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Bioinformatics

NMR spectroscopy yields (approximate) distances, hence 3d
structure, in solution [K.Wüthrich, ETHZ, Chemistry Nobel’02]

X-ray crystallography: more accurate distances but in crystal
state, which takes ∼ 1 year.

Software for ≥ 100 atoms:
Dyana [Güntert,Mumenthaler,Wüthrich’97],
Embed [Crippen,Havel’88], Disgeo [Havel,Wuthrich’98],
Dgsol [Moré,Wu], Abbie [Hendrickson], etc
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Robotics
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Engineering

Architecture, tensegrity

Topography (Surveyors)
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Problem definition

Embed-Rd : Find a function which maps vertices to points ∈ Rd so
as to preserve the given (Euclidean) distances, d ≥ 1.

Counting: Given a rigid graph, determine max #embeddings in Rd

(modulo rigid motions), assuming generic edge lengths.
Rigid motions: translation, rotation.
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Generic / Minimal Rigidity

Graph G is generically rigid in Rd iff for generic edge lengths
it has a finite number of embeddings in Rd , modulo rigid
motions.

Graph G is minimally rigid iff it becomes non-rigid (flexible)
once an edge is removed.

We call generically minimally rigid graphs simply rigid.

Figure: A rigid vs a non-rigid (flexible) graph in R2.
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Rigidity Condition

Theorem (Maxwell:1864,Laman’70)

Graph G = (V ,E ) is rigid in R2 iff:

|E | = 2|V | − 3, and

|E ′| ≤ 2|V ′| − 3, ∀ vertex-induced subgraph (V ′,E ′).

This is the (combinatorial) “Laman condition” for rigidity in R2.
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Henneberg steps

Adding a vertex while preserving rigidity:

Figure: H1 and H2 steps

Figure: Examples for n = 6
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Planar construction

Definition
A H1 (resp. H2) construction is a succession
of H1 (resp. H1 and H2) steps, which begins with a triangle.

Theorem (Henneberg,Whiteley-Tay)

Graph G is Laman iff it has a H2 construction.
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Rigidity in R3

Generalized condition: |E | = 3|V | − 6, |E ′| ≤ 3|V ′| − 6.
Counterexample: Double Banana.

Theorem (Gluck,Aleksandrov)

The 1-skeleta of simplicial (convex) polyhedra are rigid in R3.
Notice they satisfy |E | = 3|V | − 6, |E ′| ≤ 3|V ′| − 6.

Open: Complete characterization; other classes.
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3 Henneberg steps in R3

H1,H2,H3 steps replace k − 1 diagonals in (k + 2)-cycle, by new
vertex and k + 2 edges, for k = 1, 2, 3:
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Henneberg construction in R3

A H3 construction is a succession of H1,H2,H3 steps, starting at
the 3-simplex (tetrahedron), or K4 graph.

Theorem (Bowen-Fisk’67)

A graph is the 1-skeleton of a simplicial polyhedron in R3 iff it
admits a H3 construction.
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Embedding complete graphs

Consider (unknown) points p0, . . . , pn ∈ Rd , and given
distances

d2
ij = |pi − pj |2, d2

i0 = |pi |2, by setting p0 = 0.

Now define (Gram) matrix G as follows:

d2
ij = |pi |2 − 2pT

i pj + |pj |2 ⇔ pT
i pj =

d2
i0 − d2

ij + d2
j0

2
=: Gij ,

hence G = [p1, . . . , pn]T · [p1, . . . , pn].

The Singular Value Decomposition yields

G = V ΣV T ⇒ P =
√

Σ · V T .
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Decision problem

Given complete set of exact distances: Embed-Rd ∈ P.

Given incomplete set of exact distances [Saxe’79].
Embed-R ∈ NP-hard. Reduction of set-partition.
Embed-Rk ∈ NP-hard, for k ≥ 2, even if weights ∈ {1, 2}.

(Approximate) Embed-R2 ∈ NP-hard for planar rigid graphs
with all weights = 1 [Cabello,Demaine,Rote’03]

Given distances ±ε, approximate-Embed−Rd ∈ NP-hard
[Moré,Wu’96].

Every graph with n vertices can be embedded in some
Euclidean space (of any dimension) with distortion in O(log n)
[Bourgain’93].
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Counting Planar Embeddings

Construct all non-isomorphic graphs:

n = 3 4 5 6

#graphs 1 1 3

upper bound 2 4 8 24

lower bound 2 4 8 24

H1 sequence ∆ ∆1 ∆11 ∆111

H2 sequence ∆112
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Small cases

The triangle (∆) has exactly 2 embeddings (reflections).

H1 exactly doubles the generic #embeddings (2 circles).
Open: Does H2 at most quadruple #embeddings?

n = 6: H2 graphs:
K3,3 has 16 embeddings [Walter-Husty’07]

Desargues’ graph has 24 [Hunt’83] [Gosselin,Sefrioui,Richard’91]

(aka 3-prism, planar parallel robot)
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Desargues graph: lower bound

[Borcea,Streinu’04]
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Lower Bounds in R2

[Borcea,Streinu’04]

Caterpillar Desargues has 24n/4 ' 2.21n embeddings.

Desargues fan has 2 · 12n/3−1 ' 2.29n/6 embeddings.

Smallest case is n = 9, yields 288.
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Algebraic upper bounds

#embeddings = #solutions ∈ Rnd of a polynomial system,
corresponding to edges E and

(d+1
2

)
“pin-down” equations:

in R2 :


x1 = y1 = 0,
y2 = 0,
(xi − xj)

2 + (yi − yj)
2 = l2ij , (i , j) ∈ E .

in R3 :


x1 = y1 = z1 = 0,
y2 = z2 = 0,
z3 = 0,
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2 = l2ij , (i , j) ∈ E .

Use bounds in Cnd :

classical, Bézout (=
∏

degrees),

sparse, mixed volume (of exponents of nonzero terms).
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Example

System c11 + c12xy + c13x2y + c14x , c31 + c32y + c33xy + c34x ,
with Newton polytopes:

has Mixed Volume = 3 = V (P1 + P2)− V (P1)− V (P2).
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General Upper Bound

Bézout: Θ(2nd).

[Borcea-Streinu’04] by distance matrices:

n−d−2∏
k=0

( n−1+k
n−d−1−k

)(2k+1
k

) ≈ 2nd ,

(
2n − 4

n − 2

)
≈ 4n−2√

π(n − 2)
, d = 2,
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Planar Upper Bound

Mixed volume = 4n [Steffens-Theobald’08]

Sparseness A Laman graph, n ≥ 8, with k degree-2 vertices
has [E-Tsigaridas-Varvitsiotis’09]

≤ 2k+1 4n−k−5 embeddings.
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Desargues graph: upper bound

[Collins’02]: Planar quaternion q = q(d , θ) ∈ R4,

transformation M =

 q2
4 − q3

2 −2q3q4 2q1q4 − 2q2q3

2q3q4 q4
2 − q3

2 2q1q3 + 2q2q4

0 0 1


q2
3 + q2

4 = 1, |(Mvi )
T vj |−d2

ij = hom(qi )−c = 0 : MV = 12.

Equivalent: hom(qi ) = c(q2
3 + q2

4), dehomogenize zi = qi/q4.

First equation is z2
3 + 1 = z0, system has MV=6.
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Small cases

n = 3 4 5 6 7 8 9 10

upper 2 4 8 24 56 128 512 2048

lower 2 4 8 24 48 96 288 576

H1 ∆ ∆1 ∆11 ∆111 ∆1111 ∆11111 ∆16

∆112 ∆1112 ∆11112 ∆152
H2 ∆1421

∆1422

Classified all isomorphic graphs by SAGE, applied Mixed
volume on distance equations [E-Tsigaridas-Varvitsiotis:GD’09].

For n = 7: upper bound by distance matrices (was 64).
∃ graph with 56 complex roots; others with upper bound < 56
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Distance matrix

A distance matrix M is square, Mii = 0, Mij = Mji ≥ 0.

It is embeddable in (Euclidean) Rd iff

∃ points pi ∈ Rd : Mij =
1

2
dist(pi , pj)

2.
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Distance geometry

Theorem (Cayley’41,Menger’28,Schoenberg’35)

M embeds in Rd , for min d, iff Cayley-Menger (border) matrix has

rank


0 1 · · · 1
1
...
1

M

 = d + 2,

and, for any minor D indexed by rows/columns 0, i1, . . . , ik ,

(−1)k D(i1, . . . , ik) ≥ 0, k = 2, . . . , d + 1.
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Corollary

For k = 2, D(i , j) = 2Mij ≥ 0,

for k = 3, 4, we get the triangular/tetrangular inequalities.

Corollary

Points pi embed in Rd , for min d, iff corresponding Gram matrix
PT P has rank d and is positive semidefinite (all eigenvalues ≥ 0).
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Cyclohexane

p1 p2 p3 p4 p5 p6

p1

p2

p3

p4

p5

p6



0 1 1 1 1 1 1
1 0 u c x14 c u
1 u 0 u c x25 c
1 c u 0 u c x36

1 x14 c u 0 u c
1 c x25 c u 0 u
1 u c x36 c u 0


Known u = 1.526Å (adjacent), φ ' 110.4o ⇒ c ' 2.29Å (triangle)
Rank = 5⇔ vanishing of all 6× 6 minors:
Yields a 3× 3 system with Mixed volume = 16.
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Embeddings in R3

The 3-simplex (tetrahedron, K4) has exactly 2 embeddings:
reflections about the plane.

H1 exactly doubles the generic #embeddings: 3 spheres
intersect generically at 2 points.
Open: do H2,H3 multiply #embeddings by at most 4, 8?

Sparseness: Consider n ≥ 6, k degree-3 vertices. Then, there
exist at most 2k+18n−k−5 embeddings [ETV’09].
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Small Cases

n = 5: Unique graph, 4 embeddings (tight):

n = 6: 2 non-isomorphic graphs; RHS with 16 embeddings (tight):
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Better mixed volumes

Mixed volume of distance equations in R3 is loose in C∗.
Pf. Bernstein’s 2nd Thm [1975]

Remove spurious solutions with new variables si :

xi = 0, i = 1, 2, 3
yi = 0, i = 1, 2
zi = 0, i = 1
si = x2

i + y2
i + z2

i , i = 1, . . . , n
si + sj − 2xixj − 2yiyj − 2zizj = l2ij , (i , j) ∈ E
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The case n = 6

Mixed Volume (of new system) = 16.

The cyclohexane has 16 real embeddings [E-Mourrain’99]

The “jigsaw” parallel robot has 16 real configurations.

4 cyclohexanes (chairs, and boats/crowns) given 6 fixed distances
and angles, or 12 distances.
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Lower bound in R3

The Cyclohexane caterpillar has ≈ 16n/3 ' (2.52)n embeddings.

Proof. Copies of Cyclohexanes with common triangle. For n ≥ 9.
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Small cases

n = 4 5 6 7 8 9 10

upper 2 4 16 32 160 640 2560

lower 2 4 16 32 64 256 512

H1 ∆ ∆1 ∆11 ∆111 ∆14 ∆15 ∆16

∆12 ∆122 ∆132 ∆142 ∆152
∆1222 ∆1322 ∆1422

H2 − − ∆1221 ∆1321 ∆1421
∆1223 ∆1323

∆13212

∆13212
∆13221
∆1224

Using SAGE, and Mixed volumes [E-Tsigaridas-Varvitsiotis:GD’09].
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Matrix completion

Embedding is equivalent to completing a given incomplete
matrix/graph so as to get a PSD Gram (or distance) matrix:
It is expressed as feasibility of a PSD program.

Complexity:

Solving PSD programs with arbitrary precision ∈ PR
(interior-point or ellipsoid algorithms).

Unknown whether PSD-program ∈ NPbit .

Unknown whether PSD-feasibility ∈ Pbit (weak poly-time).

Recall: interior-point, ellipsoid algorithms for LP are in Pbit .
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Chordal Graphs

A graph is chordal if it contains NO empty cycle of length ≥ 4.

Thm [Grone,Sa,Johnson,Wolkowitz’84] [Bakonyi,Johnson’95]

Every partial distance matrix M with graph G has a
distance-matrix completion iff G is chordal.
Proof: all principal submatrices embed ⇒ matrix embeds.
[⇐] algorithm in P [Laurent’98].

Thm [Laurent] If #edges added to make G chordal is O(1),
then distance-matrix completion ∈ Pbit .

Generally, minimizing #edges to make G chordal is NP-hard.
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Complete subgraphs

Thm [Laurent]. Suppose G contains no clique K4. Then,
PSD-completion is in PR.

Consider a clique missing edges incident to vertex v . Then, in
poly-time, M is PSD-completed and its min embedding
dimension (MED) computed [E-Fragoudakis-Markou], e.g:

MED(v − G1 ≡ G2) = max{MED(v − G1),MED(G1 ≡ G2)}.

Same for star of cliques Ki : MED(star) = maxi{MED(Ki )}.
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Generalizations

Body-and-bar structures
Define graph by mapping bodies to vertices, bars to edges.
Structure is rigid in Rd iff graph = edge-disjoint union of

(d+1
2

)
spanning trees [Tay’84]

Body-and-hinge and body-and-bar/hinge structures
Replace Hinge by

(d+1
2

)
− 1 edges.

Same characterization of rigidity [Whiteley’88] [Tay’89]

Molecular Conjecture proven [Katoh-Tanigawa’09]

A graph corresponds to a rigid Body-and-hinge structure in Rd iff
it corresponds to a rigid Panel-and-hinge structure.
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Open

Specific embedding numbers, better lower bounds.

Combinatorial characterization in R3.

Count embeddings of body-and-bar, body-and-hinges
structures.

How about other distance norms?

Tensegrity
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Thank you!
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