Emmanouil Pountourakis¹

¹joint work with Angelina Vidali

Model

- A set of agents $\mathcal A$ interested in the service
- Each agent *i* has a private value for the service *v_i*
- Mechanism: Elicts a bid b_i from each agent and decides
 - the set of serviced players O(b)
 the payment of each player p_i(b)
- Utility: v_i ⋅ a_i(b) p_i(b) a_i(b): binary indicator for i ∈ O(b)

Axioms of Cost-sharing

- Non Positive Transfer The payments are non-negative
- Voluntary Participation

Only the serviced players may be charged and not greater than their bids

Negative bid: no service

Consumer Sovereignty

Guaranteed to receive service if announced a high enough bid $b_i^* \in \mathbb{R}$

Group-strategyproofness

Successful Coalition: $S \subseteq A$

- The players in $\mathcal{A} \setminus S$ report their true values
- Compared with the truthful scenario:
 - The utility of every $i \in S$ does not decrease
 - The utility of at least one $i \in S$ strictly increases

Group-strategyproof mechanism: No successful coalitions

Budget Balance

- C(S) cost of servicing the set S
- α -Budget balance: $\alpha \cdot C(O(b)) \leq \sum_{i \in \mathcal{A}} p_i(b) \leq C(O(b))$
- No assumption about budget balance

Cost-sharing Schemes

- A cost sharing scheme is a function $\xi : A \times 2^A \to \mathbb{R}^+ \cup \{0\}$, where $i \notin S \Rightarrow \xi(i, S) = 0$.
- (Immorlica et. al. 05) The payment function of a group-strategyproof cost-sharing mechanism corresponds to a cost-sharing scheme
- Main prolbem: Characterize the cost-sharing schemes that give rise to group-strategyproof mechanisms (along with the other properties)

Cross Monotonicity

- Cross Monotonicity: For all $S, T \subseteq A$ and $i \in S$: $\xi(i, S) \ge \xi(i, S \cup T)$.
- Sufficient property for group-strategyproofness (Moulin 99)
- Not necessary and also poor budget balance for many important combinatorial problems (Immorlica et. al. 05)

Semi-cross Monotonicity

• Semi-cross Monotonicity: For all $S \subseteq A$ and $i \in S$, either

 $\forall j \in S \setminus \{i\}: \ \xi(j, S \setminus \{i\}) \ge \xi(j, S) \text{ or } \\ \forall j \in S \setminus \{i\}: \ \xi(j, S \setminus \{i\}) \le \xi(j, S).$

 Necessary property for group-strategyproofness, however not sufficient (Immorlica et. al. 05)

ξ	1	2	3
$\{1, 2, 3\}$	20	10	10
$\{1, 2\}$	20	10	—
{1,3}	20	_	20
{1}	10	_	—

 b_1 b_2 $b_3 \mid O(b)$

Δ.

ξ	1	2	3
$\{1, 2, 3\}$	20	10	10
{1, 2}	20	10	—
$\{1, 3\}$	20	_	20
{1 }	10		_

 $egin{array}{c|cccc} b_1 & b_2 & b_3 & O(b) \ \hline b_1^* & 10 & 15 \ \end{array}$

ξ	1	2	3
$\{1, 2, 3\}$	20	10	10
$\{1, 2\}$	20	10	—
$\{1, 3\}$	20	—	20
$\{1\}$	10	—	—

ξ	1	2	3
$\{1, 2, 3\}$	20	10	10
$\{1, 2\}$	20	10	—
$\{1, 3\}$	20	—	20
$\{1\}$	10	—	—

ξ	1	2	3
$\{1, 2, 3\}$	20	10	10
$\{1, 2\}$	20	10	—
$\{1, 3\}$	20	—	20
{1}	10	—	—

ξ	1	2	3
$\{1, 2, 3\}$	20	10	10
$\{1, 2\}$	20	10	—
$\{1, 3\}$	20	—	20
{1}	10	_	_

b_1	b_2	b ₃	O(b)
b_1^*	10	15	$ eq \{1,2,3\} $
b_1^*	b_2^*	b_3^*	$\{1, 2, 3\}$

.

A complete characterization of group-strategyproof mechanisms of cost-sharing

 \mathcal{A}

A complete characterization of group-strategyproof mechanisms of cost-sharing

 \mathcal{A}

IJ

A complete characterization of group-strategyproof mechanisms of cost-sharing

 \mathcal{A}

IJ

A complete characterization of group-strategyproof mechanisms of cost-sharing

 \mathcal{A}

IJ

- Fence monotonicity: a property of the cost-sharing schemes
- Consider all possible combinations for L and U
- Three properties should be satisfied

- Fix any pair L, U: Set S is optimal if every $i \in S$ is charged $\xi^*(i, L, U)$
- First Condition: There is at least one optimal set
- Equivalent with Semi-cross-monotonicity for $|U \setminus L| = 1$

11 $\xi^*(i, L, U)$

11 $\xi^*(i, L, U)$

]] $\xi^*(i, L, U)$

- Fix any pair L, U: Set S is weakly optimal if at least every i ∈ S \ L is charged ξ*(i, L, U)
- Second Condition: Every *i* ∈ U \ L belongs to a weakly optimal set
- Every *i* ∈ U \ L belongs to an optimal set ⇔ Cross monotonicity

11 $\xi^*(i, L, U)$

11 $\xi^*(i, L, U)$

11 $\xi^*(i, L, U)$

- Fix any pair L, U and consider any C ⊂ U where at least one *j* ∈ C is charged less than ξ*(*j*, L, U) (L ⊈ C)
- Third Property: There exists one set T
 - non-empty T ⊆ L \ C
 every i ∈ T is charged ξ*(i, L, U) at C ∪ T

Theorem

The cost sharing scheme of any group-strategyproof mechanism satisfies Fence Monotonicity.

Fencing mechanisms

• Pair L, U is **stable** at b, iff

$$\forall i \in L, \ b_i > \xi^*(i, L, U) \forall i \in U \setminus L, \ b_i = \xi^*(i, L, U) \exists \forall R \subseteq \mathcal{A} \setminus U \text{ with } R \neq \emptyset, \ \exists i \in R: \ b_i < \xi^*(i, L, U \cup R)$$

• Given any pair L, U and any bid vector b, a tie-breaking rule $\sigma(L, U, b) = S \subseteq A$ is valid if S is optimal w.r.t. L, U

Fencing mechanisms

Algorithm 1 Fencing mechanism **Require:** Fence monotone ξ , valid tie-breaking rule σ for ξ , and bid vector bFind stable pair L, U

 $S \leftarrow \sigma(L, U, b)$ return $O(b) \leftarrow S$ and for all $i \in A$, $p_i(b) \leftarrow \xi(i, S)$

Theorem

A mechanism is group-strategyproof if and only if it is a Fencing Mechanism.

A complete characterization of group-strategyproof mechanisms of cost-sharing

Budget Balance and Complexity

Theorem

There is no general group-strategyproof mechanism with constant budget balance.

Theorem

Finding the stable pair of an input is no harder than computing the outcome of a group-strategyproof mechanism given polynomial access to ξ^* .

Open Problems

Budget Balance:

- Upper bounds for important combinatorial problems
- Construct group-strategyproof mechanisms with better performance

Occupies Complexity

- Find the complexity of computing the stable pair
- Characterize tractable group-strategyproof mechanisms

3 Others Characterizations

- Specific cost sharing problems (budget balance restrictions)
- The weaker version of weakly group-strategyproof mechanisms (Mehta et. al.)
- · Group-strategyproof mechanisms in other domains

THANK YOU!