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The k-colorability problem (k£-Col)
B -

# Given a graph G = (V, F) decide whether its vertices
can be colored with at most & colors so that no adjacent
vertices get the same color.



-

Input: A graph G together with a list of possible % colors for

The List Coloring Algorithm
-

each of its vertices.

9o

At every step, choose a color from a list and assign it to
Its vertex.

Delete this vertex and also delete the selected color
from neighboring vertices.

If the graph becomes empty, return “yes”; if a vertex
with an empty list appears, return “no”.

Vertices with one element in their list are given priority.
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Improvements

o N

® The greedy list coloring algorithm: Always choose a vertex
with the least possible number of colors in its list. Ties
are broken arbitrarily.

® The Brelaz heuristic, 1979: At ties, choose a vertex with
the largest number of yet uncolored neighbors.
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The Erdos—Rényi model
B -

® G, Each edge is independently selected with
probabillity p to be included in the graph (the number of
edges is a random variable).

o G, Exactly m edges are uniformly and independently
selected to be included in the graph.
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The Erdos—Rényi model 11

o N

# We consider sparse graphs, i.e. graphs in G(n,p) where
p = d/n for some constant d, or alternatively in G(n,m),
m = dn/2.

# Expected number of edges in G(n,p = d/n) IS ~ dn/2
and therefore expected “average” degree is d. The
value d/2 is known as the edge-density.

# The two models although formally non-equivalent, they
behave in a similar way.
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Phase transition — non-rigorous results

- N

[Mitchell et al. 1992] and other groups by simulation
experiments:

General observation: for each fixed k£ (amenable to
experimentation), there is a threshold average degree d;

such that

® If d < dj, then a random graph with average degree d IS
a.a.s. k-colorable, while

» If d > d; then such a graph is a.a.s. non-k-colorable.

Note: “a.a.s.” means with probability approaching 1
asymptotically with the number of vertices.
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Phase transition — continued

o N

# Analytic (but non-rigorous) verification of the previous
experimental results by methods of Statistical Physics.

#® For k = 3, both experiments and analytic techniques
suggest that d5 ~ 4.69.
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5th Athens Colloquium on Algorithms and Approximability, August 2010 — p. 8/28



The Achlioptas—Friedgut theorem

Theorem There Is a sequence d*(n) such that Ve T

e A random graph with average degree d*(n) — e IS a.a.s.
3-colorable.

e A random graph with average degree d*(n) + € is a.a.s.
non-3-colorable.

® |n other words, the transition interval can be made
arbitrarily thin (sharp transition).

|

5th Athens Colloquium on Algorithms and Approximability, August 2010 — p. 9/28



The Achlioptas—Friedgut theorem
-

Theorem There Is a sequence d*(n) such that Ve

e A random graph with average degree d*(n) — e IS a.a.s.
3-colorable.

e A random graph with average degree d*(n) + € is a.a.s.
non-3-colorable.

® |n other words, the transition interval can be made
arbitrarily thin (sharp transition).

e Still open question: Does d*(n) converge? If yes, to what
value?

Corollary Given d, if for random graphs G of average degree
d, Pr|G Is 3-col.| > ¢, finally for all n, then for random graphs
GG of average degree any d’ < d, Pr[G is 3-col.] — 1.
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Upper bounds
-

The upper bound results are expressed in terms of the
edge-density (d/2 rather than the average degree d).
Because the GG(n, m) model works better in this case.

-

Reminder: Experimentally, the putative threshold occurs for
edge-density 2.35 (average degree 4.69).

#® First: 2.71 — observed by several researchers
Independently — Markov’s inequality

# Current best: 2.427 Dubois and Mandler (2002) — typical
graphs plus the decimation technique
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Upper bounds
-

The upper bound results are expressed in terms of the
edge-density (d/2 rather than the average degree d).
Because the GG(n, m) model works better in this case.

-

Reminder: Experimentally, the putative threshold occurs for
edge-density 2.35 (average degree 4.69).

#® First: 2.71 — observed by several researchers
Independently — Markov’s inequality

# Current best: 2.427 Dubois and Mandler (2002) — typical
graphs plus the decimation technique

In between the above less-than-three-tenths improvement,
several results that established intermediate values by
t uczak; Achlioptas and Molloy; Kaporis et al. and other

Lgrou PS J
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The basic upper bound technique

-

Let G be a random graph and C(G) the random class of its
legal 3-colorings. Then

-

Pr[G is 3-col.] = Pr[|C(G)] > 1] < E(IC(GQ))).

Since E(|C(G)|) Is easy to compute. So we find the values
of edge-density for which it vanishes and thus we get a
trivial upper bound, namely 2.71.

But why experiments suggest d3 ~ 2.357

A class of graphs with small probability but with many legal
3-colorings contributes too much to the expectation
E(|C(G)]) (Lottery paradox).
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Improvements of the first moment

o N

e Make C(() (the set of all legal 3-colorings) “thinner”, so
that the “unrealistic” expectation of the cardinality of C(G),
due to the Lottery paradox, gets smaller.

# Consider rigid 3-colorings, i.e. colorings where any
change of color to a higher one (in the RGB ordering)
destroys the legality (Achlioptas and Molloy, further
Improvement by Kaporis, Kirousis et al.)

e Method first introduced for sar by Kirousis et al., 1997.

o |
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Improvements of the first moment |1

o N

e Examine not the whole space of possible graphs, but a
subset of it comprised of graphs that:

# are typical with respect to their degree sequence
(Poisson) and

# (the decimation technique) have been repetitively
depleted of vertices of degree 2 or less, as these
vertices do not interfere with the colorability (Dubois
and Mandler).
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Algorithms for lower bounds

Let d,_ denote the lower bound for d; that we try to
compute.

Consider list coloring or an improvement without
backtracking, i.e. if failure is reported after the choice of
a color, this failure is considered permanent).

Prove that for d < d,_, the coloring algorithm a.a.s.
succeeds.

The more sophisticated the heuristic Is, the more
difficult or impossible its probabilistic analysis is.

|
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Algorithmic lower bounds for 3-CoL

. N

e Achlioptas and Molloy (1997), and then Achlioptas and
Moore (2004) analyzed the plain list coloring algorithm (the
Brelaz heuristic respectively).

The best today lower bound for 3-CoL: average degree 4.03
(Recall: experimental value of putative threshold: 4.69).

# Progress in the case of lower bounds is much slower
and the techniques more involved (compared with
upper bounds).

# Also, there is strong experimental evidence that the
technique of analyzable local search algorithms cannot
overcome a barrier smaller than the value of the
experimental threshold (4.69). Why?

o |
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The case of general k-CoL
| -

By the first moment method: d; < 2k1In k.

By a result of tuczak: d; > 2k(1 —¢)Ink, Ve > 0 and for large
enough k.

So dj ~ 2kInk (the asymptotic is w.r.t k).

Also, by another result of Luczak: the chromatic number of
graphs in G(n,p = d/n) ranges a.a.s. within a window of
only two possible integer values.

Alas, tuczak gives no information on these two values,
neither do the above asymptotics of the threshold d;.

Main task: Make the asymptotics of d;. finer so that the two
possible values of the chromatic number are found.

o |
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-

The geometry of £-colorings

-

For a random graph G with a given av. degree d, consider
the space of all k-color assignments (legal or not) to the
vertices of GG. Then:

.

9

9o

9

For d below a certain value, all legal £-colorings form a
unique cluster in this space (with respect to the
Hamming distance).

As the average degree increases, the clusters break
down into exponentially many.

Moreover, as d increases, exponentially many clusters
correspond to color assignments that are illegal in a
locally minimal way (i.e. any change in the colors of a
few vertices gives rise to more illegally colored edges).

|
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The geometry of colorings cont’ed

o N

# Beyond the clustering point, sampling colorings
becomes hard.

#® Therefore no easily analyzable local search algorithms.

# Scant hopes to sufficiently improve the lower bound of
d;. by algorithmic techniques.

Above results Krzgkata et al. (2004) and Zdeborova and
Krzgkata (2007).

o |
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What Is the way out?
- -

Conclusion: Non-algorithmic approaches for lower bounds
should be tried.

o |
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The second moment method

- N

Let X be a non-negative variable (usually a counting
variable) that depends on n.

# Lottery Paradox: As n grows large E(X) may also grow
large, but yet Pr| X > 0] may approach zero.

® However if E(X?) does not approach infinity too fast
compared to E(X), then it may turn that Pr|.X > 0] stays
away from zero. Formally:

)°
2

Pr[X > 0] T

. (B
~ E(X

o |
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The solution

-

Achlioptas and Naor (2004). Let £, be the smallest
integer k such that d < 2kIn k. Alimost all G,, .4/,
random graphs have chromatic number either k; or
kq+ 1.

Method of Proof: Second moment where X counts the
number of balanced k-colorings of G, ,— 4/,

Balanced: each color is assigned to an equal number of
vertices.

Difficulty: The second moment of X turns out to be a
sum of exponential terms. Locating the term with the
largest base, which essentially gives the value of the
sum, proved out to be a difficult task.

|
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Random regular graphs

o N

Different model from the Erdos—Rényi. Special case of the
Newman model of random graphs with a preassigned
degree sequence, intended to model large complex graphs.

Progress is much slower.

# Achlioptas and Moore (2004): The chromatic number of
random regular graphs of degree d a.a.s. ranges in
{kq, kq+ 1,kq + 2}, where k; Is the smallest integer &
such that d < 2k 1n k.

# Shiand Wormald (2004): Algorithmic analogous results
for values of d up to 10.

# Also, almost all 4-regular graphs have chromatic
number 3, and

L.o almost all 6-regular graphs have chromatic number 4. J
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S-regular graphs

-

Survey Propagation (Krzgkata et al., 2004). almost all
5-regular graphs have chromatic number 3.

The solution space of 3-colorings of 5-regular is on the
edge of the clustering phase. Therefore, rigorously
analyzable algorithmic techniques are expected not to
work.

Until recently, the only rigorous result for 5-regular
graphs is that almost all of them have chromatic number
3 or 4.

Second Moment: Fails when X counts 3-colorings,
even if they are balanced.

|
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Why the 2nd m/ent fails for reg. graphs?
-

By linearity of expectation and by summing over pairs of T
3-colorings we have:

E(X?) =) EP,

where E; is the number of pairs of color assignments with a
given pattern of color assignments (characterized by a
parameter ;) (entropy factor) and

P; Is the probability that a fixed pair of color assignments
with pattern E£; is legal (energy factor).

o |
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Explanation of failure continued

f.’ The term E; P; that is equal (ignoring sub-exponential T

factors) to (E(X))* is the barycentric term that
corresponds to a completely symmetric pattern.

# But unfortunately unlike the case of G(n,p) graphs, the
barycentric term is not the prevalent one in the sum.

# Because there is a slight bias towards pairs of colorings
that give the same color to a vertex.

o |
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How to eliminate this bias?

-

Consider colorings where each vertex has neighbors
with both the other two legal colors (rainbow or
panchromatic colorings).

Diaz, Kaporis, Kirousis, Kemkes, Pérez and Wormald
(2009): 5-regular graphs are 3-colorable a.a.s.

Method of proof. Apply second moment to the number
of rainbow, balanced 3-colorings on 5-regular graphs.

Result: A 5-regular graph is 3-colorable with positive
probability independent of its size.

|
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High probability
- -

Pad up this probability to 1 (asymptotically).
Technique: Using the previous result that:

~ constant

E(X))’
X

Pr[X > 0] > (E( 2

show that:
Ey(X)®
Ey(X?) ’

by conditioning over the number of small cycles of the
graph.

o |
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Thank you
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