Euclidean Embedding of Rigid Graphs

Ioannis Z. Emiris
University of Athens

ACAC-2010

Outline

1 Motivation

2 Rigidity

3 Embeddings

- Planar embeddings
- Algebraic formulation
- Distance geometry

■ Spatial embeddings

4 Further questions

Bioinformatics

■ NMR spectroscopy yields (approximate) distances, hence 3d structure, in solution [K.Wüthrich, ETHZ, Chemistry Nobel'02]
■ X-ray crystallography: more accurate distances but in crystal state, which takes ~ 1 year.

- Software for ≥ 100 atoms:

Dyana [Güntert,Mumenthaler,Wüthrich'97], Embed [Crippen,Havel'88], Disgeo [Havel,Wuthrich'98], Dgsol [Moré,Wu], Abbie [Hendrickson], etc

Robotics

Engineering

- Architecture, tensegrity

- Topography (Surveyors)

Problem definition

Embed- \mathbb{R}^{d} : Find a function which maps vertices to points $\in \mathbb{R}^{d}$ so as to preserve the given (Euclidean) distances, $d \geq 1$.

Counting: Given a rigid graph, determine max \#embeddings in \mathbb{R}^{d} (modulo rigid motions), assuming generic edge lengths. Rigid motions: translation, rotation.

Generic / Minimal Rigidity

- Graph G is generically rigid in \mathbb{R}^{d} iff for generic edge lengths it has a finite number of embeddings in \mathbb{R}^{d}, modulo rigid motions.
- Graph G is minimally rigid iff it becomes non-rigid (flexible) once an edge is removed.

We call generically minimally rigid graphs simply rigid.

Figure: A rigid vs a non-rigid (flexible) graph in \mathbb{R}^{2}.

Rigidity Condition

Theorem (Maxwell:1864,Laman'70)
Graph $G=(V, E)$ is rigid in \mathbb{R}^{2} iff:

- $|E|=2|V|-3$, and
- $\left|E^{\prime}\right| \leq 2\left|V^{\prime}\right|-3, \quad \forall$ vertex-induced subgraph $\left(V^{\prime}, E^{\prime}\right)$.

This is the (combinatorial) "Laman condition" for rigidity in \mathbb{R}^{2}.

Henneberg steps

Adding a vertex while preserving rigidity:

Figure: H_{1} and H_{2} steps

Henneberg steps

Adding a vertex while preserving rigidity:

Figure: H_{1} and H_{2} steps

Henneberg steps

Adding a vertex while preserving rigidity:

Figure: H_{1} and H_{2} steps

Figure: Examples for $n=6$

Planar construction

Definition

A $H_{1}\left(\right.$ resp. $\left.H_{2}\right)$ construction is a succession of H_{1} (resp. H_{1} and H_{2}) steps, which begins with a triangle.

Theorem (Henneberg,Whiteley-Tay)
Graph G is Laman iff it has a H_{2} construction.

Rigidity in \mathbb{R}^{3}

Generalized condition: $|E|=3|V|-6,\left|E^{\prime}\right| \leq 3\left|V^{\prime}\right|-6$.
Counterexample: Double Banana.

Theorem (Gluck,Aleksandrov)
The 1-skeleta of simplicial (convex) polyhedra are rigid in \mathbb{R}^{3}.
Notice they satisfy $|E|=3|V|-6,\left|E^{\prime}\right| \leq 3\left|V^{\prime}\right|-6$.
Open: Complete characterization; other classes.

3 Henneberg steps in \mathbb{R}^{3}

H_{1}, H_{2}, H_{3} steps replace $k-1$ diagonals in $(k+2)$-cycle, by new vertex and $k+2$ edges, for $k=1,2,3$:

Henneberg construction in \mathbb{R}^{3}

A H_{3} construction is a succession of H_{1}, H_{2}, H_{3} steps, starting at the 3-simplex (tetrahedron), or K_{4} graph.

Theorem (Bowen-Fisk'67)
A graph is the 1-skeleton of a simplicial polyhedron in \mathbb{R}^{3} iff it admits a H_{3} construction.

Embedding complete graphs

■ Consider (unknown) points $p_{0}, \ldots, p_{n} \in \mathbb{R}^{d}$, and given distances

$$
d_{i j}^{2}=\left|p_{i}-p_{j}\right|^{2}, d_{i 0}^{2}=\left|p_{i}\right|^{2}, \quad \text { by setting } p_{0}=0
$$

- Now define (Gram) matrix G as follows:

$$
d_{i j}^{2}=\left|p_{i}\right|^{2}-2 p_{i}^{T} p_{j}+\left|p_{j}\right|^{2} \Leftrightarrow p_{i}^{T} p_{j}=\frac{d_{i 0}^{2}-d_{i j}^{2}+d_{j 0}^{2}}{2}=: G_{i j},
$$

hence $G=\left[p_{1}, \ldots, p_{n}\right]^{T} \cdot\left[p_{1}, \ldots, p_{n}\right]$.

- The Singular Value Decomposition yields

$$
G=V \Sigma V^{\top} \Rightarrow P=\sqrt{\Sigma} \cdot V^{\top} .
$$

Decision problem

■ Given complete set of exact distances: Embed- $\mathbb{R}^{d} \in \mathrm{P}$.

- Given incomplete set of exact distances [Saxe'79].

Embed- $\mathbb{R} \in$ NP-hard. Reduction of set-partition.
Embed- $\mathbb{R}^{k} \in$ NP-hard, for $k \geq 2$, even if weights $\in\{1,2\}$.
■ (Approximate) Embed- $\mathbb{R}^{2} \in$ NP-hard for planar rigid graphs with all weights $=1$ [Cabello,Demaine,Rote'03]

- Given distances $\pm \epsilon$, approximate-Embed- $\mathbb{R}^{d} \in$ NP-hard [Moré,Wu'96].
- Every graph with n vertices can be embedded in some Euclidean space (of any dimension) with distortion in $O(\log n)$ [Bourgain'93].

Counting Planar Embeddings

Construct all non-isomorphic graphs:

$n=$	3	4	5	6
$\#$ graphs	1	1	3	
upper bound	2	4	8	24
lower bound	2	4	8	24
H_{1} sequence	Δ	$\Delta 1$	$\Delta 11$	$\Delta 111$
H_{2} sequence				$\Delta 112$

Small cases

- The triangle (Δ) has exactly 2 embeddings (reflections).

■ H_{1} exactly doubles the generic \#embeddings (2 circles). Open: Does H_{2} at most quadruple \#embeddings?

- $n=6: H_{2}$ graphs:
$K_{3,3}$ has 16 embeddings [Walter-Husty'07]
Desargues' graph has 24 [Hunt'83] [Gosselin,Sefrioui,Richard'91] (aka 3-prism, planar parallel robot)

Desargues graph: lower bound

[Borcea,Streinu'04]

Lower Bounds in \mathbb{R}^{2}

[Borcea,Streinu'04]

■ Caterpillar Desargues has $24^{n / 4} \simeq 2.21^{n}$ embeddings.

- Desargues fan has $2 \cdot 12^{n / 3-1} \simeq 2.29^{n} / 6$ embeddings.

Smallest case is $n=9$, yields 288 .

Algebraic upper bounds

$\#$ embeddings $=\#$ solutions $\in \mathbb{R}^{\text {nd }}$ of a polynomial system, corresponding to edges E and $\binom{d+1}{2}$ "pin-down" equations:

$$
\begin{aligned}
& \text { in } \mathbb{R}^{2}:\left\{\begin{array}{l}
x_{1}=y_{1}=0, \\
y_{2}=0, \\
\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}=l_{i j}^{2},
\end{array} \quad(i, j) \in E .\right. \\
& \text { in } \mathbb{R}^{3}:\left\{\begin{array}{l}
x_{1}=y_{1}=z_{1}=0, \\
y_{2}=z_{2}=0, \\
z_{3}=0, \\
\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+\left(z_{i}-z_{j}\right)^{2}=l_{i j}^{2}, \quad(i, j) \in E .
\end{array}\right.
\end{aligned}
$$

Use bounds in $\mathbb{C}^{\text {nd }}$:

- classical, Bézout ($=\Pi$ degrees),
- sparse, mixed volume (of exponents of nonzero terms).

Example

System $c_{11}+c_{12} x y+c_{13} x^{2} y+c_{14} x, c_{31}+c_{32} y+c_{33} x y+c_{34} x$, with Newton polytopes:

has Mixed Volume $=3=V\left(P_{1}+P_{2}\right)-V\left(P_{1}\right)-V\left(P_{2}\right)$.

General Upper Bound

- Bézout: $\Theta\left(2^{\text {nd }}\right)$.

■ [Borcea-Streinu'04] by distance matrices:

$$
\begin{gathered}
\prod_{k=0}^{n-d-2} \frac{\binom{n-1+k}{n-d-1-k}}{\binom{2 k+1}{k}} \approx 2^{n d}, \\
\binom{2 n-4}{n-2} \approx \frac{4^{n-2}}{\sqrt{\pi(n-2)}}, \quad d=2,
\end{gathered}
$$

Planar Upper Bound

■ Mixed volume $=4^{n} \quad$ [Steffens-Theobald'08]

- Sparseness A Laman graph, $n \geq 8$, with k degree-2 vertices has [E-Tsigaridas-Varvitsiotis'09]

$$
\leq 2^{k+1} 4^{n-k-5} \text { embeddings. }
$$

Desargues graph: upper bound

[Collins'02]: Planar quaternion $q=q(d, \theta) \in \mathbb{R}^{4}$,
transformation $M=\left[\begin{array}{ccc}q_{4}^{2}-q_{3}{ }^{2} & -2 q_{3} q_{4} & 2 q_{1} q_{4}-2 q_{2} q_{3} \\ 2 q_{3} q_{4} & q_{4}{ }^{2}-q_{3}{ }^{2} & 2 q_{1} q_{3}+2 q_{2} q_{4} \\ 0 & 0 & 1\end{array}\right]$
$\square q_{3}^{2}+q_{4}^{2}=1, \quad\left|\left(M v_{i}\right)^{T} v_{j}\right|-d_{i j}^{2}=\operatorname{hom}\left(q_{i}\right)-c=0: \quad \mathrm{MV}=12$.
\square Equivalent: hom $\left(q_{i}\right)=c\left(q_{3}^{2}+q_{4}^{2}\right)$, dehomogenize $z_{i}=q_{i} / q_{4}$.
■ First equation is $z_{3}^{2}+1=z_{0}$, system has $M V=6$.

Small cases

$n=$	3	4	5	6	7	8	9	10
upper	2	4	8	24	56	128	512	2048
lower	2	4	8	24	48	96	288	576
H_{1}	Δ	$\Delta 1$	$\Delta 11$	$\Delta 111$	$\Delta 1111$	$\Delta 11111$	$\Delta 1^{6}$	
				$\Delta 112$	$\Delta 1112$	$\Delta 11112$	$\Delta 1^{5} 2$	
H_{2}							$\Delta 1^{4} 21$	
							$\Delta 1^{4} 22$	

- Classified all isomorphic graphs by SAGE, applied Mixed volume on distance equations [E-Tsigaridas-Varvitsiotis:GD'09].
■ For $n=7$: upper bound by distance matrices (was 64).
\exists graph with 56 complex roots; others with upper bound <56

Distance matrix

A distance matrix M is square, $M_{i i}=0, M_{i j}=M_{j i} \geq 0$.
It is embeddable in (Euclidean) \mathbb{R}^{d} iff

$$
\exists \text { points } p_{i} \in \mathbb{R}^{d}: M_{i j}=\frac{1}{2} \operatorname{dist}\left(p_{i}, p_{j}\right)^{2}
$$

Distance geometry

Theorem (Cayley'41,Menger'28,Schoenberg'35)
M embeds in \mathbb{R}^{d}, for min d, iff Cayley-Menger (border) matrix has

$$
\operatorname{rank}\left[\begin{array}{cc}
0 & 1 \cdots 1 \\
1 & \\
\vdots & M \\
1 &
\end{array}\right]=d+2,
$$

and, for any minor D indexed by rows/columns $0, i_{1}, \ldots, i_{k}$,

$$
(-1)^{k} D\left(i_{1}, \ldots, i_{k}\right) \geq 0, \quad k=2, \ldots, d+1 .
$$

Corollary

- For $k=2, D(i, j)=2 M_{i j} \geq 0$,

■ for $k=3,4$, we get the triangular/tetrangular inequalities.

Corollary

Points p_{i} embed in \mathbb{R}^{d}, for min d, iff corresponding Gram matrix $P^{\top} P$ has rank d and is positive semidefinite (all eigenvalues ≥ 0).

Cyclohexane

$p_{1}$$p_{2} \quad p_{3} \quad p_{4} \quad p_{5} \quad p_{6}$

Known $u=1.526 \AA$ (adjacent), $\phi \simeq 110.4^{\circ} \Rightarrow c \simeq 2.29 \AA$ (triangle)
Rank $=5 \Leftrightarrow$ vanishing of all 6×6 minors:
Yields a 3×3 system with Mixed volume $=16$.

Embeddings in \mathbb{R}^{3}

- The 3-simplex (tetrahedron, K_{4}) has exactly 2 embeddings: reflections about the plane.

■ H_{1} exactly doubles the generic \#embeddings: 3 spheres intersect generically at 2 points.
Open: do H_{2}, H_{3} multiply \#embeddings by at most 4,8 ?
■ Sparseness: Consider $n \geq 6, k$ degree- 3 vertices. Then, there exist at most $2^{k+1} 8^{n-k-5}$ embeddings [ETV'09].

Small Cases

$n=5$: Unique graph, 4 embeddings (tight):

$n=6: 2$ non-isomorphic graphs; RHS with 16 embeddings (tight):

Better mixed volumes

Mixed volume of distance equations in \mathbb{R}^{3} is loose in \mathbb{C}^{*}. Pf. Bernstein's 2nd Thm [1975]

Remove spurious solutions with new variables s_{i} :

$$
\begin{array}{ll}
x_{i}=0, & i=1,2,3 \\
y_{i}=0, & i=1,2 \\
z_{i}=0, & i=1 \\
s_{i}=x_{i}^{2}+y_{i}^{2}+z_{i}^{2}, & i=1, \ldots, n \\
s_{i}+s_{j}-2 x_{i} x_{j}-2 y_{i} y_{j}-2 z_{i} z_{j}=l_{i j}^{2}, & (i, j) \in E
\end{array}
$$

The case $n=6$

■ Mixed Volume (of new system) $=16$.

- The cyclohexane has 16 real embeddings [E-Mourrain'99]

■ The "jigsaw" parallel robot has 16 real configurations.

4 cyclohexanes (chairs, and boats/crowns) given 6 fixed distances and angles, or 12 distances.

Lower bound in \mathbb{R}^{3}

The Cyclohexane caterpillar has $\approx 16^{n / 3} \simeq(2.52)^{n}$ embeddings.
Proof. Copies of Cyclohexanes with common triangle. For $n \geq 9$.

Small cases

$n=$	4	5	6	7	8	9	10
upper	2	4	16	32	160	640	2560
lower	2	4	16	32	64	256	512
H_{1}	Δ	$\Delta 1$	$\Delta 11$	$\Delta 111$	$\Delta 1^{4}$	$\Delta 1^{5}$	$\Delta 1^{6}$
			$\Delta 12$	$\Delta 1^{2} 2$	$\Delta 1^{3} 2$	$\Delta 1^{4} 2$	$\Delta 1^{5} 2$
					$\Delta 1^{2} 2^{2}$	$\Delta 1^{3} 2^{2}$	$\Delta 1^{4} 2^{2}$
H_{2}	-	-			$\Delta 1^{2} 21$	$\Delta 1^{3} 21$	$\Delta 1^{4} 21$
						$\Delta 1^{2} 2^{3}$	$\Delta 1^{3} 2^{3}$
							$\Delta 1^{3} 21^{2}$
							$\Delta 1^{3} 212$
							$\Delta 1^{3} 2^{2} 1$

Using SAGE, and Mixed volumes [E-Tsigaridas-Varvitsiotis:GD'09].

Matrix completion

Embedding is equivalent to completing a given incomplete matrix/graph so as to get a PSD Gram (or distance) matrix: It is expressed as feasibility of a PSD program.

Complexity:

- Solving PSD programs with arbitrary precision $\in P_{\mathbb{R}}$ (interior-point or ellipsoid algorithms).
- Unknown whether PSD-program \in NP $_{\text {bit }}$.

■ Unknown whether PSD-feasibility $\in \mathrm{P}_{\text {bit }}$ (weak poly-time).
■ Recall: interior-point, ellipsoid algorithms for LP are in $\mathrm{P}_{\text {bit }}$.

Chordal Graphs

■ A graph is chordal if it contains NO empty cycle of length ≥ 4.
■ Thm [Grone,Sa,Johnson,Wolkowitz'84] [Bakonyi,Johnson'95] Every partial distance matrix M with graph G has a distance-matrix completion iff G is chordal. Proof: all principal submatrices embed \Rightarrow matrix embeds. $[\Leftarrow]$ algorithm in P [Laurent'98].

- Thm [Laurent] If \#edges added to make G chordal is $O(1)$, then distance-matrix completion $\in \mathrm{P}_{\text {bit }}$.

■ Generally, minimizing \#edges to make G chordal is NP-hard.

Complete subgraphs

- Thm [Laurent]. Suppose G contains no clique K_{4}. Then, PSD-completion is in $\mathrm{P}_{\mathbb{R}}$.
- Consider a clique missing edges incident to vertex v. Then, in poly-time, M is PSD-completed and its min embedding dimension (MED) computed [E-Fragoudakis-Markou], e.g: $\operatorname{MED}\left(v-G_{1} \equiv G_{2}\right)=\max \left\{\operatorname{MED}\left(v-G_{1}\right), \operatorname{MED}\left(G_{1} \equiv G_{2}\right)\right\}$.
$■$ Same for star of cliques $K_{i}: \operatorname{MED}(\operatorname{star})=\max _{i}\left\{\operatorname{MED}\left(K_{i}\right)\right\}$.

Generalizations

Body-and-bar structures
Define graph by mapping bodies to vertices, bars to edges.
Structure is rigid in \mathbb{R}^{d} iff graph $=$ edge-disjoint union of $\binom{d+1}{2}$
spanning trees [Tay'84]
Body-and-hinge and body-and-bar/hinge structures
Replace Hinge by $\binom{d+1}{2}-1$ edges.
Same characterization of rigidity [Whiteley'88] [Tay'89]
Molecular Conjecture proven [Katoh-Tanigawa'09]
A graph corresponds to a rigid Body-and-hinge structure in \mathbb{R}^{d} iff it corresponds to a rigid Panel-and-hinge structure.

Open

■ Specific embedding numbers, better lower bounds.
■ Combinatorial characterization in \mathbb{R}^{3}.
■ Count embeddings of body-and-bar, body-and-hinges structures.

■ How about other distance norms?
■ Tensegrity

Thank you!

