideman's simplified voting rule yields a Dodgson approximation with approx. ratio O(mlogm)

Are there better homogeneous Dodgson approximations?

- No! Any homogeneous Dodgson approximation has approx. ratio $\Omega(mlogm)$
- Proof idea: Construction of a profile so that
 - An alternative x is tied against $\Omega(m)$ other alternatives and has Dodgson score $\Theta(m\log m)$
 - Another alternative y has deficit 2 against some alternative and Dodgson score 2
 - By duplicating the profile, the Dodgson score of x stays
 Θ(mlogm) but the Dodgson score of y pumps up
 - Still, due to homogeneity, the winner in the original profile should be a winner in the duplicated one

Social Choice and Computational Complexity

- Computational Complexity Theory provides the tools to understand computational aspects of voting rules
 - Negative results: Hardness of computation/approximation (e.g., Dodgson's voting rule)
 - Positive results: Approximation algorithms that could be used as alternative voting rules
- Besides statements about efficiency of computation, what other feedback can CCT give to SCT?
 - Are there approximation algorithms for a given voting rule that can be used as alternative voting rules with desirable social choice properties?
 - How far from a desirable social choice property is a given voting rule?

Open problems

- What about approximations of other voting rules?
- Different notions of approximation (additive, differential, approximation of rankings, etc.)
- Approximability of a voting rule by known rules that have good social choice properties (e.g., Copeland, Maximin)