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The k-colorability problem (k-COL)

Given a graph G = (V,E) decide whether its vertices
can be colored with at most k colors so that no adjacent
vertices get the same color.
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The List Coloring Algorithm

Input: A graph G together with a list of possible k colors for
each of its vertices.

At every step, choose a color from a list and assign it to
its vertex.

Delete this vertex and also delete the selected color
from neighboring vertices.

If the graph becomes empty, return “yes”; if a vertex
with an empty list appears, return “no”.

Vertices with one element in their list are given priority.
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Improvements

The greedy list coloring algorithm: Always choose a vertex
with the least possible number of colors in its list. Ties
are broken arbitrarily.

The Brelaz heuristic, 1979: At ties, choose a vertex with
the largest number of yet uncolored neighbors.
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The Erdős–Rényi model

Gn,p: Each edge is independently selected with
probability p to be included in the graph (the number of
edges is a random variable).

Gn,m: Exactly m edges are uniformly and independently
selected to be included in the graph.
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The Erdős–Rényi model II

We consider sparse graphs, i.e. graphs in G(n, p) where
p = d/n for some constant d, or alternatively in G(n,m),
m = dn/2.

Expected number of edges in G(n, p = d/n) is ∼ dn/2
and therefore expected “average” degree is d. The
value d/2 is known as the edge-density.

The two models although formally non-equivalent, they
behave in a similar way.
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Phase transition — non-rigorous results

[Mitchell et al. 1992] and other groups by simulation
experiments:

General observation: for each fixed k (amenable to
experimentation), there is a threshold average degree d∗k
such that

If d < d∗k, then a random graph with average degree d is
a.a.s. k-colorable, while

if d > d∗k then such a graph is a.a.s. non-k-colorable.

Note: “a.a.s.” means with probability approaching 1
asymptotically with the number of vertices.
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Phase transition — continued

Analytic (but non-rigorous) verification of the previous
experimental results by methods of Statistical Physics.

For k = 3, both experiments and analytic techniques
suggest that d∗

3
' 4.69.
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The Achlioptas–Friedgut theorem

Theorem There is a sequence d∗(n) such that ∀ε :

• A random graph with average degree d∗(n)− ε is a.a.s.
3-colorable.
• A random graph with average degree d∗(n) + ε is a.a.s.
non-3-colorable.

In other words, the transition interval can be made
arbitrarily thin (sharp transition).

• Still open question: Does d∗(n) converge? If yes, to what
value?

Corollary Given d, if for random graphs G of average degree
d, Pr[G is 3-col.] > ε, finally for all n, then for random graphs
G of average degree any d′ < d, Pr[G is 3-col.] → 1.
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Upper bounds

The upper bound results are expressed in terms of the
edge-density (d/2 rather than the average degree d).
Because the G(n,m) model works better in this case.

Reminder: Experimentally, the putative threshold occurs for
edge-density 2.35 (average degree 4.69).

First: 2.71 — observed by several researchers
independently – Markov’s inequality

Current best: 2.427 Dubois and Mandler (2002) – typical
graphs plus the decimation technique

In between the above less-than-three-tenths improvement,
several results that established intermediate values by
Łuczak; Achlioptas and Molloy; Kaporis et al. and other
groups
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The basic upper bound technique

Let G be a random graph and C(G) the random class of its
legal 3-colorings. Then

Pr[G is 3-col.] = Pr[|C(G)| ≥ 1] ≤ E(|C(G)|).

Since E(|C(G)|) is easy to compute. So we find the values
of edge-density for which it vanishes and thus we get a
trivial upper bound, namely 2.71.

But why experiments suggest d∗
3
' 2.35?

A class of graphs with small probability but with many legal
3-colorings contributes too much to the expectation
E(|C(G)|) (Lottery paradox).
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Improvements of the first moment

• Make C(G) (the set of all legal 3-colorings) “thinner”, so
that the “unrealistic” expectation of the cardinality of C(G),
due to the Lottery paradox, gets smaller.

Consider rigid 3-colorings, i.e. colorings where any
change of color to a higher one (in the RGB ordering)
destroys the legality (Achlioptas and Molloy, further
improvement by Kaporis, Kirousis et al.)

• Method first introduced for SAT by Kirousis et al., 1997.
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Improvements of the first moment II

• Examine not the whole space of possible graphs, but a
subset of it comprised of graphs that:

are typical with respect to their degree sequence
(Poisson) and

(the decimation technique) have been repetitively
depleted of vertices of degree 2 or less, as these
vertices do not interfere with the colorability (Dubois
and Mandler).
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Algorithms for lower bounds

Let d−k denote the lower bound for d∗k that we try to
compute.

Consider list coloring or an improvement without
backtracking, i.e. if failure is reported after the choice of
a color, this failure is considered permanent).

Prove that for d < d−k , the coloring algorithm a.a.s.
succeeds.

The more sophisticated the heuristic is, the more
difficult or impossible its probabilistic analysis is.
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Algorithmic lower bounds for 3-COL

• Achlioptas and Molloy (1997), and then Achlioptas and
Moore (2004) analyzed the plain list coloring algorithm (the
Brelaz heuristic respectively).

The best today lower bound for 3-COL: average degree 4.03
(Recall: experimental value of putative threshold: 4.69).

Progress in the case of lower bounds is much slower
and the techniques more involved (compared with
upper bounds).

Also, there is strong experimental evidence that the
technique of analyzable local search algorithms cannot
overcome a barrier smaller than the value of the
experimental threshold (4.69). Why?
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The case of general k-COL

By the first moment method: d∗k < 2k ln k.

By a result of Łuczak: d∗k > 2k(1− ε) ln k,∀ε > 0 and for large
enough k.

So d∗k ∼ 2k ln k (the asymptotic is w.r.t k).

Also, by another result of Łuczak: the chromatic number of
graphs in G(n, p = d/n) ranges a.a.s. within a window of
only two possible integer values.

Alas, Łuczak gives no information on these two values,
neither do the above asymptotics of the threshold d∗k.

Main task: Make the asymptotics of d∗k finer so that the two
possible values of the chromatic number are found.
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The geometry of k-colorings

For a random graph G with a given av. degree d, consider
the space of all k-color assignments (legal or not) to the
vertices of G. Then:

For d below a certain value, all legal k-colorings form a
unique cluster in this space (with respect to the
Hamming distance).

As the average degree increases, the clusters break
down into exponentially many.

Moreover, as d increases, exponentially many clusters
correspond to color assignments that are illegal in a
locally minimal way (i.e. any change in the colors of a
few vertices gives rise to more illegally colored edges).
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The geometry of colorings cont’ed

Beyond the clustering point, sampling colorings
becomes hard.

Therefore no easily analyzable local search algorithms.

Scant hopes to sufficiently improve the lower bound of
d∗k by algorithmic techniques.

Above results Krząkała et al. (2004) and Zdeborová and
Krząkała (2007).
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What is the way out?

Conclusion: Non-algorithmic approaches for lower bounds
should be tried.
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The second moment method

Let X be a non-negative variable (usually a counting
variable) that depends on n.

Lottery Paradox: As n grows large E(X) may also grow
large, but yet Pr[X > 0] may approach zero.

However if E(X2) does not approach infinity too fast
compared to E(X), then it may turn that Pr[X > 0] stays
away from zero. Formally:

Pr[X > 0] ≥
(E(X))2

E(X2)
.
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The solution

Achlioptas and Naor (2004). Let kd be the smallest
integer k such that d < 2k ln k. Almost all Gn,p=d/n

random graphs have chromatic number either kd or
kd + 1.

Method of Proof: Second moment where X counts the
number of balanced k-colorings of Gn,p=d/n.

Balanced: each color is assigned to an equal number of
vertices.

Difficulty: The second moment of X turns out to be a
sum of exponential terms. Locating the term with the
largest base, which essentially gives the value of the
sum, proved out to be a difficult task.
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Random regular graphs

Different model from the Erdős–Rényi. Special case of the
Newman model of random graphs with a preassigned
degree sequence, intended to model large complex graphs.

Progress is much slower.

Achlioptas and Moore (2004): The chromatic number of
random regular graphs of degree d a.a.s. ranges in
{kd, kd + 1, kd + 2}, where kd is the smallest integer k
such that d < 2k ln k.

Shi and Wormald (2004): Algorithmic analogous results
for values of d up to 10.

Also, almost all 4-regular graphs have chromatic
number 3, and

almost all 6-regular graphs have chromatic number 4.
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5-regular graphs

Survey Propagation (Krząkała et al., 2004): almost all
5-regular graphs have chromatic number 3.

The solution space of 3-colorings of 5-regular is on the
edge of the clustering phase. Therefore, rigorously
analyzable algorithmic techniques are expected not to
work.

Until recently, the only rigorous result for 5-regular
graphs is that almost all of them have chromatic number
3 or 4.

Second Moment: Fails when X counts 3-colorings,
even if they are balanced.
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Why the 2nd m/ent fails for reg. graphs?

By linearity of expectation and by summing over pairs of
3-colorings we have:

E(X2) =
∑

i

EiPi

where Ei is the number of pairs of color assignments with a
given pattern of color assignments (characterized by a
parameter i) (entropy factor) and

Pi is the probability that a fixed pair of color assignments
with pattern Ei is legal (energy factor).
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Explanation of failure continued

The term EiPi that is equal (ignoring sub-exponential
factors) to (E(X))2 is the barycentric term that
corresponds to a completely symmetric pattern.

But unfortunately unlike the case of G(n, p) graphs, the
barycentric term is not the prevalent one in the sum.

Because there is a slight bias towards pairs of colorings
that give the same color to a vertex.
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How to eliminate this bias?

Consider colorings where each vertex has neighbors
with both the other two legal colors (rainbow or
panchromatic colorings).

Díaz, Kaporis, Kirousis, Kemkes, Pérez and Wormald
(2009): 5-regular graphs are 3-colorable a.a.s.

Method of proof: Apply second moment to the number
of rainbow, balanced 3-colorings on 5-regular graphs.

Result: A 5-regular graph is 3-colorable with positive
probability independent of its size.
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High probability

Pad up this probability to 1 (asymptotically).

Technique: Using the previous result that:

Pr[X > 0] ≥
(E(X))2

E(X2)
∼ constant

show that:

PrY [X > 0] ≥
(EY (X))2

EY (X2)
∼ 1,

by conditioning over the number of small cycles of the
graph.
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Thank you
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