On the power of a unique quantum witness

Iordanis Kerenidis CNRS
LRI, Univ Paris 11

Joint work with Rahul Jain, Greg Kuperberg, Miklos Santha, Or Sattath, Shengyu Zhang

The class NP

NP: Is this boolean formula satisfiable?

A promise problem $L=\left(L_{\text {yes }}, L_{\text {no }}\right)$ is in NP if there exists a verification procedure V_{x} such that
$-x \in L_{\text {yes }}$
there exists a witness w, st. V_{x} always accepts x
$-x \in L_{\text {no }}$
for all witnesses w, V_{x} always rejects x.

- Verification procedure: family of circuits uniformly generated in polynomial-time

The hardness of NP

- Why are NP-complete problems so HARD?
- The number of witnesses varies from 1 to exponential.
- Is this variation behind their difficulty?

Valiant-Vazirani Theorem
UP: the set of promise problems in NP where in addition on positive instances there exists a unique witness

Any problem in NP can be reduced in randomized polynomial-time to a promise problem in UP, i.e.
$\mathrm{NP} \subseteq \mathrm{RP}^{\mathrm{UP}}$

Or, if UP is "easy" then NP is "easy"

What about Quantum witnesses?

- QMA: the quantum equivalent of NP
- Not many natural QMA-complete problems
- Local Hamiltonians, Consistency of Density Matrices
- Is Graph Non-Isomorphism in QMA?
- There exists a quantum witness. How do I check it?
- Is Perfect completeness possible?
- Reasons to believe that it's hard to prove

What about Quantum witnesses?

- QMA: the quantum equivalent of NP
- Not many natural QMA-complete problems
- Local Hamiltonians, Consistency of Density Matrices
- Is Graph Non-Isomorphism in QMA?
- There exists a quantum witness. How do I check it?
- Is Perfect completeness possible?
- Reasons to believe that it's hard to prove
- Is there a quantum Valiant-Vazirani theorem?
[Aharonov, Ben-Or, Brandao, Sattah 2008]
- The "Number" of witnesses can be infinite
- Unique witnesses?

Valiant-Vazirani Theorem

- SAT: NP-complete
- Unique-SAT: UP-complete
- Valiant-Vazirani (restated) If there exists an efficient algorithm to solve Unique-SAT, then there exists an efficient algorithm to solve SAT

Valiant-Vazirani Theorem

- SAT: NP-complete
- Unique-SAT: UP-complete
- Valiant-Vazirani (restated)

If there exists an efficient algorithm to solve Unique-SAT, then there exists an efficient algorithm to solve SAT

- Main tool: Family of pairwise independent hash functions

Definition
\mathscr{K} is a family of pairw. ind. hash functions $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$
if $\forall(x, y) \in\{0,1\}^{n}, \forall(a, b) \in\{0,1\}^{m} \quad \operatorname{Pr}_{h \in \mathscr{H}}[h(x)=a \wedge h(y)=b]=\frac{1}{2^{2 m}}$

Valiant-Vazirani continued

- Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ a boolean formula
- Assume that φ has $2^{k}<$ \#witnesses $<2^{k+1}$

Valiant-Vazirani continued

- Let $\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ a boolean formula
- Assume that φ has $2^{k}<$ \#witnesses $<2^{k+1}$
- Then, pick a random hash function $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+2}$ and consider the formula $\psi_{k}=\varphi\left(x_{1}, \ldots x_{n}\right) \wedge\left(h\left(x_{1}, \ldots x_{n}\right)=0\right)$

Valiant-Vazirani continued

- Let $\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ a boolean formula
- Assume that φ has $2^{k}<$ \#witnesses $<2^{k+1}$
- Then, pick a random hash function $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+2}$ and consider the formula $\psi_{k}=\varphi\left(x_{1}, \ldots x_{n}\right) \wedge\left(h\left(x_{1}, \ldots x_{n}\right)=0\right)$

Claim: ψ_{k} has a unique witness with constant prob.

Proof: $\operatorname{Prob}\left[\exists w: h(w)=0 \wedge \forall w^{\prime} h\left(w^{\prime}\right) \neq 0\right]$

$$
\begin{aligned}
& =\operatorname{Pr} o b[\exists w: h(w)=0] \cdot \operatorname{Pr} o b\left[\forall w^{\prime} h\left(w^{\prime}\right) \neq 0 \mid \exists w: h(w)=0\right] \\
& \geq \frac{2^{k}}{2^{k+2}} \cdot\left(1-\frac{2^{k+1}}{2^{k+2}}\right)=\frac{1}{8}
\end{aligned}
$$

Valiant-Vazirani algorithm

- Let $\varphi\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ a boolean formula

Repeat t times
For k=0,..., n-1

- Pick hash function $h:\{0,1\}^{n} \rightarrow\{0,1\}^{k+2}$
- Construct $\psi_{k}=\varphi\left(x_{1}, \ldots x_{n}\right) \wedge\left(h\left(x_{1}, \ldots x_{n}\right)=0\right)$
- Use Unique-SAT algorithm with input ψ_{k}
- If Unique-SAT accepts then accept and exit

Otherwise Reject

Remark

- If φ unsatisfiable, then ALL ψ_{k} are unsatisfiable
- If φ sat., then with prob. 1-(7/8)t we accept

Probabilistic NP

MA: Merlin-Arthur (probabilistic NP)

$L=\left(L_{y e s}, L_{n o}\right)$ is in MA if there exists a probabilistic verification procedure V_{x} st.

- $x \in L_{\text {yes }}$
there exists a witness $w, ~ s t . V_{x}$ accepts x with prob >2/3
- $x \in L_{\text {no }}$
for all witnesses w, V_{x} accepts x with prob <1/3

Unique MA

No and Yes instances in MA

No and Unique-Yes instances in UMA

Unique MA

Problem with Valiant-Vazirani

No and Yes instances in MA

- Two many pseudo-witnesses compared to the real witnesses

Problem with Valiant-Vazirani

No and Yes instances in MA

No and Unique-Yes instances in UMA

- Two many pseudo-witnesses compared to the real witnesses
- If the hashing leaves one witness, then many pseudo-witnesses survive!

Problem with Valiant-Vazirani

No and Yes instances in MA

No and Unique-Yes instances in UMA

- Two many pseudo-witnesses compared to the real witnesses
- If the hashing leaves one witness, then many pseudo-witnesses survive!
- If the hashing kills all pseudo-witnesses, then no witness survives

Aharonov et al. solution

No and Yes instances in MA

No and Unique-Yes instances in UMA

Aharonov et al. solution

Aharonov et al. solution

Claim: There exists at least one interval where the pseudowitnesses are no more than triple the witnesses

V-V works with constant probability for this interval!

Quantum NP

QMA: Quantum Merlin-Arthur (probabilistic NP)

$L=\left(L_{\text {yes }}, L_{\text {no }}\right)$ is in QMA if there exists a quantum verification procedure V_{x} st.

- $x \in L_{\text {yes }}$
there exists a quantum witness $|w\rangle$, such that V_{x} accepts x with prob $>2 / 3$.
$-x \in L_{\text {no }}$
for all witnesses $|w\rangle, V_{x}$ accepts x with prob <1/3

QMA and number of witnesses

- Infinite number of witnesses
- Any $\left|w^{\prime}\right\rangle \cong|w\rangle$ is still a witness
- The right "number": Dimension of witness subspace

QMA and number of witnesses

- Infinite number of witnesses
- Any $\left|w^{\prime}\right\rangle \cong|w\rangle$ is still a witness
- The right "number": Dimension of witness subspace

QMA

```
L = (L Lyes, Lno ) is in QMA if there exists V vest.
    - x\inL Lyes
    there exists witness |w\rangle, st. V }\mp@subsup{\textrm{x}}{\textrm{x}}{}\mathrm{ accepts x with prob >2/3
    - x\inL mo
    for all witnesses |w\rangle, }\mp@subsup{V}{x}{}\mathrm{ accepts x with prob. <1/3
```


QMA and number of witnesses

- Infinite number of witnesses
- Any $\left|w^{\prime}\right\rangle \cong|w\rangle$ is still a witness
- The right "number": Dimension of witness subspace

QMA

```
L = (L Lyes, Lno ) is in QMA if there exists V vest.
    - x\inL Lyes
    there exists a subspace W}\mp@subsup{W}{x}{}\mathrm{ of dimension at least 1, st.
    for all |w\rangle in W Wr }\mp@subsup{V}{x}{}\mathrm{ accepts }x\mathrm{ with prob >2/3
- x\inL no
    for all witnesses |w\rangle, }\mp@subsup{V}{x}{}\mathrm{ accepts x with prob. <1/3
```


QMA and number of witnesses

QMA
$L=\left(L_{\text {yes }}, L_{n o}\right)$ is in QMA if there exists V_{x} st.
$-x \in L_{\text {yes }}$
there exists a subspace W_{x} of dimension at least 1 , st. for all $|w\rangle$ in W_{x}, V_{x} accepts x with prob $>2 / 3$
$-x \in L_{n o}$
for all witnesses $|w\rangle, V_{x}$ accepts x with prob. <1/3

QMA and number of witnesses

QMA
$L=\left(L_{\text {yes }}, L_{n o}\right)$ is in QMA if there exists V_{x} st.
$-x \in L_{\text {yes }}$
there exists a subspace W_{x} of dimension at least 1 , st.
for all $|w\rangle$ in W_{x}, V_{x} accepts x with prob $>2 / 3$
$-x \in L_{n o}$
for all witnesses $|w\rangle, V_{x}$ accepts x with prob. $<1 / 3$
UQMA

```
L = (L Lyes, L Lno is in UQMA if there exists V vest.
    - x\inL Lyes
    there exists a subspace }\mp@subsup{W}{x}{}\mathrm{ of dimension EXACTLY 1, st.
    for all |w\rangle in W }\mp@subsup{W}{x}{},\mp@subsup{V}{x}{}\mathrm{ accepts x with prob >2/3 and
    for all |w> in W Wr , , }\mp@subsup{V}{x}{}\mathrm{ accepts x with prob <1/3
- x\inL
    for all witnesses |w\rangle, }\mp@subsup{V}{x}{}\mathrm{ accepts x with prob. <1/3
```


Quantum Valiant-Vazirani

- Is there a quantum Valiant-Vazirani theorem? [Aharonov, Ben-Or, Brandao, Sattah 2008]

```
Quantum Valiant-Vazirani
    Efficient algorithm for UQMA
    Efficient algorithm for QMA
```

Remark: [ABBS08]

- Extended Valiant-Vazirani theorem for MA and QCMA.
- Hashing
- Taking care of the promise

Our result

QMA: dimension(Witness subspace W_{x}) ≥ 1

UQMA: dimension(Witness subspace W_{x}) = 1 for all $|w\rangle$ in $W_{x}{ }^{\perp}, V_{x}$ accepts x with prob $<1 / 3$

Our result

QMA: dimension(Witness subspace W_{x}) ≥ 1
UQMA: dimension(Witness subspace W_{x}) = 1 for all $|w\rangle$ in $W_{x}{ }^{\perp}, V_{x}$ accepts x with prob $<1 / 3$
FewQMA

- Poly(input size) \geq dimension(Witness subspace W_{x}) ≥ 1
- for all $|w\rangle$ in $W_{x}{ }^{\perp}, V_{x}$ accepts x with prob $<1 / 3$

Our result

QMA: dimension(Witness subspace $\left.W_{x}\right) \geq 1$

UQMA: dimension (Witness subspace W_{x}) = 1 for all $|w\rangle$ in $W_{x}{ }^{\perp}, V_{x}$ accepts x with prob $<1 / 3$
FewQMA

- Poly(input size) \geq dimension(Witness subspace W_{x}) ≥ 1
- for all $|w\rangle$ in $W_{x}{ }^{\perp}, V_{x}$ accepts x with prob <1/3

Theorem

Efficient algorithm for UQMA
\Rightarrow Efficient algorithm for FewQMA
or
Any problem in FewQMA can be reduced in deterministic
polytime to a promise problem in UQMA, i.e. FewQMA $\subseteq P^{U Q M A}$

The 2-dimensional case

- QMA problem (open question in [ABBSO8])
- Yes: a 2-dimensional subspace W_{x} st. V_{x} accepts w.p. 1 for any $|w\rangle$ in $W_{x} \perp V_{x}$ accepts w.p. 0
- No: for any $|w\rangle, V_{x}$ accepts w.p. 0

The 2-dimensional case

- QMA problem (open question in [ABBSO8])
- Yes: a 2-dimensional subspace W_{x} st. V_{x} accepts w.p. 1 for any $|w\rangle$ in $W_{x}{ }^{\perp} V_{x}$ accepts w.p. 0
- No: for any $|w\rangle, V_{x}$ accepts w.p. 0
- Quantum analog of Valiant-Vazirani
- Pick a random subspace R
- New witnesses: old witnesses + Projection on R
- It doesn't work!!! [ABBSO8]
- The projections of any two vectors on a random subspace of dimension K has expectation K / N and variance $\sqrt{\mathrm{K} / \mathrm{N}}$

The 2-dimensional case

- QMA problem
- Yes: a 2-dimensional subspace W_{x} st. V_{x} accepts w.p. 1 for any $|w\rangle$ in $W_{x}{ }^{\perp} V_{x}$ accepts w.p. 0
- No: for any $|w\rangle, V_{x}$ accepts w.p. 0

The 2-dimensional case

- QMA problem
- Yes: a 2-dimensional subspace W_{x} st. V_{x} accepts w.p. 1 for any $|w\rangle$ in $W_{x}{ }^{\perp} V_{x}$ accepts w.p. 0
- No: for any $|w\rangle, V_{x}$ accepts w.p. 0
- Two orthogonal witnesses $\left|w_{1}\right\rangle,\left|w_{2}\right\rangle$

The 2-dimensional case

- QMA problem
- Yes: a 2-dimensional subspace W_{x} st. V_{x} accepts w.p. 1 for any $|w\rangle$ in $W_{x}{ }^{\perp} V_{x}$ accepts w.p. 0
- No: for any $|w\rangle, V_{x}$ accepts w.p. 0
- Two orthogonal witnesses $\left|w_{1}\right\rangle,\left|w_{2}\right\rangle$
- Give both witnesses: $\left|w_{1}\right\rangle\left|w_{2}\right\rangle$ (But also $\left|w_{2}\right\rangle\left|w_{1}\right\rangle$)

The 2-dimensional case

- QMA problem
- Yes: a 2-dimensional subspace W_{x} st. V_{x} accepts w.p. 1 for any $|w\rangle$ in $W_{x}{ }^{\perp} V_{x}$ accepts w.p. 0
- No: for any $|w\rangle, V_{x}$ accepts w.p. 0
- Two orthogonal witnesses $\left|w_{1}\right\rangle,\left|w_{2}\right\rangle$
- Give both witnesses: $\left|w_{1}\right\rangle\left|w_{2}\right\rangle$ (But also $\left|w_{2}\right\rangle\left|w_{1}\right\rangle$)
- How about a superposition of the two witnesses?
- $\left|w_{1}\right\rangle\left|w_{2}\right\rangle+\left|w_{2}\right\rangle\left|w_{1}\right\rangle$

Symmetric. But $\left|w_{1}\right\rangle\left|w_{1}\right\rangle+\left|w_{2}\right\rangle\left|w_{2}\right\rangle$ and $\left|w_{1}\right\rangle\left|w_{1}\right\rangle-\left|w_{2}\right\rangle\left|w_{2}\right\rangle$

The 2-dimensional case

- QMA problem
- Yes: a 2-dimensional subspace W_{x} st. V_{x} accepts w.p. 1 for any $|w\rangle$ in $W_{x}{ }^{\perp} V_{x}$ accepts w.p. 0
- No: for any $|w\rangle, V_{x}$ accepts w.p. 0
- Two orthogonal witnesses $\left|w_{1}\right\rangle,\left|w_{2}\right\rangle$
- Give both witnesses: $\left|w_{1}\right\rangle\left|w_{2}\right\rangle$ (But also $\left|w_{2}\right\rangle\left|w_{1}\right\rangle$)
- How about a superposition of the two witnesses?
- $\left|w_{1}\right\rangle\left|w_{2}\right\rangle+\left|w_{2}\right\rangle\left|w_{1}\right\rangle$

Symmetric. But $\left|w_{1}\right\rangle\left|w_{1}\right\rangle+\left|w_{2}\right\rangle\left|w_{2}\right\rangle$ and $\left|w_{1}\right\rangle\left|w_{1}\right\rangle-\left|w_{2}\right\rangle\left|w_{2}\right\rangle$

- Et voila: $\left|w_{1}\right\rangle\left|w_{2}\right\rangle-\left|w_{2}\right\rangle\left|w_{1}\right\rangle$

The only alternating state that is also a witness!

Proof sketch for FewQMA

- Let L a problem in FewQMA and
$W \subseteq H$ the witness subspace $(1 \leq \operatorname{dim}(W)=d \leq q(|x|), \operatorname{dim}(H)=K)$

Proof sketch for FewQMA

- Let L a problem in FewQMA and
$W \subseteq H$ the witness subspace $(1 \leq \operatorname{dim}(W)=d \leq q(|x|), \operatorname{dim}(H)=K)$
- We need to describe a one-dimensional subspace st.

1. It should be easy to perform the projection onto it
2. Everything orthogonal should be rejected

Proof sketch for FewQMA

- Let L a problem in FewQMA and
$W \subseteq H$ the witness subspace $(1 \leq \operatorname{dim}(W)=d \leq q(|x|), \operatorname{dim}(H)=K)$
- We need to describe a one-dimensional subspace st.

1. It should be easy to perform the projection onto it
2. Everything orthogonal should be rejected

- First, we look at $H^{\otimes t}$
- This seems bad, since the dimension of $W^{\otimes t}$ grows as d^{t}

Proof sketch for FewQMA

- Let L a problem in FewQMA and
$W \subseteq H$ the witness subspace $(1 \leq \operatorname{dim}(W)=d \leq q(|x|), \operatorname{dim}(H)=K)$
- We need to describe a one-dimensional subspace st.

1. It should be easy to perform the projection onto it
2. Everything orthogonal should be rejected

- First, we look at $H^{\otimes t}$
- This seems bad, since the dimension of $W^{\otimes t}$ grows as d^{t}
- Then, look at the Alternating subspace of $H^{\otimes t}$, Alt $H_{H^{\otimes t}}$ $\operatorname{dim}\left(\right.$ Alt $\left._{H^{8 t}}\right)=\binom{K}{t}$

Proof sketch for FewQMA

- Let L a problem in FewQMA and
$W \subseteq H$ the witness subspace $(1 \leq \operatorname{dim}(W)=d \leq q(|x|), \operatorname{dim}(H)=K)$
- We need to describe a one-dimensional subspace st.

1. It should be easy to perform the projection onto it
2. Everything orthogonal should be rejected

- First, we look at $H^{\otimes t}$
- This seems bad, since the dimension of $W^{\otimes t}$ grows as d^{t}
- Then, look at the Alternating subspace of $H^{\otimes t}, A l t_{H^{\otimes t}}$ $\operatorname{dim}\left(A l t_{H^{8 l}}\right)=\binom{K}{t}$
- What is the intersection of $A l t_{H^{\otimes t}}$ and $W^{\otimes t}$?

The unique quantum witness

- $A l t_{H^{\otimes t}} \cap W^{\otimes t}=A l t_{W^{\otimes t}}$ and $\operatorname{dim}\left(A l t_{W^{8 t}}\right)=\binom{\operatorname{dim}(W)}{t}=\binom{d}{t}$
- So this will be our unique witness by taking $t=d$!

The unique quantum witness

- $A l t_{H^{\otimes r}} \cap W^{\otimes t}=A l t_{W^{\otimes r}}$ and $\operatorname{dim}\left(A l t_{W^{\otimes t}}\right)=\binom{\operatorname{dim}(W)}{t}=\binom{d}{t}$
- So this will be our unique witness by taking $t=d$!

BUT

1. We don't know d. Yes, but d is a most $q(|x|)$, so we can check all possible t's from 1 to q.

The unique quantum witness

- Alt $H_{H^{\otimes t}} \cap W^{\otimes t}=A l t_{W^{\otimes t}}$ and $\operatorname{dim}\left(A l t_{W^{\otimes t}}\right)=\binom{\operatorname{dim}(W)}{t}=\binom{d}{t}$
- So this will be our unique witness by taking $t=d$!

BUT

1. We don't know d. Yes, but d is a most $q(|x|)$, so we can check all possible t's from 1 to q.
2. How can the verifier perform the projection on $A l t_{W^{81}}$?

Claim: The projections on $A l t_{H^{\otimes t}}$ and $W^{\otimes t}$ commute.
Hence, it suffices to perform $\prod_{W^{\otimes t}} \cdot \prod_{A l t}{ }_{H^{\otimes t}}$

The unique quantum witness

- Alt $H_{H^{\otimes t}} \cap W^{\otimes t}=A l t_{W^{\otimes t}}$ and $\operatorname{dim}\left(A l t_{W^{8 t}}\right)=\binom{\operatorname{dim}(W)}{t}=\binom{d}{t}$
- So this will be our unique witness by taking $t=d$!

BUT

1. We don't know d. Yes, but d is a most $q(|x|)$, so we can check all possible t's from 1 to q.
2. How can the Verifier perform the projection on $A l t_{W^{\otimes t}}$?

Claim: The projections on $A l t_{H^{\otimes t}}$ and $W^{\otimes t}$ commute.

Hence, it suffices to perform $\prod_{W^{\otimes t}} \cdot \prod_{A l t}{ }_{H^{\otimes t}}$
3. Are the states orthogonal to $A l t_{W^{8 t}}$ rejected?

Rejecting the orthogonal states

- Our unique quantum witness is $A l t_{W^{\otimes t}}$
- The Verifier performs $\prod_{W^{\otimes t}} \cdot \prod_{A l t}{ }_{H^{\otimes t}}$

Rejecting the orthogonal states

- Our unique quantum witness is $A l t_{W^{\otimes t}}$
- The Verifier performs $\Pi_{W^{\otimes t}} \cdot \prod_{A l t}{ }_{H^{\otimes t}}$

$$
\begin{aligned}
& \text { - Let }|\varphi\rangle \perp A l t_{W^{\otimes t}}=A l t_{H^{\otimes t}} \cap W^{\otimes t} \\
& \text { - Then, }|\varphi\rangle=\left|\varphi_{1}\right\rangle+\left|\varphi_{2}\right\rangle, \quad\left|\varphi_{1}\right\rangle \perp A l t_{H^{\otimes t}},\left|\varphi_{2}\right\rangle \perp W^{\otimes t}
\end{aligned}
$$

Rejecting the orthogonal states

- Our unique quantum witness is $A l t_{W^{\otimes t}}$
- The Verifier performs $\prod_{W^{\otimes t}} \cdot \prod_{A l t}{ }_{H^{\otimes t}}$

> - Let $|\varphi\rangle \perp A l t_{W^{\otimes t}}=A l t_{H^{\otimes t}} \cap W^{\otimes t}$
> - Then, $|\varphi\rangle=\left|\varphi_{1}\right\rangle+\left|\varphi_{2}\right\rangle, \quad\left|\varphi_{1}\right\rangle \perp A l t_{H^{\otimes t}},\left|\varphi_{2}\right\rangle \perp W^{\otimes t}$
$-\left|\varphi_{1}\right\rangle$ is rejected by $\Pi_{A t t^{\otimes t}},\left|\varphi_{2}\right\rangle$ is rejected by $\Pi_{W^{\otimes t}}$

The Alternating Test

- $\Pi_{A l t^{8 t}}$
- For $t=2$, this is exactly the SWAP Test
- [Barenko et al.] Symmetric Test for any t.

$$
\begin{aligned}
& \text { Input: }|\psi\rangle \in H^{\otimes t} \\
& \text { - Create } \frac{1}{t!} \sum_{\pi}|\pi\rangle \otimes|\psi\rangle \\
& \text { - Apply Unitary } U:|\pi\rangle \otimes|\psi\rangle \rightarrow|\pi\rangle \otimes S W A P_{\pi}|\psi\rangle \\
& \text { - Accept is first register is } \frac{1}{t!} \sum_{\pi}(-1)^{\operatorname{sign}(\pi)}|\pi\rangle
\end{aligned}
$$

The Witness Test

- $\Pi_{W^{\otimes t}}$
- We cannot do this projection exactly. W is unknown!
- But we have the procedure V_{x} that almost does it

Input: $|\psi\rangle \in H^{\otimes t}$

- For all registers 1 to t
- Apply the procedure V_{x}
- Output Accept iff V_{x} always outputs accept
- This Test doesn't Commute with the Alt Test!
- Technical claim shows that it still works

The Final Algorithm

Input: $x \in L$
Witness: for $t=1, \ldots, q(|x|), \quad\left|\psi_{t}\right\rangle \in H^{\otimes t}$

- For all $t=1, \ldots, q(|x|)$
- Apply the Alternating Test(t)
- Apply the Witness Test(t)
- If both tests output Accept then Accept and Halt
- Output Reject

Conclusions

- How important is the dimension of the quantum witness?
- Our result: FewQMA is no harder than UQMA
- Ultimate Goal: QMA is no harder than UQMA

Remarks

- New techniques, different from Valiant-Vazirani
- Our reduction is deterministic. Quite unlikely for QMA.

