Scheduling with Precedence Constraints of Low Fractional Dimension

Nikos Mutsanas (nikos@idsia.ch)
joint work with
Christoph Ambühl Monaldo Mastrolilli Ola Svensson

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA)
Manno, Switzerland

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to...

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm ($\rho \geq 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $\operatorname{val}(A) \leq \rho \cdot O P T$.

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to...

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm ($\rho \geq 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $\operatorname{val}(A) \leq \rho \cdot O P T$.
E.g: 2-approximation for Vertex Cover: covers the graph with at most twice as many vertices as necessary.

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to...

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm ($\rho \geq 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $\operatorname{val}(A) \leq \rho \cdot O P T$.

Research in Approximation is two-fold

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to...

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm ($\rho \geq 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $\operatorname{val}(A) \leq \rho \cdot O P T$.

Research in Approximation is two-fold

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to...

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm ($\rho \geq 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $\operatorname{val}(A) \leq \rho \cdot O P T$.

Research in Approximation is two-fold

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to...

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm ($\rho \geq 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $\operatorname{val}(A) \leq \rho \cdot O P T$.

Research in Approximation is two-fold

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to...

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm ($\rho \geq 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $\operatorname{val}(A) \leq \rho \cdot O P T$.

Research in Approximation is two-fold

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to...

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm ($\rho \geq 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $\operatorname{val}(A) \leq \rho \cdot O P T$.

Research in Approximation is two-fold

A simple scheduling problem $\left(1 \| \sum_{j} w_{j} C_{j}\right)$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

A simple scheduling problem $\left(1 \| \sum_{j} w_{j} C_{j}\right)$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

Instance

A simple scheduling problem $\left(1 \| \sum_{j} w_{j} C_{j}\right)$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

A simple scheduling problem $\left(1 \| \sum_{j} w_{j} C_{j}\right)$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

A simple scheduling problem $\left(1 \| \sum_{j} w_{j} C_{j}\right)$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

A simple scheduling problem $\left(1 \| \sum_{j} w_{j} C_{j}\right)$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

A simple scheduling problem $\left(1 \| \sum_{j} w_{j} C_{j}\right)$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

A simple scheduling problem $\left(1 \| \sum_{j} w_{j} C_{j}\right)$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

Instance

Theorem [SMITH'56]
Ordering non-increasingly according to $\rho:=w / p$ is optimal.

Definition $1 \mid$ prec $\mid \sum_{j} w_{j} C_{j}$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

Definition $1 \mid$ prec $\mid \sum_{j} w_{j} C_{j}$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

Instance

Definition $1|\mathrm{prec}| \sum_{j} w_{j} C_{j}$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

Definition $1 \mid$ prec $\mid \sum_{j} w_{j} C_{j}$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

Definition $1 \mid$ prec $\mid \sum_{j} w_{j} C_{j}$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

Definition $1 \mid$ prec $\mid \sum_{j} w_{j} C_{j}$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

Definition $1 \mid$ prec $\mid \sum_{j} w_{j} C_{j}$

Given: 1 machine and n jobs, each with p_{i}, w_{i}.
Find: An ordering of the jobs, such that $\sum_{i} w_{i} C_{i}$ is minimized.

History \& Literature

- Extensively studied:
- The general version is strongly NP-hard
- Several 2-approximation algorithms
- Better than 2-approximation for special precedence constraints
- Special cases of precedence constraints are solvable in poly-time
- It is a vertex cover problem [Correa \& Schulz'04], [Ambühl \& Mastrolilli'06]
(2) Inapproximability results
- No PTAS. Variable part as hard as vertex cover
- Closing the approximability gap is a prominent open problem
- Not better than 2, assuming variant of UGC [Bansal \& Khot '09]

History \& Literature

(Extensively studied:

- The general version is strongly NP-hard
[Lawler'78], [Lenstra \& Rinnooy-Kan'78]
- Several 2-approximation algorithms
[Schulz'96], [Hall,Schulz, Shmoys \& Wein'97], [Chudak \& Hochbaum'97], [Chekuri \& Motwani'99], [Margot, Queyranne \& Wang'03], [Pisaruk'03]
- Better than 2-approximation for special precedence constraints [Woeginger'03], [Kolliopoulos \& Steiner'02], [Correa \& Schulz'04], [Ambühl, Mastrolilli \& Svensson'06], [Ambühl, Mastrolilli, Mutsanas \& Svensson'07]
- Special cases of precedence constraints are solvable in poly-time [Lawler'78], [Möhring'89], [Goemans \& Williamson'00], [Ambühl \& Mastrolilli'06]
- It is a vertex cover problem [Correa \& Schulz'04], [Ambühl \& Mastrolilli'06]
- No PTAS. Variable part as hard as vertex cover
- Closing the approximability gap is a prominent open problem
- Not better than 2, assuming variant of UGC

History \& Literature

- Extensively studied:
- The general version is strongly NP-hard
[Lawler'78], [Lenstra \& Rinnooy-Kan'78]
- Several 2-approximation algorithms
[Schulz'96], [Hall,Schulz, Shmoys \& Wein'97], [Chudak \& Hochbaum'97], [Chekuri \& Motwani'99], [Margot, Queyranne \& Wang'03], [Pisaruk'03]
- Better than 2-approximation for special precedence constraints [Woeginger'03], [Kolliopoulos \& Steiner'02], [Correa \& Schulz'04], [Ambühl, Mastrolilli \& Svensson'06], [Ambühl, Mastrolilili, Mutsanas \& Svensson'07]
- Special cases of precedence constraints are solvable in poly-time [Lawler'78], [Möhring'89], [Goemans \& Williamson'00], [Ambühl \& Mastrolilli'06]
- It is a vertex cover problem [Correa \& Schulz'04], [Ambühl \& Mastrolilli'06]
(2) Inapproximability results
- No PTAS. Variable part as hard as vertex cover [Ambühl, Mastrolilli \& Svensson'07]
- Closing the approximability gap is a prominent open problem Open Problem 9 in [Schuurman \& Woeginger'99]
- Not better than 2, assuming variant of UGC
[Bansal \& Khot '09]

Motivation \& Results

Hard problem

We don't know of a better than 2-approximation algorithm for the general case.

Motivation \& Results

Hard problem

We don't know of a better than 2-approximation algorithm for the general case.

Impose restrictions on...
weights / proc. times
Severe restrictions on w and p do not affect approximability [Woegingero3]

precedence constraints

Dimension theory of partia orders provides a well established characterization of precedence constraints

Motivation \& Results

Hard problem

We don't know of a better than 2-approximation algorithm for the general case.

Impose restrictions on. . .
weights / proc. times
Severe restrictions on w
and p do not affect
approximability [Woegingero
precedence constraints
Dimension theory of partial orders provides a well established characterization of precedence constraints [Trotter'92]

Motivation \& Results

Hard problem

We don't know of a better than 2-approximation algorithm for the general case.

Impose restrictions on. . .

| Severe restrictions on w
 and p do not affect
 approximability | precedence constraints
 Dimension theory of partial orders
 provides a well established
 characterization of precedence
 constraints [Trotter'92] |
| :--- | :--- | :--- |

General framework

Yields a (2-2/f)-approximation algorithm whenever the fractional dimension of the poset is $\leq f$. (interval orders, bounded degree,)

The algorithmic framework - Overview

The algorithmic framework - Fixed cost

The algorithmic framework - Fixed cost

$$
\operatorname{val}(L)=\sum_{j} w_{j} C_{j}
$$

The algorithmic framework - Fixed cost

$$
\operatorname{val}(L)=\sum_{j} w_{j} C_{j}=\sum_{j} w_{j} p_{j}+\sum_{(i, j) \in L} w_{j} p_{i}
$$

The algorithmic framework - Fixed cost

$$
\begin{aligned}
& \text { own proc. time } \\
& \text { poset }
\end{aligned}
$$

The algorithmic framework - Fixed cost

$$
\begin{aligned}
& \text { own proc. time } \\
& \text { poset }
\end{aligned}
$$

The algorithmic framework - Sched. \& Vertex Cover

The algorithmic framework - Sched. \& Vertex Cover

Theorem
 Problem $1|p r e c| \sum_{j} w_{j} C_{j}$ is a special case of Minimum Weighted Vertex Cover.

- Obtained by studying several IP-formulations of $1|\operatorname{prec}| \sum_{j} w_{j} C_{j}$.

The algorithmic framework - Sched. \& Vertex Cover

Theorem

Problem $1|p r e c| \sum_{j} w_{j} C_{j}$ is a special case of Minimum Weighted Vertex Cover.

- Obtained by studying several IP-formulations of $1|\mathrm{prec}| \sum_{j} w_{j} C_{j}$.

> [Potts'80]

The algorithmic framework - Sched. \& Vertex Cover

Theorem

Problem $1|p r e c| \sum_{j} w_{j} C_{j}$ is a special case of Minimum Weighted Vertex Cover.

- Obtained by studying several IP-formulations of $1|\operatorname{prec}| \sum_{j} w_{j} C_{j}$.

[Potts'80]
[Chudak \& Hochbaum'99]

The algorithmic framework - Sched. \& Vertex Cover

Theorem

Problem $1|p r e c| \sum_{j} w_{j} C_{j}$ is a special case of Minimum Weighted Vertex Cover.

- Obtained by studying several IP-formulations of $1|\operatorname{prec}| \sum_{j} w_{j} C_{j}$.

> [Potts'80]
> [Chudak \& Hochbaum'99]
> [Correa \& Schulz'04]

The algorithmic framework - Sched. \& Vertex Cover

Theorem

Problem $1|p r e c| \sum_{j} w_{j} C_{j}$ is a special case of Minimum Weighted Vertex Cover.

- Obtained by studying several IP-formulations of $1|\operatorname{prec}| \sum_{j} w_{j} C_{j}$.

[Potts'80]

[Chudak \& Hochbaum'99]
[Correa \& Schulz'04]

The algorithmic framework - Sched. \& Vertex Cover

Theorem

Problem $1|p r e c| \sum_{j} w_{j} C_{j}$ is a special case of Minimum Weighted Vertex Cover.

- Obtained by studying several IP-formulations of $1|\operatorname{prec}| \sum_{j} w_{j} C_{j}$.

[Potts'80]

[Chudak \& Hochbaum'99]
[Correa \& Schulz'04]

The algorithmic framework - Sched. \& Vertex Cover

Theorem

Problem $1|p r e c| \sum_{j} w_{j} C_{j}$ is a special case of Minimum Weighted Vertex Cover.

- Obtained by studying several IP-formulations of $1|\operatorname{prec}| \sum_{j} w_{j} C_{j}$.

[Potts'80]

[Chudak \& Hochbaum'99]
[Correa \& Schulz'04]

The algorithmic framework - Sched. \& Vertex Cover

Theorem

Problem $1|p r e c| \sum_{j} w_{j} C_{j}$ is a special case of Minimum Weighted Vertex Cover.

- Obtained by studying several IP-formulations of $1|\operatorname{prec}| \sum_{j} w_{j} C_{j}$.

[Potts'80]

[Chudak \& Hochbaum'99]
[Correa \& Schulz'04]

The algorithmic framework - Sched. \& Vertex Cover

Theorem

Problem $1|p r e c| \sum_{j} w_{j} C_{j}$ is a special case of Minimum Weighted Vertex Cover.

- Obtained by studying several IP-formulations of $1|\operatorname{prec}| \sum_{j} w_{j} C_{j}$.

[Potts'80]
[Chudak \& Hochbaum'99]
[Correa \& Schulz' 04]
[Ambühl \& Mastrolilli'06]

The algorithmic framework - VC \& coloring

The algorithmic framework - VC \& coloring

Given: Graph $G(V, E)$.
Find: Coloring of V s.t. no $e \in E$
is "monochromatic".

The algorithmic framework - VC \& coloring

Given: Graph $G(V, E)$.
Find: Coloring of V s.t. no $e \in E$
is "monochromatic".

The algorithmic framework - VC \& coloring

Given: Graph $G(V, E)$.
Find: Coloring of V s.t. no $e \in E$
is "monochromatic".

The algorithmic framework - VC \& coloring

Given: Graph $G(V, E)$.
Find: Coloring of V s.t. no $e \in E$ is "monochromatic".

[Hochbaum'83]

The heaviest color weighs at least $\frac{W}{k}$ (average weight).

The algorithmic framework - VC \& coloring

Given: Graph $G(V, E)$.
Find: Coloring of V s.t. no $e \in E$ is "monochromatic".

[Hochbaum'83]

The heaviest color weighs at least $\frac{W}{k}$ (average weight).
Define VC by taking the complement.

The algorithmic framework - VC \& coloring

Given: Graph $G(V, E)$.
Find: Coloring of V s.t. no $e \in E$ is "monochromatic".

[Hochbaum'83]

The heaviest color weighs at
 least $\frac{W}{k}$ (average weight).
Define VC by taking the complement.

$$
\frac{\operatorname{val}(A)}{O P T} \leq \frac{W-W / k}{W / 2} \leq\left(2-\frac{2}{k}\right)
$$

The algorithmic framework - VC \& fractional coloring

The algorithmic framework - VC \& fractional coloring

Fractional Coloring: color each vertex t times using a k-palette, s.t. k / t is minimized.

$$
k=5, \quad t=2
$$

The algorithmic framework - VC \& fractional coloring

Fractional Coloring: color each vertex t times using a k-palette, s.t. k / t is minimized.

$$
k=5, \quad t=2
$$

The algorithmic framework - VC \& fractional coloring

Fractional Coloring: color each vertex t times using a k-palette, s.t. k / t is minimized.

$$
k=5, \quad t=2
$$

The algorithmic framework - VC \& fractional coloring

Fractional Coloring: color each vertex t times using a k-palette, s.t. k / t is minimized.

$$
k=5, \quad t=2
$$

The algorithmic framework - VC \& fractional coloring

Fractional Coloring: color each vertex t times using a k-palette, s.t. k / t is minimized.

$$
k=5, \quad t=2
$$

The algorithmic framework - VC \& fractional coloring

Fractional Coloring: color each vertex t times using a k-palette, s.t. k / t is minimized.

$$
k=5, \quad t=2
$$

The algorithmic framework - VC \& fractional coloring

Fractional Coloring: color each vertex t times using a k-palette, s.t. k / t is minimized.

[THIS APPROACH]

The heaviest color weighs at least $\frac{t \cdot W}{k}$ (average weight).

$$
k=5, \quad t=2
$$

The algorithmic framework - VC \& fractional coloring

Fractional Coloring: color each vertex t times using a k-palette, s.t. k / t is minimized.

[THIS APPROACH]

The heaviest color weighs at least $\frac{t \cdot W}{k}$ (average weight).
Define VC by taking the complement.

$$
k=5, \quad t=2
$$

The algorithmic framework - VC \& fractional coloring

Fractional Coloring: color each
vertex t times using a k-palette, s.t. k / t is minimized.

$$
k=5, \quad t=2
$$

[THIS APPROACH]

The heaviest color weighs at least $\frac{t \cdot W}{k}$ (average weight).
Define VC by taking the complement.
$\frac{\operatorname{val}(A)}{O P T} \leq \frac{W-t \cdot W / k}{W / 2} \leq\left(2-\frac{2}{k / t}\right)$
Here: $\frac{6}{5}$

The algorithmic framework - VC \& fractional coloring

Fractional Coloring: color each vertex t times using a k-palette, s.t. k / t is minimized.

[THIS APPROACH]

The heaviest color weighs at least $\frac{t \cdot W}{k}$ (average weight).
Define VC by taking the complement.

$$
\frac{\operatorname{val}(A)}{O P T} \leq \frac{W-t \cdot W / k}{W / 2} \leq\left(2-\frac{2}{k / t}\right)
$$

Here: $\frac{6}{5}$
Using coloring [Hochbaum'83]:

$$
\left(2-\frac{2}{3}\right)=\frac{4}{3}
$$

The algorithmic framework - VC \& fractional coloring

The algorithmic framework - VC \& fractional coloring

The algorithmic framework - Dimension Theory

Definition

A t-realizer of a poset \mathbf{P} is a set of t linear extensions of \mathbf{P} s.t. any (ordered) incomparable pair is reversed in at least 1 linear extension.

Definition

 [DUshnik \& Miller, 1941]The dimension of a poset \mathbf{P} is the smallest t such that there exists a $\quad t$-realizer of P.

The algorithmic framework - Dimension Theory

Definition

A k :t-realizer of a poset \mathbf{P} is a set of t linear extensions of \mathbf{P} s.t. any (ordered) incomparable pair is reversed in at least k linear extensions.

Definition [BRIGHTWELL \& SchEINERMAN'92]

The fractional dimension of a poset \mathbf{P} is the smallest t / k such that there exists a $k: t$-realizer of P.

The algorithmic framework - Graph Structure

Scheduling Instance

The algorithmic framework - Graph Structure

Scheduling Instance

- A vertex for each (ordered) pair of incomparable jobs.
- Intuitively: If $(a, d) \in V C$ then job a is scheduled before job d.

The algorithmic framework - Graph Structure

Scheduling Instance

- Edge type (1): Either schedule a before d or d before a.

The algorithmic framework - Graph Structure

Scheduling Instance

- Edge type (2): Schedule c before a or a before d to avoid cycles of this type.

The algorithmic framework - Graph Structure

Scheduling Instance

- Edge type (3): Schedule c before b or a before d to avoid cycles of this type.

The algorithmic framework - Graph Structure

Scheduling Instance

The algorithmic framework - Graph Structure

Scheduling Instance

Corresponding Graph G_{P}

- The green nodes represent an optimal vertex cover with value $3+6+8+4=21$ (variable part).

The algorithmic framework - Graph Structure

Scheduling Instance

Corresponding Graph G_{P}

- Observe that any linear extension L defines a vertex cover of the graph. [$L=(a, b, c, d)$ defines this vertex cover.]

The algorithmic framework - Graph Structure

Scheduling Instance

Corresponding Graph G_{P}

- Observe that any linear extension L defines a vertex cover of the graph. [$L=(a, b, c, d)$ defines this vertex cover.]
- Pairs that are reversed in L form an independent set in G_{p}.

Posets \& (Hyper)graph of incomparable pairs

In Dimension theory the following Hypergraph H_{p} is well-known:
Vertices: (Ordered) Incomparable pairs
Hyperedges: (Minimal) Subsets of incomparable pairs that no linear extension can reverse simultaneously.

Dimension \& Coloring
$\chi\left(H_{\mathbf{P}}\right)=\operatorname{dim}(\mathbf{P})$
[FELSNER \& TROTTER’00]
$\chi_{f}\left(H_{\mathbf{P}}\right)=\mathrm{fdim}(\mathbf{P})$
[BRIGHTWELL \& SChEINERMANN'92]

Posets \& (Hyper)graph of incomparable pairs

In Dimension theory the following Hypergraph H_{p} is well-known:
Vertices: (Ordered) Incomparable pairs
Hyperedges: (Minimal) Subsets of incomparable pairs that no linear extension can reverse simultaneously.

> Dimension \& Coloring
> $\chi\left(H_{\mathbf{P}}\right)=\operatorname{dim}(\mathbf{P})$
> $\chi_{f}\left(H_{\mathbf{P}}\right)=\mathrm{fdim}(\mathbf{P})$
> [FELSNER \& TROTtER’00]
> [BRIGHTWELL \& Scheinermann'92]

[AMBÜHL ET AL.'06] observed that the underlying graph (hyperedges of cardinality two) and the graph of [CORREA \& SchuLz'04] coincide.

The Approximability of the Fractional Dimension

Corrolary

If we have a "small" realizer, we have a "good" coloring of the Hypergraph \Rightarrow good approximation for $1 \mid$ prec $\mid \sum_{j} w_{j} C_{j}$.

Theorem
It is hard to approximate the (fractional) dimension of a poset with n
elements within a factor $n^{0.5-\varepsilon}$ for any $\varepsilon>0$.

The Approximability of the Fractional Dimension

Corrolary

If we have a "small" realizer, we have a "good" coloring of the Hypergraph \Rightarrow good approximation for $1 \mid$ prec $\mid \sum_{j} w_{j} C_{j}$.

Theorem

[Jain \& Hegde'06]
It is hard to approximate the (fractional) dimension of a poset with n elements within a factor $n^{0.5-\varepsilon}$ for any $\varepsilon>0$.

The Approximability of the Fractional Dimension

Corrolary

If we have a "small" realizer, we have a "good" coloring of the Hypergraph \Rightarrow good approximation for $1|\mathrm{prec}| \sum_{j} w_{j} C_{j}$.

Theorem

It is hard to approximate the (fractional) dimension of a poset with n elements within a factor $n^{0.5-\varepsilon}$ for any $\varepsilon>0$.

However for several interesting posets we can do better...

Scheduling \& Coloring - Applications

Using coloring:

Prec. Constr.	Other approaches	This approach
2-dimensional	$3 / 2$ [Corpea \& Schulz'04]	1
semi-orders	≈ 1.618 [Woeginger'03]	$4 / 3$
convex bipartite	≈ 1.618 [Woeginger'03]	$4 / 3$
interval-orders	≈ 1.618 [Woeginger'03]	2
interval dimension 2	2	2
Bounded degree d	2	2

Scheduling \& Coloring - Applications

Using coloring:

Prec. Constr.	Other approaches	This approach
2-dimensional	$3 / 2$ [Corpea \& Schulz'04]	1
semi-orders	≈ 1.618 [Woeginger'03]	$4 / 3$
convex bipartite	≈ 1.618 [Woeginger'03]	$4 / 3$
interval-orders	≈ 1.618 [Woeginger'03]	2
interval dimension 2	2	2
Bounded degree d	2	2

For remaining classes, use

- fractional coloring

Scheduling \& Coloring - Applications

Using coloring:

Prec. Constr.	Other approaches	This approach
2-dimensional	$3 / 2$ [Corpea \& Schulz'04]	1
semi-orders	≈ 1.618 [Woeginger'03]	$4 / 3$
convex bipartite	≈ 1.618 [Woeginger'03]	$4 / 3$
interval-orders	≈ 1.618 [Woeginger'03]	2
interval dimension 2	2	2
Bounded degree d	2	2

For remaining classes, use

- fractional coloring
- randomization

Scheduling \& Coloring - Applications

Using fractional coloring:

Prec. Constr.	Other approaches	This approach
2-dimensional	$3 / 2$ [Correa \& Schulz'04]	1
semi-orders	≈ 1.618 [Woeginger'03]	$4 / 3$
convex bipartite	≈ 1.618 [Woeginger'03]	$4 / 3$
interval-orders	≈ 1.618 [Woeginger'03]	1.5
interval dimension 2	2	1.75
Bounded degree d	2	$2-\frac{2}{d+1}$

For remaining classes, use

- fractional coloring
- randomization

Example - Interval Orders

- Interval orders is a well studied class of posets [FISHBURN'85]
- [WOEGINGER'03] showed that $1 \mid$ prec $\mid \sum_{j} w_{j} C_{j}$ with interval order precedence constraints has a (≈ 1.61803)-approximation.

Interval Orders

A poset is an interval order if it can be represented by intervals such that $(a, b) \in P$ iff a 's interval is completely before b 's.

Interval orders can be recognized in $O\left(n^{2}\right)$

1.5-Approximation for Interval Orders

1.5-Approximation for Interval Orders

1.5-Approximation for Interval Orders

Partition the set of jobs into 2 sets (blue and red)

There are 2^{n} partitions
Lemma
For any (blue,red)-partition there is an L where blue jobs are scheduled before red jobs (if incomparable).

- Consider these $t=2^{n}$ linear extensions
- Observe that there are $k=2^{n-2}$ linear extensions where any inc. pair (a, b) is reversed: (a, b) : yes, (a, b) : no, (a, b) : maybe,
- This set of $t=2^{n}$ linear extensions is a $k: t$-realizer $(t / k=4)$

1.5-Approximation for Interval Orders

Partition the set of jobs into 2 sets (blue and red)

There are 2^{n} partitions
Lemma
For any (blue,red)-partition there is an L where blue jobs are scheduled before red jobs (if incomparable).

- Consider these $t=2^{n}$ linear extensions
- Observe that there are $k=2^{n-2}$ linear extensions where any inc. pair (a, b) is reversed: (a, b) : yes, (a, b) : no, (a, b) : maybe,
- This set of $t=2^{n}$ linear extensions is a $k: t-r e a l i z e r ~(t / k=4)$

1.5-Approximation for Interval Orders

Partition the set of jobs into 2 sets (blue and red)

There are 2^{n} partitions

Lemma

For any (blue,red)-partition there is an L where blue jobs are scheduled before red jobs (if incomparable).

- Consider these $t=2^{n}$ linear extensions
- Observe that there are $k=2^{n-2}$ linear extensions where any inc. pair (a, b) is reversed: (a, b) : yes, (a, b) : no, (a, b) : maybe, (a, b): maybe.
- This set of $t=2^{n}$ linear extensions is a $k: t$-realizer $(t / k=4)$

1.5-Approximation for Interval Orders

Partition the set of jobs into 2 sets (blue and red)

There are 2^{n} partitions

Lemma

[RABINOVITCH'78]

For any (blue,red)-partition there is an L where blue jobs are scheduled before red jobs (if incomparable).

- Consider these $t=2^{n}$ linear extensions
- Observe that there are $k=2^{n-2}$ linear extensions where any inc. pair (a, b) is reversed: (a, b) : yes, (a, b) : no, (a, b) : maybe, (a, b): maybe.
- This set of $t=2^{n}$ linear extensions is a $k: t$-realizer $(t / k=4)$

$$
\alpha=\left(2-\frac{2}{t / k}\right)=2-\frac{2}{4}=1.5
$$

1.5-Approximation for Interval Orders

Partition the set of jobs into 2 sets (blue and red)

There are 2^{n} partitions

Problem

$k: t$-Realizer is of exponential size $\left(2^{n}\right)$.

1.5-Approximation for Interval Orders

Problem

$k: t$-Realizer is of exponential size $\left(2^{n}\right)$.

Solution

Randomization: we only need to sample a good extension efficiently.

1.5-Approximation for Interval Orders

Problem

$k: t$-Realizer is of exponential size $\left(2^{n}\right)$.

Solution

Randomization: we only need to sample a good extension efficiently.
Note: Randomization is merely a "detour"
Method of Conditional Probabilities
\Rightarrow deterministic 1.5-approximation algorithm.

The algorithmic Framework - Applications

The algorithmic Framework - Applications

Prec. Constr.	Other approaches	This approach
2-dimensional	$3 / 2$ [Corpea \& Schulz'04]	1
semi-orders	≈ 1.618 [Wóginger'03]	$4 / 3$
convex bipartite	≈ 1.618 [Woeginger'03]	$4 / 3$
interval-orders	≈ 1.618 [Woeginger'03]	1.5
interval dimension 2	2	1.75
Bounded degree d	2	$2-\frac{2}{d+1}$

Summary

- Scheduling problem \rightarrow weighted vertex cover on G_{p} (+ a fixed cost)
- Adds more structure to the problem
- 2-approximates the variable part!
- Suggests a unified way of constructing the currently best-known approximation ratios for all considered posets.
- We did not improve the approximation ratio for the general case - No better than 2-approximation, assuming variant of UGC
- How good is SDP (. for special cases)?
- A better understanding of the graph (e.g. when is it perfect?)

Summary

- Scheduling problem \rightarrow weighted vertex cover on G_{p} (+ a fixed cost)
- Adds more structure to the problem
- 2-approximates the variable part!
- Suggests a unified way of constructing the currently best-known approximation ratios for all considered posets.
- We did not improve the approximation ratio for the general case
- No better than 2-approximation, assuming variant of UGC
[BANSAL \& Khot'09]
- How good is SDP (...for special cases)?
- A better understanding of the graph (e.g. when is it perfect?)

Outlook

- Hypergraph of incomparable pairs has nice properties:
- Vertex Cover $\hat{=}$ Feedback Arc Set
- Independent Set $\hat{=}$ Maximum Acyclic Subgraph
- $1|\mathrm{prec}| \sum_{j} w_{j} C_{j}$ can be seen as Feedback Arc Set with "specially structured" weights.
- "Special structure" \Rightarrow all hyperedges >2 can be ignored!
- Hypothesis: Other ordering problems lie in between.
- Work in Progress: Rank Aggregation (with triangle inequality) $\hat{=}$ ignore hyperedges > 3

Thank you for your attention!

