Euclidean Embedding of Rigid Graphs

Ioannis Z. Emiris

University of Athens

A 10

A B M A B M

Outline

1 Motivation

2 Rigidity

3 Embeddings

- Planar embeddings
- Algebraic formulation
- Distance geometry
- Spatial embeddings

4 Further questions

Bioinformatics

- NMR spectroscopy yields (approximate) distances, hence 3d structure, in solution [K.Wüthrich, ETHZ, Chemistry Nobel'02]
- \blacksquare X-ray crystallography: more accurate distances but in crystal state, which takes ~ 1 year.
- Software for ≥ 100 atoms:

Dyana [Güntert,Mumenthaler,Wüthrich'97], Embed [Crippen,Havel'88], Disgeo [Havel,Wuthrich'98], Dgsol [Moré,Wu], Abbie [Hendrickson], etc

Robotics

<ロ> <部> < 2> < 2> < 2> < 2> < 2</p>

æ

Engineering

Architecture, tensegrity

Topography (Surveyors)

Problem definition

Embed- \mathbb{R}^d : Find a function which maps vertices to points $\in \mathbb{R}^d$ so as to preserve the given (Euclidean) distances, $d \ge 1$.

Counting: Given a rigid graph, determine max #embeddings in \mathbb{R}^d (modulo rigid motions), assuming generic edge lengths. Rigid motions: translation, rotation.

Generic / Minimal Rigidity

- Graph G is generically rigid in ℝ^d iff for generic edge lengths it has a finite number of embeddings in ℝ^d, modulo rigid motions.
- Graph G is minimally rigid iff it becomes non-rigid (flexible) once an edge is removed.

We call generically minimally rigid graphs simply rigid.

Figure: A rigid vs a non-rigid (flexible) graph in \mathbb{R}^2 .

Rigidity Condition

Theorem (Maxwell:1864,Laman'70) Graph G = (V, E) is rigid in \mathbb{R}^2 iff: • |E| = 2|V| - 3, and • $|E'| \le 2|V'| - 3$, \forall vertex-induced subgraph (V', E').

This is the (combinatorial) "Laman condition" for rigidity in \mathbb{R}^2 .

Henneberg steps

Adding a vertex while preserving rigidity:

Figure: H_1 and H_2 steps

Henneberg steps

Adding a vertex while preserving rigidity:

Figure: H_1 and H_2 steps

Henneberg steps

Adding a vertex while preserving rigidity:

Figure: H_1 and H_2 steps

Figure: Examples for n = 6

Planar construction

Definition

A H_1 (resp. H_2) construction is a succession of H_1 (resp. H_1 and H_2) steps, which begins with a triangle.

Theorem (Henneberg, Whiteley-Tay)

Graph G is Laman iff it has a H_2 construction.

Rigidity in \mathbb{R}^3

Generalized condition: |E| = 3|V| - 6, $|E'| \le 3|V'| - 6$. Counterexample: Double Banana.

Theorem (Gluck,Aleksandrov) The 1-skeleta of simplicial (convex) polyhedra are rigid in \mathbb{R}^3 . Notice they satisfy |E| = 3|V| - 6, $|E'| \le 3|V'| - 6$.

Open: Complete characterization; other classes.

3 Henneberg steps in \mathbb{R}^3

 H_1, H_2, H_3 steps replace k - 1 diagonals in (k + 2)-cycle, by new vertex and k + 2 edges, for k = 1, 2, 3:

Henneberg construction in \mathbb{R}^3

A H_3 construction is a succession of H_1, H_2, H_3 steps, starting at the 3-simplex (tetrahedron), or K_4 graph.

Theorem (Bowen-Fisk'67)

A graph is the 1-skeleton of a simplicial polyhedron in \mathbb{R}^3 iff it admits a H_3 construction.

Embedding complete graphs

Consider (unknown) points $p_0, \ldots, p_n \in \mathbb{R}^d$, and given distances

$$d_{ij}^2 = |p_i - p_j|^2, \ d_{i0}^2 = |p_i|^2, \ \text{by setting } p_0 = 0.$$

Now define (Gram) matrix G as follows:

$$d_{ij}^2 = |p_i|^2 - 2p_i^T p_j + |p_j|^2 \iff p_i^T p_j = \frac{d_{i0}^2 - d_{ij}^2 + d_{j0}^2}{2} =: G_{ij},$$

hence $G = [p_1, \ldots, p_n]^T \cdot [p_1, \ldots, p_n].$

The Singular Value Decomposition yields

$$G = V \Sigma V^T \Rightarrow P = \sqrt{\Sigma} \cdot V^T.$$

直 と く ヨ と く ヨ と

Decision problem

- Given complete set of exact distances: Embed- $\mathbb{R}^d \in \mathsf{P}$.
- Given incomplete set of exact distances [Saxe'79].
 Embed-ℝ ∈ NP-hard. Reduction of set-partition.
 Embed-ℝ^k ∈ NP-hard, for k ≥ 2, even if weights ∈ {1,2}.
- (Approximate) Embed-ℝ² ∈ NP-hard for planar rigid graphs with all weights = 1 [Cabello,Demaine,Rote'03]
- Given distances $\pm \epsilon$, approximate-Embed- $\mathbb{R}^d \in \mathsf{NP}$ -hard [Moré, Wu'96].
- Every graph with n vertices can be embedded in some Euclidean space (of any dimension) with distortion in O(log n) [Bourgain'93].

Counting Planar Embeddings

Construct all non-isomorphic graphs:

<i>n</i> =	3	4	5	6
#graphs	1	1	3	
upper bound	2	4	8	24
lower bound	2	4	8	24
H_1 sequence	Δ	Δ1	Δ11	Δ111
H_2 sequence				Δ112

Small cases

- The triangle (Δ) has exactly 2 embeddings (reflections).
- H₁ exactly doubles the generic #embeddings (2 circles).
 Open: Does H₂ at most quadruple #embeddings?
- n = 6: H₂ graphs: K_{3,3} has 16 embeddings [Walter-Husty'07] Desargues' graph has 24 [Hunt'83] [Gosselin,Sefrioui,Richard'91] (aka 3-prism, planar parallel robot)

Desargues graph: lower bound

[Borcea, Streinu'04]

< E

Lower Bounds in \mathbb{R}^2

[Borcea, Streinu'04]

• Caterpillar Desargues has $24^{n/4} \simeq 2.21^n$ embeddings.

Desargues fan has $2 \cdot 12^{n/3-1} \simeq 2.29^n/6$ embeddings.

Smallest case is n = 9, yields 288.

Algebraic upper bounds

#embeddings = #solutions $\in \mathbb{R}^{nd}$ of a polynomial system, corresponding to edges *E* and $\binom{d+1}{2}$ "pin-down" equations:

$$\text{in } \mathbb{R}^2 : \begin{cases} x_1 = y_1 = 0, \\ y_2 = 0, \\ (x_i - x_j)^2 + (y_i - y_j)^2 = l_{ij}^2, \quad (i, j) \in E. \end{cases} \\ \text{in } \mathbb{R}^3 : \begin{cases} x_1 = y_1 = z_1 = 0, \\ y_2 = z_2 = 0, \\ z_3 = 0, \\ (x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 = l_{ij}^2, \quad (i, j) \in E. \end{cases}$$

Use **bounds** in \mathbb{C}^{nd} :

- classical, Bézout (= \prod degrees),
- sparse, mixed volume (of exponents of nonzero terms).

Example

System $c_{11} + c_{12}xy + c_{13}x^2y + c_{14}x$, $c_{31} + c_{32}y + c_{33}xy + c_{34}x$, with Newton polytopes:

has Mixed Volume = $3 = V(P_1 + P_2) - V(P_1) - V(P_2)$.

★ Ξ →

General Upper Bound

Bézout: $\Theta(2^{nd})$.

■ [Borcea-Streinu'04] by distance matrices:

$$\prod_{k=0}^{n-d-2} \frac{\binom{n-1+k}{n-d-1-k}}{\binom{2k+1}{k}} \approx 2^{nd},$$

$$\binom{2n-4}{n-2}\approx\frac{4^{n-2}}{\sqrt{\pi(n-2)}},\qquad d=2,$$

A B > A B >

Planar Upper Bound

- Mixed volume = 4^n [Steffens-Theobald'08]
- Sparseness A Laman graph, n ≥ 8, with k degree-2 vertices has [E-Tsigaridas-Varvitsiotis'09]

$$\leq 2^{k+1} 4^{n-k-5}$$
 embeddings.

Desargues graph: upper bound

[Collins'02]: Planar quaternion $q = q(d, \theta) \in \mathbb{R}^4$,

transformation
$$M = \begin{bmatrix} q_4^2 - q_3^2 & -2q_3q_4 & 2q_1q_4 - 2q_2q_3 \\ 2q_3q_4 & q_4^2 - q_3^2 & 2q_1q_3 + 2q_2q_4 \\ 0 & 0 & 1 \end{bmatrix}$$

- $q_3^2 + q_4^2 = 1$, $|(Mv_i)^T v_j| d_{ij}^2 = \hom(q_i) c = 0$: $\mathsf{MV} = 12$.
- Equivalent: hom $(q_i) = c(q_3^2 + q_4^2)$, dehomogenize $z_i = q_i/q_4$.
- First equation is $z_3^2 + 1 = z_0$, system has MV=6.

Small cases

n =	3	4	5	6	7	8	9	10
upper	2	4	8	24	56	128	512	2048
lower	2	4	8	24	48	96	288	576
H_1	Δ	Δ1	Δ11	Δ111	Δ1111	Δ11111	$\Delta 1^{6}$	
				Δ112	Δ1112	Δ11112	Δ1 ⁵ 2	
H_2							$\Delta 1^{4}21$	
							$\Delta 1^{4}22$	

- Classified all isomorphic graphs by SAGE, applied Mixed volume on distance equations [E-Tsigaridas-Varvitsiotis:GD'09].
- For n = 7: upper bound by distance matrices (was 64).
 ∃ graph with 56 complex roots; others with upper bound < 56

< ≣ > <

Distance matrix

A distance matrix M is square, $M_{ii} = 0$, $M_{ij} = M_{ji} \ge 0$.

It is embeddable in (Euclidean) \mathbb{R}^d iff

$$\exists \text{ points } p_i \in \mathbb{R}^d : M_{ij} = \frac{1}{2} \operatorname{dist}(p_i, p_j)^2.$$

Distance geometry

Theorem (Cayley'41,Menger'28,Schoenberg'35) M embeds in \mathbb{R}^d , for min d, iff Cayley-Menger (border) matrix has

rank
$$\begin{bmatrix} 0 & 1 \cdots 1 \\ 1 & & \\ \vdots & M \\ 1 & & \end{bmatrix} = d+2,$$

and, for any minor D indexed by rows/columns $0, i_1, \ldots, i_k$,

$$(-1)^k D(i_1,\ldots,i_k) \ge 0, \quad k=2,\ldots,d+1.$$

Corollary

• For
$$k = 2$$
, $D(i, j) = 2M_{ij} \ge 0$,

• for k = 3, 4, we get the triangular/tetrangular inequalities.

Corollary

Points p_i embed in \mathbb{R}^d , for min d, iff corresponding Gram matrix $P^T P$ has rank d and is positive semidefinite (all eigenvalues ≥ 0).

Cyclohexane

		p_1	<i>p</i> ₂	<i>p</i> 3	<i>p</i> 4	<i>p</i> 5	<i>P</i> 6	,
	Γ0	1	1	1	1	1	1	1
p_1	1	0	и	с	<i>x</i> ₁₄	с	и	
<i>p</i> ₂	1	и	0	и	С	<i>x</i> 25	С	
<i>p</i> 3	1	С	и	0	и	С	<i>x</i> 36	
p_4	1	<i>x</i> ₁₄	С	и	0	и	С	
p_5	1	С	x ₂₅	С	и	0	и	
p_6	1	и	С	x ₃₆	С	и	0	

Known u = 1.526Å (adjacent), $\phi \simeq 110.4^{\circ} \Rightarrow c \simeq 2.29$ Å (triangle) Rank = 5 \Leftrightarrow vanishing of all 6 \times 6 minors: Yields a 3 \times 3 system with Mixed volume = 16.

Embeddings in \mathbb{R}^3

- The 3-simplex (tetrahedron, *K*₄) has exactly 2 embeddings: reflections about the plane.
- H₁ exactly doubles the generic #embeddings: 3 spheres intersect generically at 2 points.
 Open: do H₂, H₃ multiply #embeddings by at most 4,8?
- Sparseness: Consider $n \ge 6$, k degree-3 vertices. Then, there exist at most $2^{k+1}8^{n-k-5}$ embeddings [ETV'09].

Small Cases

n = 5: Unique graph, 4 embeddings (tight):

n = 6: 2 non-isomorphic graphs; RHS with 16 embeddings (tight):

Better mixed volumes

Mixed volume of distance equations in \mathbb{R}^3 is loose in \mathbb{C}^* . Pf. Bernstein's 2nd Thm [1975]

Remove spurious solutions with new variables s_i:

$$\begin{array}{ll} x_i = 0, & i = 1, 2, 3 \\ y_i = 0, & i = 1, 2 \\ z_i = 0, & i = 1 \\ s_i = x_i^2 + y_i^2 + z_i^2, & i = 1 \\ s_i + s_j - 2x_i x_j - 2y_i y_j - 2z_i z_j = l_{ij}^2, & (i, j) \in E \end{array}$$

The case n = 6

- Mixed Volume (of new system) = 16.
- The cyclohexane has 16 real embeddings [E-Mourrain'99]
- The "jigsaw" parallel robot has 16 real configurations.

4 cyclohexanes (chairs, and boats/crowns) given 6 fixed distances and angles, or 12 distances.

Lower bound in \mathbb{R}^3

The Cyclohexane caterpillar has $\approx 16^{n/3} \simeq (2.52)^n$ embeddings.

Proof. Copies of Cyclohexanes with common triangle. For $n \ge 9$.

< □ > < □ > < □ > = □

Small cases

<i>n</i> =	4	5	6	7	8	9	10
upper	2	4	16	32	160	640	2560
lower	2	4	16	32	64	256	512
H_1	Δ	Δ1	Δ11	Δ111	$\Delta 1^4$	$\Delta 1^5$	$\Delta 1^6$
H ₂		_	Δ12	Δ1 ² 2	$\begin{array}{c} \Delta 1^{3} 2 \\ \Delta 1^{2} 2^{2} \\ \Delta 1^{2} 21 \end{array}$	$ \begin{array}{c} \Delta 1^{4} 2 \\ \Delta 1^{3} 2^{2} \\ \Delta 1^{3} 21 \\ \Delta 1^{2} 2^{3} \end{array} $	$\begin{array}{c} \Delta 1^{5} 2 \\ \Delta 1^{4} 2^{2} \\ \Delta 1^{4} 21 \\ \Delta 1^{3} 2^{3} \\ \Delta 1^{3} 21^{2} \\ \Delta 1^{3} 212 \\ \Delta 1^{3} 2^{2} 1 \\ \Delta 1^{2} 2^{4} \end{array}$

Using SAGE, and Mixed volumes [E-Tsigaridas-Varvitsiotis:GD'09].

I.Emiris (U.Athens) * 35/41 Embedding of Rigid Graphs

Matrix completion

Embedding is equivalent to completing a given incomplete matrix/graph so as to get a PSD Gram (or distance) matrix: It is expressed as feasibility of a PSD program.

Complexity:

- Solving PSD programs with arbitrary precision ∈ P_R (interior-point or ellipsoid algorithms).
- Unknown whether PSD-program $\in NP_{bit}$.
- Unknown whether PSD-feasibility $\in P_{bit}$ (weak poly-time).
- Recall: interior-point, ellipsoid algorithms for LP are in P_{bit}.

直 と く ヨ と く ヨ と

Chordal Graphs

- A graph is chordal if it contains NO empty cycle of length \geq 4.
- Thm [Grone,Sa,Johnson,Wolkowitz'84] [Bakonyi,Johnson'95] Every partial distance matrix M with graph G has a distance-matrix completion iff G is chordal.
 Proof: all principal submatrices embed ⇒ matrix embeds.
 [←] algorithm in P [Laurent'98].
- Thm [Laurent] If #edges added to make G chordal is O(1), then distance-matrix completion $\in P_{bit}$.
- Generally, minimizing #edges to make G chordal is NP-hard.

Complete subgraphs

- Thm [Laurent]. Suppose G contains no clique K_4 . Then, PSD-completion is in $P_{\mathbb{R}}$.
- Consider a clique missing edges incident to vertex v. Then, in poly-time, M is PSD-completed and its min embedding dimension (MED) computed [E-Fragoudakis-Markou], e.g:

$$\mathsf{MED}(\nu - G_1 \equiv G_2) = \mathsf{max}\{\mathsf{MED}(\nu - G_1), \mathsf{MED}(G_1 \equiv G_2)\}.$$

Same for star of cliques K_i : MED(star) = max_i{MED(K_i)}.

Generalizations

Body-and-bar structures

Define graph by mapping bodies to vertices, bars to edges. Structure is rigid in \mathbb{R}^d iff graph = edge-disjoint union of $\binom{d+1}{2}$ spanning trees [Tay'84]

Body-and-hinge and body-and-bar/hinge structures Replace Hinge by $\binom{d+1}{2} - 1$ edges. Same characterization of rigidity [Whiteley'88] [Tay'89]

Molecular Conjecture proven [Katoh-Tanigawa'09] A graph corresponds to a rigid Body-and-hinge structure in \mathbb{R}^d iff it corresponds to a rigid Panel-and-hinge structure.

Open

- Specific embedding numbers, better lower bounds.
- Combinatorial characterization in \mathbb{R}^3 .
- Count embeddings of body-and-bar, body-and-hinges structures.
- How about other distance norms?
- Tensegrity

Thank you!

< ≝ > <

P.

-≣->