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Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to. . .

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm (ρ ≥ 1) satisfies:
it runs in polynomial time
it produces a feasible solution A
val(A) ≤ ρ ·OPT .

Research in Approximation is two-fold
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A simple scheduling problem (1||
∑

j wjCj)

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

Theorem [SMITH’56]

Ordering non-increasingly according to
ρ := w/p is optimal.
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Motivation & Results

Hard problem

We don’t know of a better than 2-approximation algorithm for the
general case.

Impose restrictions on. . .
weights / proc. times

Severe restrictions on w
and p do not affect
approximability [Woeginger’03]

⇒

precedence constraints

Dimension theory of partial orders
provides a well established
characterization of precedence
constraints [Trotter’92]

General framework

Yields a (2− 2/f )-approximation algorithm whenever the fractional
dimension of the poset is ≤ f . (interval orders, bounded degree, . . . )
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The algorithmic framework - VC & coloring

Given: Graph G(V ,E).
Find: Coloring of V s.t. no e ∈ E
is “monochromatic”.
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W
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Fractional Coloring: color each
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The algorithmic framework - Dimension Theory
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Poset P Extension Lin. Ext. Realizer

Definition
A

k :

t-realizer of a poset P is a set of t linear extensions of P s.t. any
(ordered) incomparable pair is reversed in at least 1 linear extension

s

.

Definition [DUSHNIK & MILLER, 1941]

The

fractional

dimension of a poset P is the smallest t
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such that
there exists a

k :

t-realizer of P.



The algorithmic framework - Dimension Theory
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L1 L2

Poset P Extension Lin. Ext. Realizer

Definition
A k :t-realizer of a poset P is a set of t linear extensions of P s.t. any
(ordered) incomparable pair is reversed in at least k linear extensions.

Definition [BRIGHTWELL & SCHEINERMAN’92]

The fractional dimension of a poset P is the smallest t/k such that
there exists a k :t-realizer of P.
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Scheduling Instance

jb 3

ja 5

jd 2

jc 1



The algorithmic framework - Graph Structure

8

6

Scheduling Instance

jb 3

ja 5

jd 2

jc 1

da ad cb bc

ca ac

db bd

10

15 3

9 4

6

pd · wa

A vertex for each (ordered) pair of incomparable jobs.
Intuitively: If (a,d) ∈ VC then job a is scheduled before job d .
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Edge type (1): Either schedule a before d or d before a.
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Edge type (2): Schedule c before a or a before d to avoid cycles
of this type.
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The algorithmic framework - Graph Structure
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ad bc

ac

bd

6

3

4

Corresponding Graph GP

8

The green nodes represent an optimal vertex cover with value
3 + 6 + 8 + 4 = 21 (variable part).
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Observe that any linear extension L defines a vertex cover of the
graph. [L = (a,b, c,d) defines this vertex cover.]



The algorithmic framework - Graph Structure
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Scheduling Instance

jb 3

ja 5

jd 2

jc 1

da ad cb bc

ca ac

db bd

10

15 3

9 4

6

ad bc

ac

bd

6

3

4

Corresponding Graph GP

8

Observe that any linear extension L defines a vertex cover of the
graph. [L = (a,b, c,d) defines this vertex cover.]
Pairs that are reversed in L form an independent set in GP .



Posets & (Hyper)graph of incomparable pairs

In Dimension theory the following Hypergraph HP is well-known:
Vertices: (Ordered) Incomparable pairs

Hyperedges: (Minimal) Subsets of incomparable pairs that no linear
extension can reverse simultaneously.

Dimension & Coloring

χ(HP) = dim(P) [FELSNER & TROTTER’00]
χf (HP) = fdim(P) [BRIGHTWELL & SCHEINERMANN’92]

[AMBÜHL ET AL.’06] observed that the underlying graph (hyperedges
of cardinality two) and the graph of [CORREA & SCHULZ’04]
coincide.
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The Approximability of the Fractional Dimension

Corrolary

If we have a “small” realizer, we have a “good” coloring of the
Hypergraph⇒ good approximation for 1|prec|

∑
j wjCj .

Theorem [Jain & Hegde’06]

It is hard to approximate the (fractional) dimension of a poset with n
elements within a factor n0.5−ε for any ε > 0.

However for several interesting posets we can do better. . .
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Scheduling & Coloring - Applications

Using coloring:

Prec. Constr. Other approaches This approach
2-dimensional 3/2 [CORREA & SCHULZ’04] 1
semi-orders ≈ 1.618 [WOEGINGER’03] 4/3

convex bipartite ≈ 1.618 [WOEGINGER’03] 4/3
interval-orders ≈ 1.618 [WOEGINGER’03] 2

interval dimension 2 2 2
Bounded degree d 2 2

For remaining classes, use
fractional coloring
randomization
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Scheduling & Coloring - Applications

Using fractional coloring:

Prec. Constr. Other approaches This approach
2-dimensional 3/2 [CORREA & SCHULZ’04] 1
semi-orders ≈ 1.618 [WOEGINGER’03] 4/3

convex bipartite ≈ 1.618 [WOEGINGER’03] 4/3
interval-orders ≈ 1.618 [WOEGINGER’03] 1.5

interval dimension 2 2 1.75
Bounded degree d 2 2− 2

d+1

For remaining classes, use
fractional coloring
randomization



Example - Interval Orders

Interval orders is a well studied class of posets [FISHBURN’85]

[WOEGINGER’03] showed that 1|prec|
∑

j wjCj with interval order
precedence constraints has a (≈ 1.61803)-approximation.

Interval Orders
A poset is an interval order if it can be represented by intervals such
that (a,b) ∈ P iff a’s interval is completely before b’s.

=̂

Interval orders can be recognized in O(n2)
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2 sets (blue and red)

There are 2n partitions
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Lemma [RABINOVITCH’78]

For any (blue,red)-partition there is an L where blue jobs are
scheduled before red jobs (if incomparable).

Consider these t = 2n linear extensions
Observe that there are k = 2n−2 linear extensions where any inc.
pair (a,b) is reversed: (a,b): yes, (a,b): no, (a,b): maybe,
(a,b): maybe.
This set of t = 2n linear extensions is a k :t-realizer (t/k = 4)

α =

(
2− 2

t/k

)
= 2− 2

4
= 1.5
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Problem
k :t-Realizer is of exponential size (2n).

Solution
Randomization: we only need to sample a good extension efficiently.

Note: Randomization is merely a “detour”

Method of Conditional Probabilities
⇒ deterministic 1.5-approximation algorithm.
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Summary

Scheduling problem→ weighted vertex cover on GP (+ a fixed
cost)

Adds more structure to the problem

2-approximates the variable part!

Suggests a unified way of constructing the currently best-known
approximation ratios for all considered posets.

We did not improve the approximation ratio for the general case
No better than 2-approximation, assuming variant of UGC

[BANSAL & KHOT’09]

How good is SDP (...for special cases)?
A better understanding of the graph (e.g. when is it perfect?)
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Outlook

Hypergraph of incomparable pairs has nice properties:
Vertex Cover =̂ Feedback Arc Set
Independent Set =̂ Maximum Acyclic Subgraph

1|prec|
∑

j wjCj can be seen as Feedback Arc Set with “specially
structured” weights.
“Special structure”⇒ all hyperedges > 2 can be ignored!
Hypothesis: Other ordering problems lie in between.
Work in Progress: Rank Aggregation (with triangle inequality) =̂
ignore hyperedges > 3



Thank you for your attention!


