Scheduling with Precedence Constraints of Low Fractional Dimension

Nikos Mutsanas (nikos@idsia.ch)

joint work with

Christoph Ambühl Monaldo Mastrolilli Ola Svensson

Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA) Manno, Switzerland

Many practical problems are unlikely to be solvable *efficiently*. The necessity to solve them *somehow* leads to...

Approximation Algorithm (for Minimization Problem)

A ρ -approximation algorithm ($\rho \ge 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $val(A) \leq \rho \cdot OPT$.

Many practical problems are unlikely to be solvable *efficiently*. The necessity to solve them *somehow* leads to...

Approximation Algorithm (for Minimization Problem)

A ρ -approximation algorithm ($\rho \ge 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $val(A) \leq \rho \cdot OPT$.

E.g: 2-approximation for Vertex Cover: covers the graph with at most twice as many vertices as necessary.

Many practical problems are unlikely to be solvable *efficiently*. The necessity to solve them *somehow* leads to...

Approximation Algorithm (for Minimization Problem)

A ρ -approximation algorithm ($\rho \ge 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $val(A) \leq \rho \cdot OPT$.

Many practical problems are unlikely to be solvable *efficiently*. The necessity to solve them *somehow* leads to...

Approximation Algorithm (for Minimization Problem)

A ρ -approximation algorithm ($\rho \ge 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $val(A) \leq \rho \cdot OPT$.

Many practical problems are unlikely to be solvable *efficiently*. The necessity to solve them *somehow* leads to...

Approximation Algorithm (for Minimization Problem)

A ρ -approximation algorithm ($\rho \ge 1$) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $val(A) \leq \rho \cdot OPT$.

Many practical problems are unlikely to be solvable *efficiently*. The necessity to solve them *somehow* leads to...

Approximation Algorithm (for Minimization Problem)

A $\rho\text{-approximation}$ algorithm ($\rho \geq$ 1) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $val(A) \leq \rho \cdot OPT$.

Many practical problems are unlikely to be solvable *efficiently*. The necessity to solve them *somehow* leads to...

Approximation Algorithm (for Minimization Problem)

A $\rho\text{-approximation}$ algorithm ($\rho \geq$ 1) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $val(A) \leq \rho \cdot OPT$.

Many practical problems are unlikely to be solvable *efficiently*. The necessity to solve them *somehow* leads to...

Approximation Algorithm (for Minimization Problem)

A $\rho\text{-approximation}$ algorithm ($\rho \geq$ 1) satisfies:

- it runs in polynomial time
- it produces a feasible solution A
- $val(A) \leq \rho \cdot OPT$.

History & Literature

Extensively studied:

- The general version is strongly NP-hard [Lawler'78], [Lenstra & Rinnooy-Kan'78]
- Several 2-approximation algorithms
 [Schulz'96], [Hall,Schulz, Shmoys & Wein'97], [Chudak & Hochbaum'97], [Chekuri & Motwani'99], [Margot, Queyranne & Wang'03], [Pisaruk'03]
- Better than 2-approximation for special precedence constraints [Woeginger'03], [Kolliopoulos & Steiner'02], [Correa & Schulz'04], [Ambühl, Mastrolilli & Svensson'06], [Ambühl, Mastrolilli, Mutsanas & Svensson'07]
- Special cases of precedence constraints are solvable in poly-time [Lawler'78], [Möhring'89], [Goemans & Williamson'00], [Ambühl & Mastrolilli'06]
- It is a vertex cover problem [Correa & Schulz'04], [Ambühl & Mastrolilli'06]
- Inapproximability results
 - No PTAS. Variable part as hard as vertex cover [Ambühl, Mastrolilli & Svensson'07]
 - Closing the approximability gap is a prominent open problem Open Problem 9 in [Schuurman & Woeginger'99]
 - Not better than 2, assuming variant of UGC [Bansal & Khot '09]

History & Literature

Extensively studied:

- The general version is strongly NP-hard [Lawler'78], [Lenstra & Rinnooy-Kan'78]
- Several 2-approximation algorithms [Schulz'96], [Hall,Schulz, Shmoys & Wein'97], [Chudak & Hochbaum'97], [Chekuri & Motwani'99], [Margot, Queyranne & Wang'03], [Pisaruk'03]
- Better than 2-approximation for special precedence constraints [Woeginger'03], [Kolliopoulos & Steiner'02], [Correa & Schulz'04], [Ambühl, Mastrolilli & Svensson'06], [Ambühl, Mastrolilli, Mutsanas & Svensson'07]
- Special cases of precedence constraints are solvable in poly-time [Lawler'78], [Möhring'89], [Goemans & Williamson'00], [Ambühl & Mastrolilli'06]
- It is a vertex cover problem [Correa & Schulz'04], [Ambühl & Mastrolilli'06]
- Inapproximability results
 - No PTAS. Variable part as hard as vertex cover [Ambühl, Mastrolilli & Svensson'07]
 - Closing the approximability gap is a prominent open problem Open Problem 9 in [Schuurman & Woeginger'99]
 - Not better than 2, assuming variant of UGC [Bansal & Khot '09]

History & Literature

Extensively studied:

- The general version is strongly NP-hard [Lawler'78], [Lenstra & Rinnooy-Kan'78]
- Several 2-approximation algorithms [Schulz'96], [Hall,Schulz, Shmoys & Wein'97], [Chudak & Hochbaum'97], [Chekuri & Motwani'99], [Margot, Queyranne & Wang'03], [Pisaruk'03]
- Better than 2-approximation for special precedence constraints [Woeginger'03], [Kolliopoulos & Steiner'02], [Correa & Schulz'04], [Ambühl, Mastrolilli & Svensson'06], [Ambühl, Mastrolilli, Mutsanas & Svensson'07]
- Special cases of precedence constraints are solvable in poly-time [Lawler'78], [Möhring'89], [Goemans & Williamson'00], [Ambühl & Mastrolilli'06]
- It is a vertex cover problem [Correa & Schulz'04], [Ambühl & Mastrolilli'06]
- Inapproximability results
 - No PTAS. Variable part as hard as vertex cover [Ambühl, Mastrolilli & Svensson'07]
 - Closing the approximability gap is a prominent open problem Open Problem 9 in [Schuurman & Woeginger'99]
 - Not better than 2, assuming variant of UGC [Bansal & Khot '09]

We don't know of a better than 2-approximation algorithm for the general case.

We don't know of a better than 2-approximation algorithm for the general case.

Impose restrictions on...

weights / proc. times

Severe restrictions on *w* and *p* do not affect approximability [Woeginger'03]

orecedence constraints

Dimension theory of partial orders provides a well established characterization of precedence constraints [Trotter'92]

We don't know of a better than 2-approximation algorithm for the general case.

Impose restrictions on...

weights / proc. times

Severe restrictions on *w* and *p* do not affect approximability [Woeginger'03]

precedence constraints

⇒ Dimension theory of partial orders provides a well established characterization of precedence constraints [Trotter'92]

We don't know of a better than 2-approximation algorithm for the general case.

Impose restrictions on...

weights / proc. times

Severe restrictions on *w* and *p* do not affect approximability [Woeginger'03]

precedence constraints

⇒ Dimension theory of partial orders provides a well established characterization of precedence constraints [Trotter'92]

General framework

Yields a (2 - 2/f)-approximation algorithm whenever the fractional dimension of the poset is $\leq f$. (interval orders, bounded degree, ...)

The algorithmic framework - Overview

$$\mathsf{val}(L) = \sum_j w_j C_j$$

$$\operatorname{val}(L) = \sum_{j} w_{j}C_{j} = \sum_{j} w_{j}p_{j} + \sum_{(i,j) \in L} w_{j}p_{i}$$

The algorithmic framework - Fixed cost

Theorem

Problem 1 prec $\sum_{j} w_{j}C_{j}$ is a special case of MINIMUM WEIGHTED VERTEX COVER.

• Obtained by studying several IP-formulations of $1 |\text{prec}| \sum_{i} w_i C_i$.

Theorem

Problem 1 prec $\sum_{j} w_{j}C_{j}$ is a special case of MINIMUM WEIGHTED VERTEX COVER.

• Obtained by studying several IP-formulations of $1 |\text{prec}| \sum_{j} w_{j}C_{j}$.

[Potts'80]

Theorem

Problem 1 prec $\sum_{j} w_{j}C_{j}$ is a special case of MINIMUM WEIGHTED VERTEX COVER.

• Obtained by studying several IP-formulations of $1 |\text{prec}| \sum_{j} w_{j}C_{j}$.

[Potts'80] [Chudak & Hochbaum'99]

Theorem

Problem 1 $|prec| \sum_{j} w_{j}C_{j}$ is a special case of MINIMUM WEIGHTED VERTEX COVER.

• Obtained by studying several IP-formulations of $1 |\text{prec}| \sum_{i} w_i C_i$.

[Potts'80] [Chudak & Hochbaum'99] [Correa & Schulz'04]

Theorem

Problem 1 $|prec| \sum_{j} w_{j}C_{j}$ is a special case of MINIMUM WEIGHTED VERTEX COVER.

• Obtained by studying several IP-formulations of $1 |\text{prec}| \sum_{i} w_i C_i$.

[Potts'80] [Chudak & Hochbaum'99] [Correa & Schulz'04]

Theorem

Problem 1 $|prec| \sum_{j} w_{j}C_{j}$ is a special case of MINIMUM WEIGHTED VERTEX COVER.

• Obtained by studying several IP-formulations of $1 |\text{prec}| \sum_{i} w_i C_i$.

[Potts'80] [Chudak & Hochbaum'99]

[Correa & Schulz'04]

Theorem

Problem 1 $|prec| \sum_{j} w_{j}C_{j}$ is a special case of MINIMUM WEIGHTED VERTEX COVER.

• Obtained by studying several IP-formulations of $1 |\text{prec}| \sum_{i} w_i C_i$.

[Potts'80]

[Chudak & Hochbaum'99]

[Correa & Schulz'04]

Theorem

Problem 1 $|prec| \sum_{j} w_{j}C_{j}$ is a special case of MINIMUM WEIGHTED VERTEX COVER.

• Obtained by studying several IP-formulations of $1 |\text{prec}| \sum_{i} w_i C_i$.

[Potts'80]

[Chudak & Hochbaum'99]

[Correa & Schulz'04]

Theorem

Problem 1 $|prec| \sum_{j} w_{j}C_{j}$ is a special case of MINIMUM WEIGHTED VERTEX COVER.

• Obtained by studying several IP-formulations of $1 |\text{prec}| \sum_{i} w_i C_i$.

[Potts'80]

[Chudak & Hochbaum'99]

[Correa & Schulz'04]

[Ambühl & Mastrolilli'06]

Given: Graph G(V, E). **Find:** Coloring of *V* s.t. no $e \in E$ is "monochromatic".

Given: Graph G(V, E). **Find:** Coloring of *V* s.t. no $e \in E$ is "monochromatic".

Given: Graph G(V, E). **Find:** Coloring of *V* s.t. no $e \in E$ is "monochromatic".

Given: Graph G(V, E). **Find:** Coloring of *V* s.t. no $e \in E$ is "monochromatic".

[HOCHBAUM'83] The **heaviest color** weighs at least $\frac{W}{k}$ (average weight).

Given: Graph G(V, E). **Find:** Coloring of *V* s.t. no $e \in E$ is "monochromatic".

[HOCHBAUM'83]

The **heaviest color** weighs at least $\frac{W}{k}$ (average weight).

Define VC by taking the complement.

Given: Graph G(V, E). **Find:** Coloring of *V* s.t. no $e \in E$ is "monochromatic".

[Носнваим'83]

The **heaviest color** weighs at least $\frac{W}{k}$ (average weight).

Define VC by taking the complement.

$$\frac{\operatorname{val}(A)}{OPT} \leq \frac{W - W/k}{W/2} \leq \left(2 - \frac{2}{k}\right)$$

$$k = 5, t = 2$$

[THIS APPROACH]
The **heaviest color** weighs at
least
$$\frac{t \cdot W}{k}$$
 (average weight).

Fractional Coloring: color each vertex *t* times using a *k*-palette, s.t. *k*/*t* is minimized.

[THIS APPROACH] The **heaviest color** weighs at *t* · W

least $\frac{t \cdot W}{k}$ (average weight).

Define VC by taking the complement.

$$k = 5, t = 2$$

Fractional Coloring: color each vertex *t* times using a *k*-palette, s.t. *k*/*t* is minimized.

$$k = 5, t = 2$$

[THIS APPROACH]

The **heaviest color** weighs at least $\frac{t \cdot W}{k}$ (average weight).

Define VC by taking the complement.

$$rac{ ext{val}(A)}{OPT} \leq rac{W-t\cdot W/k}{W/2} \leq \left(2-rac{2}{k/t}
ight)$$
Here: $rac{6}{5}$

Fractional Coloring: color each vertex *t* times using a *k*-palette, s.t. *k*/*t* is minimized.

[THIS APPROACH]

The **heaviest color** weighs at least $\frac{t \cdot W}{k}$ (average weight).

Define VC by taking the complement.

$$rac{\operatorname{val}(A)}{OPT} \leq rac{W-t\cdot W/k}{W/2} \leq \left(2-rac{2}{k/t}
ight)$$

Here: $\frac{6}{5}$ Using coloring [HOCHBAUM'83]: $\left(2-\frac{2}{3}\right)=\frac{4}{3}$

The algorithmic framework - Dimension Theory

Definition

A *t*-realizer of a poset **P** is a set of *t* linear extensions of **P** s.t. any (ordered) incomparable pair is reversed in at least 1 linear extension .

Definition	[DUSHNIK & MILLER, 1941]	
The	dimension of a poset P is the smallest <i>t</i>	such that
there exists a	t-realizer of P.	J

The algorithmic framework - Dimension Theory

Definition

A <u>k</u>:t-realizer of a poset **P** is a set of t linear extensions of **P** s.t. any (ordered) incomparable pair is reversed in at least k linear extensions.

Definition

[BRIGHTWELL & SCHEINERMAN'92]

The fractional dimension of a poset **P** is the smallest t/k such that there exists a *k*:*t*-realizer of *P*.

The algorithmic framework - Graph Structure

Scheduling Instance

The algorithmic framework - Graph Structure

- A vertex for each (ordered) pair of incomparable jobs.
- Intuitively: If $(a, d) \in VC$ then job *a* is scheduled before job *d*.

The algorithmic framework - Graph Structure

Scheduling Instance

• Edge type (1): Either schedule *a* before *d* or *d* before *a*.

Scheduling Instance

• Edge type (2): Schedule *c* before *a* or *a* before *d* to avoid cycles of this type.

Scheduling Instance

• Edge type (3): Schedule *c* before *b* or *a* before *d* to avoid cycles of this type.

Scheduling Instance

• The green nodes represent an optimal vertex cover with value 3+6+8+4=21 (variable part).

Observe that any linear extension L defines a vertex cover of the graph. [L = (a, b, c, d) defines this vertex cover.]

- Observe that any linear extension L defines a vertex cover of the graph. [L = (a, b, c, d) defines this vertex cover.]
- Pairs that are reversed in *L* form an independent set in *G_P*.

Posets & (Hyper)graph of incomparable pairs

In Dimension theory the following Hypergraph $H_{\mathbf{P}}$ is well-known:

Vertices: (Ordered) Incomparable pairs

Hyperedges: (Minimal) Subsets of incomparable pairs that no linear extension can reverse simultaneously.

Dimension & Coloring	
$\chi(H_{\mathbf{P}}) = \dim(\mathbf{P})$	[Felsner & Trotter'00]
$\chi_f(H_{\mathbf{P}}) = \operatorname{fdim}(\mathbf{P})$	[Brightwell & Scheinermann'92]

Posets & (Hyper)graph of incomparable pairs

In Dimension theory the following Hypergraph H_P is well-known:

Vertices: (Ordered) Incomparable pairs

Hyperedges: (Minimal) Subsets of incomparable pairs that no linear extension can reverse simultaneously.

Dimension & Coloring	
$\chi(H_{\mathbf{P}}) = \dim(\mathbf{P})$	[Felsner & Trotter'00]
$\chi_f(H_{\mathbf{P}}) = \operatorname{fdim}(\mathbf{P})$	[Brightwell & Scheinermann'92]

[AMBÜHL ET AL.'06] observed that the underlying graph (hyperedges of cardinality two) and the graph of [CORREA & SCHULZ'04] coincide.

The Approximability of the Fractional Dimension

Corrolary

If we have a "small" realizer, we have a "good" coloring of the Hypergraph \Rightarrow good approximation for 1 |prec| $\sum_{j} w_{j}C_{j}$.

Theorem

[Jain & Hegde'06]

It is hard to approximate the (fractional) dimension of a poset with *n* elements within a factor $n^{0.5-\varepsilon}$ for any $\varepsilon > 0$.

The Approximability of the Fractional Dimension

Corrolary

If we have a "small" realizer, we have a "good" coloring of the Hypergraph \Rightarrow good approximation for 1 |prec| $\sum_{j} w_{j}C_{j}$.

Theorem

[Jain & Hegde'06]

It is hard to approximate the (fractional) dimension of a poset with *n* elements within a factor $n^{0.5-\varepsilon}$ for any $\varepsilon > 0$.

The Approximability of the Fractional Dimension

Corrolary

If we have a "small" realizer, we have a "good" coloring of the Hypergraph \Rightarrow good approximation for 1 |prec| $\sum_{j} w_{j}C_{j}$.

Theorem

[Jain & Hegde'06]

It is hard to approximate the (fractional) dimension of a poset with *n* elements within a factor $n^{0.5-\varepsilon}$ for any $\varepsilon > 0$.

However for several interesting posets we can do better...

Using coloring:

Prec. Constr.	Other approaches	This approach
2-dimensional	3/2 [Correa & Schulz'04]	1
semi-orders	pprox 1.618 [Woeginger'03]	4/3
convex bipartite	pprox 1.618 [Woeginger'03]	4/3
interval-orders	pprox 1.618 [Woeginger'03]	2
interval dimension 2	2	2
Bounded degree d	2	2

Using coloring:

Prec. Constr.	Other approaches	This approach
2-dimensional	3/2 [Correa & Schulz'04]	1
semi-orders	pprox 1.618 [Woeginger'03]	4/3
convex bipartite	pprox 1.618 [Woeginger'03]	4/3
interval-orders	pprox 1.618 [Woeginger'03]	2
interval dimension 2	2	2
Bounded degree d	2	2

For remaining classes, use

- fractional coloring
- randomization

Using coloring:

Prec. Constr.	Other approaches	This approach
2-dimensional	3/2 [Correa & Schulz'04]	1
semi-orders	pprox 1.618 [Woeginger'03]	4/3
convex bipartite	pprox 1.618 [Woeginger'03]	4/3
interval-orders	pprox 1.618 [Woeginger'03]	2
interval dimension 2	2	2
Bounded degree d	2	2

For remaining classes, use

- fractional coloring
- randomization

Using fractional coloring:

Prec. Constr.	Other approaches	This approach
2-dimensional	3/2 [Correa & Schulz'04]	1
semi-orders	pprox 1.618 [Woeginger'03]	4/3
convex bipartite	pprox 1.618 [Woeginger'03]	4/3
interval-orders	pprox 1.618 [Woeginger'03]	1.5
interval dimension 2	2	1.75
Bounded degree d	2	$2 - \frac{2}{d+1}$

For remaining classes, use

- fractional coloring
- randomization

Example - Interval Orders

- Interval orders is a well studied class of posets [FISHBURN'85]
- [WOEGINGER'03] showed that 1|prec| $\sum_{j} w_{j}C_{j}$ with interval order precedence constraints has a (\approx 1.61803)-approximation.

Interval Orders

A poset is an interval order if it can be represented by intervals such that $(a, b) \in P$ iff *a*'s interval is completely before *b*'s.

Interval orders can be recognized in $O(n^2)$

Partition the set of jobs into 2 sets (blue and red)

There are 2^n partitions

scheduled before red jobs (if incomparable).

- Consider these $t = 2^n$ linear extensions
- Observe that there are k = 2ⁿ⁻² linear extensions where any inc. pair (a, b) is reversed: (a, b): yes, (a, b): no, (a, b): maybe, (a, b): maybe.
- This set of $t = 2^n$ linear extensions is a *k*:*t*-realizer (t/k = 4)

$$\alpha = \left(2 - \frac{2}{t/k}\right) = 2 - \frac{2}{4} = 1.5$$

For any (blue,red)-partition there is an *L* where blue jobs are scheduled before red jobs (if incomparable).

- Consider these $t = 2^n$ linear extensions
- Observe that there are k = 2ⁿ⁻² linear extensions where any inc. pair (a, b) is reversed: (a, b): yes, (a, b): no, (a, b): maybe, (a, b): maybe.
- This set of $t = 2^n$ linear extensions is a *k*:*t*-realizer (t/k = 4)

$$\alpha = \left(2 - \frac{2}{t/k}\right) = 2 - \frac{2}{4} = 1.5$$

For any (blue,red)-partition there is an *L* where blue jobs are scheduled before red jobs (if incomparable).

- Consider these $t = 2^n$ linear extensions
- Observe that there are k = 2ⁿ⁻² linear extensions where any inc. pair (a, b) is reversed: (a, b): yes, (a, b): no, (a, b): maybe, (a, b): maybe.
- This set of $t = 2^n$ linear extensions is a *k*:*t*-realizer (t/k = 4)

$$\alpha = \left(2 - \frac{2}{t/k}\right) = 2 - \frac{2}{4} = 1.5$$

For any (blue,red)-partition there is an *L* where blue jobs are scheduled before red jobs (if incomparable).

- Consider these $t = 2^n$ linear extensions
- Observe that there are $k = 2^{n-2}$ linear extensions where any inc. pair (a, b) is reversed: (a, b): **yes**, (a, b): **no**, (a, b): **maybe**, (a, b): **maybe**.
- This set of $t = 2^n$ linear extensions is a k:t-realizer (t/k = 4)

$$\alpha = \left(2 - \frac{2}{t/k}\right) = 2 - \frac{2}{4} = 1.5$$

Solution

Randomization: we only need to **sample** a good extension efficiently.

Solution

Randomization: we only need to **sample** a good extension efficiently.

Note: Randomization is merely a "detour"

Method of Conditional Probabilities

 \Rightarrow deterministic 1.5-approximation algorithm.

The algorithmic Framework - Applications

The algorithmic Framework - Applications

Prec. Constr.	Other approaches	This approach
2-dimensional	3/2 [Correa & Schulz'04]	1
semi-orders	pprox 1.618 [Woeginger'03]	4/3
convex bipartite	pprox 1.618 [Woeginger'03]	4/3
interval-orders	pprox 1.618 [Woeginger'03]	1.5
interval dimension 2	2	1.75
Bounded degree d	2	$2 - \frac{2}{d+1}$

- Scheduling problem \rightarrow weighted vertex cover on G_P (+ a fixed cost)
 - Adds more structure to the problem
 - 2-approximates the variable part!
 - Suggests a unified way of constructing the currently best-known approximation ratios for all considered posets.
- We did not improve the approximation ratio for the general case
 No better than 2-approximation, assuming variant of UGC

[BANSAL & KHOT'09]

- How good is SDP (...for special cases)?
- A better understanding of the graph (e.g. when is it perfect?)

- Scheduling problem \rightarrow weighted vertex cover on G_P (+ a fixed cost)
 - Adds more structure to the problem
 - 2-approximates the variable part!
 - Suggests a unified way of constructing the currently best-known approximation ratios for all considered posets.
- We did not improve the approximation ratio for the general case
 - No better than 2-approximation, assuming variant of UGC

[BANSAL & KHOT'09]

- How good is SDP (...for special cases)?
- A better understanding of the graph (e.g. when is it perfect?)

• Hypergraph of incomparable pairs has nice properties:

- Independent Set \doteq Maximum Acyclic Subgraph
- 1 |prec| ∑_j w_jC_j can be seen as Feedback Arc Set with "specially structured" weights.
- "Special structure" \Rightarrow all hyperedges > 2 can be ignored!
- Hypothesis: Other ordering problems lie in between.
- Work in Progress: Rank Aggregation (with triangle inequality) = ignore hyperedges > 3

Thank you for your attention!

