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The class NP

NP: Is this boolean formula satisfiable?

Send Satisfying
Assignment

A promise problem L = (L ., L,) 1s in NP 1if there
exlists a verification procedure V, such that
— X€L,g

there exists a witness w, st. V_, always accepts x
— X€L,,

for all witnesses w, V_, always rejects x.

* Verification procedure: family of circuits uniformly
generated 1in polynomial-time



The hardness of NP

* Why are NP-complete problems so HARD?

— The number of witnesses varies from 1 to exponential.
— Is this variation behind theilir difficulty?

Valiant-Vazirani Theorem

UP: the set of promise problems in NP where 1n addition
on positive 1nstances there exists a unique witness

Any problem in NP can be reduced in randomized
polynomial-time to a promise problem in UP, 1i.e.

NP < RPUP

Or, if UP is “easy” then NP is “easy”



What about Quantum witnesses?

° QOMA: the quantum equivalent of NP

— Not many natural QMA-complete problems

* Local Hamiltonians, Consistency of Density Matrices

— Is Graph Non-Isomorphism in QMA?

* There exists a quantum witness. How do I check 1t?

— Is Perfect completeness possible?

* Reasons to believe that it’s hard to prove
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— Not many natural QMA-complete problems

* Local Hamiltonians, Consistency of Density Matrices

— Is Graph Non-Isomorphism in QMA?

* There exists a quantum witness. How do I check 1t?

— Is Perfect completeness possible?

* Reasons to believe that it’s hard to prove

— Is there a quantum Valliant-Vazirani theorem?
[Aharonov, Ben-0Or, Brandao, Sattah 2008]

* The “Number” of witnesses can be infinite

* Unique witnesses?



Valiant-Vazirani Theorem

e SAT: NP-complete
* Unique-SAT: UP-complete

e Valiant-Vazirani (restated)

If there exists an efficient algorithm to solve
Unique-SAT, then there exists an efficient algorithm
to solve SAT



Valiant-Vazirani Theorem

SAT: NP-complete
* Unique-SAT: UP-complete

Valiant-Vazirani (restated)

If there exists an efficient algorithm to solve
Unique-SAT, then there exists an efficient algorithm
to solve SAT

Main tool: Family of pairwise independent hash functions
Definition
X is a family of pairw. ind. hash functions h:{0,1}" —{0,1}"

£ V() {01, V(@b) 01" Pr h() =anh(y)=bl=_-
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* Let 0o(xy,..,%X,) a boolean formula

* Assume that ¢ has 2% < #witnesses < 2k*!
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Valilant-Vaziranl continued

* Let 0o(xy,..,%X,) a boolean formula

* Assume that ¢ has 2% < #witnesses < 2k*!

e Then, pick a random hash function h:{01}" —{01}*"

and consider the formula y, =@(X,...X,) A(h(X,...X,) =0)

Claim: , has a unique witness with constant prob.

Proof: Prob[3w:h(w)=0A VYW h(w') = 0]
= Prob[3w: h(w) =0]-Prob[vw' h(w') = 0|3w:h(w) =0]

2k 2k+1 1
> 2k+2 [1_ 2k+2 j = g




Valilant-Vaziranil algorithm

* Let 0(x{,..,%X,) a boolean formula

Repeat t times
For k=0,..,n-1
* Pick hash function h:{01}" —){O,l}k+2
+ Construct = (X, %,) A (N(X,..%,) =0)
* Use Unique-SAT algorithm with 1nput ¥,
* ITf Unique-SAT accepts then accept and exit

Otherwise Reject

Remark
— If @ unsatisfiable, then ALL ¥, are unsatisfiable
— If ¢ sat., then with prob. 1-(7/8)" we accept



Probabilistic NP

MA: Merlin-Arthur (probabilistic NP)

L = (L L) is in MA if there exists a probabilistic

yes/’
verification procedure V_ st.

— xeLyes

there exists a witness w, st. V, accepts x with prob >2/3
— X€L,,

for all witnesses w, V, accepts x with prob <1/3
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L = (LyesrLy,) 1s 1n UMA 1f there exists a V, st.

- XELyes
there exists a witness w, st. V, accepts x with prob >2/3
and for all other w’, V, accepts x with prob <1/3
- xX€L_g

for all witnesses w, V, accepts x w. prob. <1/3



Problem with Valiant-Vazirani
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Problem with Valiant-Vazirani

1 1
==
2/3 = 2/3
1/3 § 1/3
_—— _— _—— _——
_— —_— —_— _—
_— —_— —_— _—
_— —_—
0 0
No and Yes instances in MA No and Unique-Yes instances in UMA

- Two many pseudo-witnesses compared to the real witnesses
- If the hashing leaves one witness, then many
pseudo-witnesses survive!
— If the hashing kills all pseudo-witnesses, then
no witness survives



Aharonov
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Claim: There exists at least one interval where the pseudo-
witnesses are no more than triple the witnesses



Aharonov et al. solution

1- 1/q

2/3

1/3

—

-

— 2/q
1/q 1/q
0 y = 20 =

No and Yes instances in MA No and Unique-Yes instances in UMA

Claim: There exists at least one interval where the pseudo-
witnesses are no more than triple the witnesses

V-V works with constant probability for this interval!



Quantum NP

OMA: Quantum Merlin-Arthur (probabilistic NP)

L = (L L 1s 1n QMA 1f there exists a quantum

)
no
verification procedure V_ st.

yes/

— xeLyes

there exists a quantum witness |w), such that V., accepts
x with prob >2/3.

— X€L,,
for all witnesses |w), V, accepts x with prob <1/3
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e Tnfinite number of witnesses
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e Tnfinite number of witnesses
— Any |w’) Z|w) 1is still a witness

— The right “number”: Dimension of witness subspace

OMA
L = (L

— xeLyeS

L 1s 1n QMA 1f there exists V,_ st.

yes/ no)
there exists a subspace W, of dimension at least 1, st.
for all |w) in W, V, accepts x with prob >2/3

— X€L,,

for all witnesses |w), V, accepts x with prob. <1/3



OMA and number of wilitnesses

OMA
L = (L,srLy,) 1s 1n QMA 1f there exists V, st.

— xeLyes

there exists a subspace W, of dimension at least 1, st.
for all |w) in W,, V, accepts x with prob >2/3
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OMA and number of wilitnesses

OMA
L = (L,srLy,) 1s 1n QMA 1f there exists V, st.
— xeLyeS
there exists a subspace W, of dimension at least 1, st.
for all |w) in W,, V, accepts x with prob >2/3
— X€L,,
for all witnesses |w), V, accepts x with prob. <1/3
UQOMA
L = (LyesrLy,) 1s in UQMA 1f there exists V, st.

— XELyeS

there exists a subspace W, of dimension EXACTLY 1, st.
for all |w) in W, V, accepts x with prob >2/3 and

for all |w) in W/, V, accepts x with prob <1/3
— X€L g

for all witnesses |w), V, accepts x with prob. <1/3



Quantum Valiant-Vazirani

* Is there a quantum Valiant-Vazirani theorem?
[Aharonov, Ben-0r, Brandao, Sattah 2008]

Quantum Valiant-Vazirani
Efficient algorithm for UQMA

— Efficient algorithm for QMA

Remark: [ABBS08]

— FExtended Valiant-Vazirani theorem for MA and QCMA.
* Hashing

* Taking care of the promise



Our result

QOMA : dimension (Witness subspace W,) = 1

UQOMA : dimension (Witness subspace W,) = 1
for all |w) in W1, V, accepts x with prob <1/3
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Our result

QOMA : dimension (Witness subspace W,) = 1

UQOMA : dimension (Witness subspace W,) = 1
for all |w) in W1, V, accepts x with prob <1/3
FewQMA

— Poly(input size) 2 dimension(Witness subspace W,) = 1

— for all |w) in W+, V, accepts x with prob <1/3

Theorem
Efficient algorithm for UQMA

—> Efficient algorithm for FewQMA
or

Any problem in FewQMA can be reduced in deterministic

polytime to a promise problem in UQMA, i.e. FewQMA < PUYoA



The 2-dimensional case

° QMA problem (open question in [ABBS08])
— Yes: a 2-dimensional subspace W, st. V, accepts w.p. 1
for any |w) in W' V_ accepts w.p. O

— No: for any |w), V, accepts w.p. 0



The 2-dimensional case

° QMA problem (open question in [ABBS08])
— Yes: a 2-dimensional subspace W, st. V, accepts w.p. 1
for any |w) in W' V_ accepts w.p. O

— No: for any |w), V, accepts w.p. 0

* Quantum analog of Valiant-Vazirani
— Pick a random subspace R

— New witnesses: old witnesses + Projection on R

— It doesn’t work!!! [ABRBSO8]

— The projections of any two vectors on a random subspace
of dimension K has expectation K/N and variance VK /N
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The 2-dimensional case

QOMA problem

— Yes: a 2-dimensional subspace W, st. V, accepts w.p. 1
for any |w) in W' V_ accepts w.p. O

— No: for any |w), V, accepts w.p. 0
Two orthogonal witnesses |wy), |w,)
Give both witnesses: |wy)|lw,) ( But also |w,)|w;) )

How about a superposition of the two witnesses?

- | W1> | W2>+ | W2> | W1>

Symmetric. But |wy)|wp)+t|wy)lw,) and [wy)|w)—Iw,)|w,)



The 2-dimensional case

QOMA problem

— Yes: a 2-dimensional subspace W, st. V, accepts w.p. 1
for any |w)y in W' V_ accepts w.p. O

— No: for any |w), V, accepts w.p. O
Two orthogonal witnesses |wy), |w,)
Give both witnesses: |wy)|lw,) ( But also |w,)|w;) )

How about a superposition of the two witnesses?

- | W1> | W2>+ | W2> | W1>

Symmetric. But |wy)|wp)+t|wy)lw,) and [wy)|w)—Iw,)|w,)

— Et voila: [wy)lw,)=|w,)|wy)

The only alternating state that 1s also a witness!
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* Let L a problem in FewQMA and
WcH the witness subspace (1<dimW)=d <q(| x[) , dim(H) =K)
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Proof sketch for Few(QMA

Let L a problem in FewQMA and
WcH the witness subspace (1<dim(W)=d <q(| x[) , dim(H) =K)

We need to describe a one-dimensional subspace st.
1. It should be easy to perform the projection onto it

2. Everything orthogonal should be rejected

First, we look at H®t

: . . : Xt t
— This seems bad, since the dimension of W grows as d

Then, look at the Alternating subspace of H®3IA“H®t

_ K
dim(Alt, ..) {t j

What 1s the intersection of AItH®t and W® 2



The unigque gquantum witness

. : dim(W) d
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* So this will be our unique witness by taking t=d!
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* So this will be our unique witness by taking t=d!
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check all possible t’s from 1 to g.



The unigque gquantum witness
dim(W)) (d
t Lt
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* So this will be our unique witness by taking t=d!
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The unigque gquantum witness
dim(W)) (d
t Lt

. Rt :
Alt .. AW® = Alt ., and dim(Alt

W®t):

* So this will be our unique witness by taking t=d!

BUT

1. We don’t know d. Yes, but d is a most g(|x|), so we can
check all possible t’s from 1 to g.

2. How can the Verifier perform the projection on Altw®‘ ?
. - ' Alt ®t
Claim: The projections on ye and W commute.
Hence, 1t suffices to perform H

11

3. Are the states orthogonal to AItW®t rejected?

A AI'[H®t



Rejecting the orthogonal states

* Our unigque quantum witness 1s A|t -
W

e The Verifier performs .
b 1_[\/\/®t 1_IAI'[H®t
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Rejecting the orthogonal states

* Our unigque quantum witness 1s Alt -
W

e The Verifier performs .
b 1_[\/\/®t 1_IAItH®t

- Let |@) L Alt o = Alt o "W®

— Then,

0)=|o)+| @), |o) LAl e |e,) LW

_ ‘¢ﬁ>ls rejected bYIIAMﬁHI ‘¢5> is rejected by ILN®



The Alternating Test

) 1_[AItH®t

* For t=2, this 1s exactly the SWAP Test

* [Barenko et al.] Symmetric Test for any t.

Input:‘w>€f4®
1
— Create E;|”>®|W>
— Apply Unitary U :|7r>®|w>—>|7f>®SWAPn|W>

: : : : 1 sign()
— Accept is first register is EZ,,:(_]-) ‘7z'>




The Witness Test

I1

W@t

We cannot do this projection exactly. W is unknown!
But we have the procedure V, that almost does 1it

Input:|§”>€|"I®t

— For all registers 1 to t
* Apply the procedure V,

— Output Accept 1ff V_, always outputs accept

This Test doesn’t Commute with the Alt Test!
Technical claim shows that it still works



The Final Algorithm

Input: Xel
Witness: for t=L1..,q(x|), |w,)eH®

— For all t=1,..,9(|x])
* Apply the Alternating Test (t)

* Apply the Witness Test(t)
* If both tests output Accept then Accept and Halt

— Output Reject




Conclusions

* How 1mportant i1s the dimension of the gquantum witness?

— OQur result: FewQMA i1s no harder than UQMA

— Ultimate Goal: QOMA i1s no harder than UQMA

Remarks

— New techniques, different from Valiant-Vazirani

— Our reduction 1s deterministic. Quite unlikely for QMA.



