On the power of a unique quantum witness

Iordanis Kerenidis CNRS LRI, Univ Paris 11

Joint work with Rahul Jain, Greg Kuperberg, Miklos Santha, Or Sattath, Shengyu Zhang

The class NP

NP: Is this boolean formula satisfiable?

Send Satisfying Assignment

A promise problem $L = (L_{yes}, L_{no})$ is in NP if there exists a verification procedure V_x such that

- $x \in L_{yes}$

there exists a witness w, st. ${\rm V}_{\rm x}$ always accepts x

- $x \in L_{no}$

for all witnesses w, V_x always rejects x.

• Verification procedure: family of circuits uniformly generated in polynomial-time

The hardness of NP

- Why are NP-complete problems so HARD?
 - The number of witnesses varies from 1 to exponential.
 - Is this variation behind their difficulty?

Valiant-Vazirani Theorem

UP: the set of promise problems in NP where in addition on positive instances there exists a unique witness

Any problem in NP can be reduced in randomized polynomial-time to a promise problem in UP, i.e.

$NP \subseteq RP^{UP}$

Or, if UP is "easy" then NP is "easy"

What about Quantum witnesses?

- QMA: the quantum equivalent of NP
 - Not many natural QMA-complete problems
 - Local Hamiltonians, Consistency of Density Matrices
 - Is Graph Non-Isomorphism in QMA?
 - There exists a quantum witness. How do I check it?
 - Is Perfect completeness possible?
 - Reasons to believe that it's hard to prove

What about Quantum witnesses?

- QMA: the quantum equivalent of NP
 - Not many natural QMA-complete problems
 - Local Hamiltonians, Consistency of Density Matrices
 - Is Graph Non-Isomorphism in QMA?
 - There exists a quantum witness. How do I check it?
 - Is Perfect completeness possible?
 - Reasons to believe that it's hard to prove
 - Is there a quantum Valiant-Vazirani theorem? [Aharonov, Ben-Or, Brandao, Sattah 2008]
 - The "Number" of witnesses can be infinite
 - Unique witnesses?

Valiant-Vazirani Theorem

- SAT: NP-complete
- Unique-SAT: UP-complete
- Valiant-Vazirani (restated)

If there exists an efficient algorithm to solve Unique-SAT, then there exists an efficient algorithm to solve SAT

Valiant-Vazirani Theorem

- SAT: NP-complete
- Unique-SAT: UP-complete
- Valiant-Vazirani (restated)

If there exists an efficient algorithm to solve Unique-SAT, then there exists an efficient algorithm to solve SAT

• Main tool: Family of pairwise independent hash functions

Definition

 \mathscr{K} is a family of pairw. ind. hash functions $h: \{0,1\}^n \to \{0,1\}^m$ if $\forall (x, y) \in \{0,1\}^n, \forall (a,b) \in \{0,1\}^m$ $\Pr_{h \in \mathscr{K}}[h(x) = a \land h(y) = b] = \frac{1}{2^{2m}}$

Valiant-Vazirani continued

- Let $\phi(x_1, ..., x_n)$ a boolean formula
- Assume that ϕ has 2^k < #witnesses < 2^{k+1}

Valiant-Vazirani continued

- Let $\phi(x_1, ..., x_n)$ a boolean formula
- Assume that ϕ has 2^k < #witnesses < 2^{k+1}
- Then, pick a random hash function $h: \{0,1\}^n \to \{0,1\}^{k+2}$ and consider the formula $\psi_k = \varphi(x_1, \dots, x_n) \land (h(x_1, \dots, x_n) = 0)$

Valiant-Vazirani continued

- Let $\phi(x_1, ..., x_n)$ a boolean formula
- Assume that ϕ has 2^{k} < #witnesses < 2^{k+1}
- Then, pick a random hash function $h: \{0,1\}^n \to \{0,1\}^{k+2}$ and consider the formula $\psi_k = \varphi(x_1, ..., x_n) \land (h(x_1, ..., x_n) = 0)$

Claim: ψ_k has a unique witness with constant prob.

Proof:
$$\Pr{ob}[\exists w: h(w) = 0 \land \forall w' h(w') \neq 0]$$

= $\Pr{ob}[\exists w: h(w) = 0] \cdot \Pr{ob}[\forall w' h(w') \neq 0 \mid \exists w: h(w) = 0]$
 $\geq \frac{2^{k}}{2^{k+2}} \cdot \left(1 - \frac{2^{k+1}}{2^{k+2}}\right) = \frac{1}{8}$

Valiant-Vazirani algorithm

• Let $\phi\left(\textbf{x}_{1},...,\textbf{x}_{n}\right)$ a boolean formula

Repeat t times

For k=0,...,n-1

- Pick hash function $h: \{0,1\}^n \rightarrow \{0,1\}^{k+2}$
- Construct $\psi_k = \varphi(x_1, \dots, x_n) \wedge (h(x_1, \dots, x_n) = 0)$
- Use Unique-SAT algorithm with input $arphi_k$
- If Unique-SAT accepts then accept and exit Otherwise Reject

Remark

- If ϕ unsatisfiable, then ALL ψ_k are unsatisfiable
- If ϕ sat., then with prob. 1-(7/8) $^{\text{t}}$ we accept

Probabilistic NP

MA: Merlin-Arthur (probabilistic NP)

- L = (L_{yes} , L_{no}) is in MA if there exists a probabilistic verification procedure V_x st.
 - $x \in L_{yes}$

there exists a witness w, st. V_x accepts x with prob >2/3

- $x \in L_{no}$

for all witnesses w, V_x accepts x with prob <1/3

Unique MA

No and Unique-Yes instances in UMA

Unique MA

No and Yes instances in MA

No and Unique-Yes instances in UMA

 $L = (L_{yes}, L_{no})$ is in UMA if there exists a V_x st. - $x \in L_{yes}$

there exists a witness w, st. $V_{\rm x}$ accepts x with prob >2/3 and for all other w', $V_{\rm x}$ accepts x with prob <1/3

- $x \in L_{no}$ for all witnesses w, V_x accepts x w. prob. <1/3

Problem with Valiant-Vazirani

- Two many pseudo-witnesses compared to the real witnesses

Problem with Valiant-Vazirani

- Two many pseudo-witnesses compared to the real witnesses
- If the hashing leaves one witness, then many pseudo-witnesses survive!

Problem with Valiant-Vazirani

- Two many pseudo-witnesses compared to the real witnesses
- If the hashing leaves one witness, then many pseudo-witnesses survive!
- If the hashing kills all pseudo-witnesses, then no witness survives

Aharonov et al. solution

No and Yes instances in MA

No and Unique-Yes instances in UMA

Aharonov et al. solution

Claim: There exists at least one interval where the pseudowitnesses are no more than triple the witnesses

Aharonov et al. solution

Claim: There exists at least one interval where the pseudowitnesses are no more than triple the witnesses

V-V works with constant probability for this interval!

Quantum NP

QMA: Quantum Merlin-Arthur (probabilistic NP)

L = ($L_{\rm yes},L_{\rm no}$) is in QMA if there exists a quantum verification procedure $V_{\rm x}$ st.

- $x \in L_{ves}$

there exists a quantum witness $|w\rangle_{\!\!\!,}$ such that V_x accepts x with prob >2/3.

- $x \in L_{no}$

for all witnesses $|w\rangle$, V_x accepts x with prob <1/3

- Infinite number of witnesses
 - Any $|w'\rangle \cong |w\rangle$ is still a witness
 - The right "number": Dimension of witness subspace

- Infinite number of witnesses
 - Any $|w'\rangle \cong |w\rangle$ is still a witness
 - The right "number": Dimension of witness subspace

QMA

- $L = (L_{yes}, L_{no})$ is in QMA if there exists V_x st.
 - $x \in L_{yes}$

there exists witness $|w\rangle$, st. V_x accepts x with prob >2/3

- $x \in L_{no}$

for all witnesses $|w\rangle$, V_x accepts x with prob. <1/3

- Infinite number of witnesses
 - Any $|w'\rangle \cong |w\rangle$ is still a witness
 - The right "number": Dimension of witness subspace

QMA

- $L = (L_{yes}, L_{no})$ is in QMA if there exists V_x st.
 - $x \in L_{yes}$

there exists a subspace W_x of dimension at least 1, st. for all $|w\rangle$ in W_x , V_x accepts x with prob >2/3

- $x \in L_{no}$

for all witnesses $|\,w\rangle,~V_{\rm x}$ accepts x with prob. <1/3

QMA

- $L = (L_{yes}, L_{no})$ is in QMA if there exists V_x st.
 - $x \in L_{yes}$ there exists a subspace W_x of dimension at least 1, st. for all $|w\rangle$ in W_x , V_x accepts x with prob >2/3
 - $x \in L_{no}$

for all witnesses $|w\rangle$, V_x accepts x with prob. <1/3

QMA

- $L = (L_{yes}, L_{no})$ is in QMA if there exists V_x st.
- $x \in L_{yes}$ there exists a subspace W_x of dimension at least 1, st. for all $|w\rangle$ in W_x , V_x accepts x with prob >2/3
- $x \in L_{no}$

for all witnesses $|w\rangle$, V_x accepts x with prob. <1/3

UQMA

- $L = (L_{yes}, L_{no})$ is in UQMA if there exists V_x st.
 - $x \in L_{yes}$ there exists a subspace W_x of dimension EXACTLY 1, st. for all $|w\rangle$ in W_x , V_x accepts x with prob >2/3 and for all $|w\rangle$ in W_x^{\perp} , V_x accepts x with prob <1/3
 - $x \in L_{no}$

for all witnesses $|\,w\rangle,~V_{\rm x}$ accepts x with prob. <1/3

Quantum Valiant-Vazirani

• Is there a quantum Valiant-Vazirani theorem? [Aharonov, Ben-Or, Brandao, Sattah 2008]

Quantum Valiant-Vazirani

Efficient algorithm for UQMA

 \Rightarrow Efficient algorithm for QMA

Remark: [ABBS08]

- Extended Valiant-Vazirani theorem for MA and QCMA.
 - Hashing
 - Taking care of the promise

Our result

- QMA: dimension(Witness subspace W_x) ≥ 1
- UQMA: dimension(Witness subspace W_x) = 1 for all $|w\rangle$ in W_x^{\perp} , V_x accepts x with prob <1/3

Our result

- QMA: dimension(Witness subspace W_x) ≥ 1
- UQMA: dimension(Witness subspace W_x) = 1 for all $|w\rangle$ in W_x^{\perp} , V_x accepts x with prob <1/3 FewQMA
 - Poly(input size) \geq dimension(Witness subspace W_x) \geq 1
 - for all $|\,w\rangle$ in $W_{\rm x}{}^{\perp}$, $V_{\rm x}$ accepts x with prob <1/3

Our result

- QMA: dimension(Witness subspace W_x) ≥ 1
- UQMA: dimension(Witness subspace W_x) = 1 for all $|w\rangle$ in W_x^{\perp} , V_x accepts x with prob <1/3 FewQMA
 - Poly(input size) \geq dimension(Witness subspace $\rm W_x)$ \geq 1
 - for all $|w\rangle$ in W_x^{\perp} , V_x accepts x with prob <1/3

Theorem

Efficient algorithm for UQMA

\Rightarrow Efficient algorithm for FewQMA

or

Any problem in FewQMA can be reduced in deterministic polytime to a promise problem in UQMA, i.e. FewQMA \subseteq P^{UQMA}

- QMA problem (open question in [ABBS08])
 - Yes: a 2-dimensional subspace W_x st. V_x accepts w.p. 1 for any $|w\rangle$ in $W_x^{\perp}~V_x$ accepts w.p. 0
 - No: for any $|w\rangle$, V_x accepts w.p. 0

- QMA problem (open question in [ABBS08])
 - Yes: a 2-dimensional subspace W_x st. V_x accepts w.p. 1 for any $|w\rangle$ in $W_x^{\perp}~V_x$ accepts w.p. 0
 - No: for any $|w\rangle$, V_x accepts w.p. 0

- Quantum analog of Valiant-Vazirani
 - Pick a random subspace R
 - New witnesses: old witnesses + Projection on R
 - It doesn't work!!! [ABBS08]
 - The projections of any two vectors on a random subspace of dimension K has expectation K/N and variance $\sqrt{K/N}$

- QMA problem
 - Yes: a 2-dimensional subspace W_x st. V_x accepts w.p. 1 for any $|w\rangle$ in $W_x^{\perp}~V_x$ accepts w.p. 0
 - No: for any $|w\rangle$, V_x accepts w.p. 0

• QMA problem

- Yes: a 2-dimensional subspace W_x st. V_x accepts w.p. 1 for any $|w\rangle$ in $W_x^{\perp} V_x$ accepts w.p. 0

- No: for any $|w\rangle$, V_x accepts w.p. 0
- Two orthogonal witnesses $|w_1\rangle$, $|w_2\rangle$

• QMA problem

- Yes: a 2-dimensional subspace W_x st. V_x accepts w.p. 1 for any $|w\rangle$ in $W_x^{\perp} V_x$ accepts w.p. 0

- No: for any $|w\rangle$, V_x accepts w.p. 0
- Two orthogonal witnesses $|w_1\rangle$, $|w_2\rangle$
- Give both witnesses: $|w_1\rangle|w_2\rangle$ (But also $|w_2\rangle|w_1\rangle$)

• QMA problem

Yes: a 2-dimensional subspace W_x st. V_x accepts w.p. 1 for any |w⟩ in W_x[⊥] V_x accepts w.p. 0
 No: for any |w⟩, V_x accepts w.p. 0

- Two orthogonal witnesses $|w_1\rangle$, $|w_2\rangle$
- Give both witnesses: $|w_1\rangle|w_2\rangle$ (But also $|w_2\rangle|w_1\rangle$)
- How about a superposition of the two witnesses?
 - $|w_1\rangle|w_2\rangle + |w_2\rangle|w_1\rangle$ Symmetric. But $|w_1\rangle|w_1\rangle + |w_2\rangle|w_2\rangle$ and $|w_1\rangle|w_1\rangle - |w_2\rangle|w_2\rangle$

• QMA problem

Yes: a 2-dimensional subspace W_x st. V_x accepts w.p. 1 for any |w⟩ in W_x[⊥] V_x accepts w.p. 0
 No: for any |w⟩, V_x accepts w.p. 0

- Two orthogonal witnesses $|w_1\rangle$, $|w_2\rangle$
- Give both witnesses: $|w_1\rangle|w_2\rangle$ (But also $|w_2\rangle|w_1\rangle$)
- How about a superposition of the two witnesses?
 - $|w_1\rangle|w_2\rangle + |w_2\rangle|w_1\rangle$ Symmetric. But $|w_1\rangle|w_1\rangle + |w_2\rangle|w_2\rangle$ and $|w_1\rangle|w_1\rangle - |w_2\rangle|w_2\rangle$

- Et voila: $|w_1\rangle |w_2\rangle - |w_2\rangle |w_1\rangle$

The only alternating state that is also a witness!

• Let L a problem in FewQMA and $W \subseteq H$ the witness subspace $(1 \le \dim(W) = d \le q(|x|), \dim(H) = K)$

- Let L a problem in FewQMA and $W \subseteq H$ the witness subspace $(1 \le \dim(W) = d \le q(|x|), \dim(H) = K)$
- We need to describe a one-dimensional subspace st.
 1. It should be easy to perform the projection onto it
 2. Everything orthogonal should be rejected

- Let L a problem in FewQMA and $W \subseteq H$ the witness subspace $(1 \le \dim(W) = d \le q(|x|), \dim(H) = K)$
- We need to describe a one-dimensional subspace st.
 1. It should be easy to perform the projection onto it
 2. Everything orthogonal should be rejected
- First, we look at $H^{\otimes t}$
 - This seems bad, since the dimension of $W^{\otimes t}$ grows as d^t

- Let L a problem in FewQMA and $W \subseteq H$ the witness subspace $(1 \le \dim(W) = d \le q(|x|), \dim(H) = K)$
- We need to describe a one-dimensional subspace st.
 1. It should be easy to perform the projection onto it
 2. Everything orthogonal should be rejected
- First, we look at $H^{\otimes t}$ This seems bad, since the dimension of $W^{\otimes t}$ grows as d^t
- Then, look at the Alternating subspace of $H^{\otimes t}$, $Alt_{H^{\otimes t}}$, $dim(Alt_{H^{\otimes t}}) = \binom{K}{t}$

- Let L a problem in FewQMA and $W \subseteq H$ the witness subspace $(1 \le \dim(W) = d \le q(|x|), \dim(H) = K)$
- We need to describe a one-dimensional subspace st.
 1. It should be easy to perform the projection onto it
 2. Everything orthogonal should be rejected
- First, we look at $H^{\otimes t}$ This seems bad, since the dimension of $W^{\otimes t}$ grows as d^t
- Then, look at the Alternating subspace of $H^{\otimes t}$, $Alt_{H^{\otimes t}}$, $dim(Alt_{H^{\otimes t}}) = \binom{K}{t}$
- What is the intersection of $Alt_{H^{\otimes t}}$ and $W^{\otimes t}$?

The unique quantum witness
•
$$Alt_{H^{\otimes t}} \cap W^{\otimes t} = Alt_{W^{\otimes t}}$$
 and $dim(Alt_{W^{\otimes t}}) = \begin{pmatrix} dim(W) \\ t \end{pmatrix} = \begin{pmatrix} d \\ t \end{pmatrix}$

The unique quantum witness
•
$$Alt_{H^{\otimes t}} \cap W^{\otimes t} = Alt_{W^{\otimes t}}$$
 and $dim(Alt_{W^{\otimes t}}) = \begin{pmatrix} dim(W) \\ t \end{pmatrix} = \begin{pmatrix} d \\ t \end{pmatrix}$

BUT

 We don't know d. Yes, but d is a most q(|x|), so we can check all possible t's from 1 to q.

The unique quantum witness
•
$$Alt_{H^{\otimes t}} \cap W^{\otimes t} = Alt_{W^{\otimes t}}$$
 and $\dim(Alt_{W^{\otimes t}}) = \begin{pmatrix} \dim(W) \\ t \end{pmatrix} = \begin{pmatrix} d \\ t \end{pmatrix}$

BUT

 We don't know d. Yes, but d is a most q(|x|), so we can check all possible t's from 1 to q.

2. How can the Verifier perform the projection on $Alt_{w^{\otimes t}}$?

Claim: The projections on $Alt_{H^{\otimes t}}$ and $W^{\otimes t}$ commute.

Hence, it suffices to perform
$$\prod_{W^{\otimes t}}\cdot\prod_{Alt_{H^{\otimes t}}}$$

The unique quantum witness
•
$$Alt_{H^{\otimes t}} \cap W^{\otimes t} = Alt_{W^{\otimes t}}$$
 and $\dim(Alt_{W^{\otimes t}}) = \begin{pmatrix} \dim(W) \\ t \end{pmatrix} = \begin{pmatrix} d \\ t \end{pmatrix}$

BUT

 We don't know d. Yes, but d is a most q(|x|), so we can check all possible t's from 1 to q.

2. How can the Verifier perform the projection on $Alt_{w^{\otimes t}}$?

Claim: The projections on $Alt_{H^{\otimes t}}$ and $W^{\otimes t}$ commute.

Hence, it suffices to perform $\prod_{W^{\otimes t}} \cdot \prod_{Alt_{H^{\otimes t}}}$ 3. Are the states orthogonal to $Alt_{W^{\otimes t}}$ rejected?

Rejecting the orthogonal states

- Our unique quantum witness is $Alt_{W^{\otimes t}}$ The Verifier performs $\prod_{W^{\otimes t}} \cdot \prod_{Alt_{H^{\otimes t}}}$

Rejecting the orthogonal states

- Our unique quantum witness is $Alt_{W^{\otimes t}}$ The Verifier performs $\prod_{W^{\otimes t}} \cdot \prod_{Alt_{H^{\otimes t}}}$

- Let
$$|\varphi\rangle \perp Alt_{W^{\otimes t}} = Alt_{H^{\otimes t}} \cap W^{\otimes t}$$

- Then,
$$|\varphi\rangle = |\varphi_1\rangle + |\varphi_2\rangle$$
, $|\varphi_1\rangle \perp Alt_{H^{\otimes t}}, |\varphi_2\rangle \perp W^{\otimes t}$

Rejecting the orthogonal states

- Our unique quantum witness is $Alt_{W^{\otimes t}}$ The Verifier performs $\prod_{W^{\otimes t}} \cdot \prod_{Alt_{H^{\otimes t}}}$

- Let
$$\left| \varphi \right\rangle \perp Alt_{W^{\otimes t}} = Alt_{H^{\otimes t}} \cap W^{\otimes t}$$

- Then,
$$|\varphi\rangle = |\varphi_1\rangle + |\varphi_2\rangle$$
, $|\varphi_1\rangle \perp Alt_{H^{\otimes t}}, |\varphi_2\rangle \perp W^{\otimes t}$

-
$$|arphi_1
angle$$
 is rejected by $\Pi_{Alt_{_{H^{\otimes t}}}}$, $|arphi_2
angle$ is rejected by $\Pi_{_{W^{\otimes t}}}$

The Alternating Test

- $\prod_{Alt_{H^{\otimes t}}}$
 - For t=2, this is exactly the SWAP Test
 - [Barenko et al.] Symmetric Test for any t.

Input:
$$|\psi\rangle \in H^{\otimes t}$$

- Create $\frac{1}{t!} \sum_{\pi} |\pi\rangle \otimes |\psi\rangle$
- Apply Unitary $U: |\pi\rangle \otimes |\psi\rangle \rightarrow |\pi\rangle \otimes SWAP_{\pi} |\psi\rangle$
- Accept is first register is $\frac{1}{t!} \sum_{\pi} (-1)^{sign(\pi)} |\pi\rangle$

The Witness Test

- We cannot do this projection exactly. W is unknown!
- But we have the procedure ${\rm V}_{\rm x}$ that almost does it

Input:
$$|\psi\rangle \in H^{\otimes t}$$

- For all registers 1 to t
• Apply the procedure V_x
- Output Accept iff V_x always outputs accept

- This Test doesn't Commute with the Alt Test!
- Technical claim shows that it still works

The Final Algorithm

Input: $x \in L$

Witness: for $t = 1, ..., q(|x|), |\psi_t\rangle \in H^{\otimes t}$

```
- For all t=1, ..., q(|x|)
```

- Apply the Alternating Test(t)
- Apply the Witness Test(t)
- If both tests output Accept then Accept and Halt
- Output Reject

Conclusions

- How important is the dimension of the quantum witness?
 - Our result: FewQMA is no harder than UQMA
 - Ultimate Goal: QMA is no harder than UQMA

Remarks

- New techniques, different from Valiant-Vazirani
- Our reduction is deterministic. Quite unlikely for QMA.