
Scheduling with Precedence Constraints of
Low Fractional Dimension

Nikos Mutsanas (nikos@idsia.ch)

joint work with

Christoph Ambühl Monaldo Mastrolilli Ola Svensson

Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA)
Manno, Switzerland

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to. . .

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm (ρ ≥ 1) satisfies:
it runs in polynomial time
it produces a feasible solution A
val(A) ≤ ρ ·OPT .

Research in Approximation is two-fold

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to. . .

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm (ρ ≥ 1) satisfies:
it runs in polynomial time
it produces a feasible solution A
val(A) ≤ ρ ·OPT .

E.g: 2-approximation for Vertex Cover: covers the graph with at most
twice as many vertices as necessary.

Research in Approximation is two-fold

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to. . .

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm (ρ ≥ 1) satisfies:
it runs in polynomial time
it produces a feasible solution A
val(A) ≤ ρ ·OPT .

Research in Approximation is two-fold

OPT0

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to. . .

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm (ρ ≥ 1) satisfies:
it runs in polynomial time
it produces a feasible solution A
val(A) ≤ ρ ·OPT .

Research in Approximation is two-fold

2 ·OPTOPT0

?

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to. . .

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm (ρ ≥ 1) satisfies:
it runs in polynomial time
it produces a feasible solution A
val(A) ≤ ρ ·OPT .

Research in Approximation is two-fold

?

2 ·OPT1.3 ·OPTOPT0

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to. . .

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm (ρ ≥ 1) satisfies:
it runs in polynomial time
it produces a feasible solution A
val(A) ≤ ρ ·OPT .

Research in Approximation is two-fold

1.3 ·OPTOPT 1.9 ·OPT0

improve

approx.?

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to. . .

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm (ρ ≥ 1) satisfies:
it runs in polynomial time
it produces a feasible solution A
val(A) ≤ ρ ·OPT .

Research in Approximation is two-fold

?

OPT 1.9 ·OPT1.4 ·OPT

improve

inapprox.

0

improve

approx.

Approximation Algorithms

Many practical problems are unlikely to be solvable efficiently.
The necessity to solve them somehow leads to. . .

Approximation Algorithm (for Minimization Problem)

A ρ-approximation algorithm (ρ ≥ 1) satisfies:
it runs in polynomial time
it produces a feasible solution A
val(A) ≤ ρ ·OPT .

Research in Approximation is two-fold

?

OPT

best possible approximation in poly. time

1.9 ·OPT1.4 ·OPT

improve

inapprox.

0

improve

approx.

A simple scheduling problem (1||
∑

j wjCj)

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

Theorem [SMITH’56]

Ordering non-increasingly according to
ρ := w/p is optimal.

A simple scheduling problem (1||
∑

j wjCj)

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3

j3 2

j4 1

Instance

Theorem [SMITH’56]

Ordering non-increasingly according to
ρ := w/p is optimal.

A simple scheduling problem (1||
∑

j wjCj)

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3

j3 2

j4 1

0 1 2 3 4 5 6 7 8 9 10 11 12Instance

Theorem [SMITH’56]

Ordering non-increasingly according to
ρ := w/p is optimal.

A simple scheduling problem (1||
∑

j wjCj)

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3

j3 2

j4 1

j2 5j1 3 j3 2 j4 1

0 1 2 3 4 5 6 7 8 9 10 11 124 7 9 12

π1

Instance

Theorem [SMITH’56]

Ordering non-increasingly according to
ρ := w/p is optimal.

A simple scheduling problem (1||
∑

j wjCj)

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3

j3 2

j4 1

j2 5j1 3 j3 2 j4 1

0 1 2 3 4 5 6 7 8 9 10 11 124 7 9 12

π1

val(π1) = 3 · 4 + 5 · 7 + 2 · 9 + 1 · 12 = 77

Instance

Theorem [SMITH’56]

Ordering non-increasingly according to
ρ := w/p is optimal.

A simple scheduling problem (1||
∑

j wjCj)

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3

j3 2

j4 1

j2 5j1 3 j3 2 j4 1

0 1 2 3 4 5 6 7 8 9 10 11 12

π1 val(π1) = 77

j2 5 j1 3 j3 2 j4 1
π2 val(π2) = 66

val(π2) = 5 · 3 + 3 · 7 + 2 · 9 + 1 · 12 = 66

3 7 9 12Instance

Theorem [SMITH’56]

Ordering non-increasingly according to
ρ := w/p is optimal.

A simple scheduling problem (1||
∑

j wjCj)

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3

j3 2

j4 1

j2 5j1 3 j3 2 j4 1

0 1 2 3 4 5 6 7 8 9 10 11 12

π1 val(π1) = 77

j2 5 j1 3 j3 2 j4 1
π2 val(π2) = 66

j2 5 j1 3j3 2 j4 1π∗ OPT = 63

3 5 9 12Instance

Theorem [SMITH’56]

Ordering non-increasingly according to
ρ := w/p is optimal.

A simple scheduling problem (1||
∑

j wjCj)

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

0 1 2 3 4 5 6 7 8 9 10 11 12

j2 5

j1 3

j3 2

j4 1

j2 5 j1 3j3 2 j4 1π∗ OPT = 63

3 5 9 12

ρ1 =
3
4

ρ2 =
5
3

ρ3 =
2
2

ρ4 =
1
3

Instance

Theorem [SMITH’56]

Ordering non-increasingly according to
ρ := w/p is optimal.

Definition 1|prec|
∑

j wjCj

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

Definition 1|prec|
∑

j wjCj

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3 j3 2

j4 1

Instance

Definition 1|prec|
∑

j wjCj

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3 j3 2

j4 1

0 1 2 3 4 5 6 7 8 9 10 11 12Instance

Definition 1|prec|
∑

j wjCj

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3 j3 2

j4 1

j2 5 j1 3j3 2 j4 1

0 1 2 3 4 5 6 7 8 9 10 11 12

π1 63

Instance

Definition 1|prec|
∑

j wjCj

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3 j3 2

j4 1

j2 5 j1 3j3 2 j4 1

0 1 2 3 4 5 6 7 8 9 10 11 12

π1 63

Instance 3 5 9 12

Definition 1|prec|
∑

j wjCj

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3 j3 2

j4 1

j2 5 j1 3j3 2 j4 1

0 1 2 3 4 5 6 7 8 9 10 11 12

π1 63

j2 5 j1 3 j3 2j4 1
π2

Instance

75

3 6 10 12

Definition 1|prec|
∑

j wjCj

Given: 1 machine and n jobs, each with pi ,wi .
Find: An ordering of the jobs, such that

∑
i wiCi is minimized.

j2 5

j1 3 j3 2

j4 1

j2 5 j1 3j3 2 j4 1

0 1 2 3 4 5 6 7 8 9 10 11 12

π1 63

j2 5 j1 3 j3 2j4 1
π2

j2 5 j1 3 j3 2j4 1π∗ 70

Instance

75

3 10 127

History & Literature

1 Extensively studied:
The general version is strongly NP-hard
[Lawler’78], [Lenstra & Rinnooy-Kan’78]

Several 2-approximation algorithms
[Schulz’96], [Hall,Schulz, Shmoys & Wein’97], [Chudak & Hochbaum’97], [Chekuri &

Motwani’99], [Margot, Queyranne & Wang’03], [Pisaruk’03]

Better than 2-approximation for special precedence constraints
[Woeginger’03], [Kolliopoulos & Steiner’02], [Correa & Schulz’04], [Ambühl, Mastrolilli

& Svensson’06], [Ambühl, Mastrolilli, Mutsanas & Svensson’07]

Special cases of precedence constraints are solvable in poly-time
[Lawler’78], [Möhring’89], [Goemans & Williamson’00], [Ambühl & Mastrolilli’06]

It is a vertex cover problem [Correa & Schulz’04], [Ambühl & Mastrolilli’06]

2 Inapproximability results
No PTAS. Variable part as hard as vertex cover
[Ambühl, Mastrolilli & Svensson’07]

Closing the approximability gap is a prominent open problem
Open Problem 9 in [Schuurman & Woeginger’99]

Not better than 2, assuming variant of UGC
[Bansal & Khot ’09]

History & Literature

1 Extensively studied:
The general version is strongly NP-hard
[Lawler’78], [Lenstra & Rinnooy-Kan’78]

Several 2-approximation algorithms
[Schulz’96], [Hall,Schulz, Shmoys & Wein’97], [Chudak & Hochbaum’97], [Chekuri &

Motwani’99], [Margot, Queyranne & Wang’03], [Pisaruk’03]

Better than 2-approximation for special precedence constraints
[Woeginger’03], [Kolliopoulos & Steiner’02], [Correa & Schulz’04], [Ambühl, Mastrolilli

& Svensson’06], [Ambühl, Mastrolilli, Mutsanas & Svensson’07]

Special cases of precedence constraints are solvable in poly-time
[Lawler’78], [Möhring’89], [Goemans & Williamson’00], [Ambühl & Mastrolilli’06]

It is a vertex cover problem [Correa & Schulz’04], [Ambühl & Mastrolilli’06]

2 Inapproximability results
No PTAS. Variable part as hard as vertex cover
[Ambühl, Mastrolilli & Svensson’07]

Closing the approximability gap is a prominent open problem
Open Problem 9 in [Schuurman & Woeginger’99]

Not better than 2, assuming variant of UGC
[Bansal & Khot ’09]

History & Literature

1 Extensively studied:
The general version is strongly NP-hard
[Lawler’78], [Lenstra & Rinnooy-Kan’78]

Several 2-approximation algorithms
[Schulz’96], [Hall,Schulz, Shmoys & Wein’97], [Chudak & Hochbaum’97], [Chekuri &

Motwani’99], [Margot, Queyranne & Wang’03], [Pisaruk’03]

Better than 2-approximation for special precedence constraints
[Woeginger’03], [Kolliopoulos & Steiner’02], [Correa & Schulz’04], [Ambühl, Mastrolilli

& Svensson’06], [Ambühl, Mastrolilli, Mutsanas & Svensson’07]

Special cases of precedence constraints are solvable in poly-time
[Lawler’78], [Möhring’89], [Goemans & Williamson’00], [Ambühl & Mastrolilli’06]

It is a vertex cover problem [Correa & Schulz’04], [Ambühl & Mastrolilli’06]

2 Inapproximability results
No PTAS. Variable part as hard as vertex cover
[Ambühl, Mastrolilli & Svensson’07]

Closing the approximability gap is a prominent open problem
Open Problem 9 in [Schuurman & Woeginger’99]

Not better than 2, assuming variant of UGC
[Bansal & Khot ’09]

Motivation & Results

Hard problem

We don’t know of a better than 2-approximation algorithm for the
general case.

Impose restrictions on. . .
weights / proc. times

Severe restrictions on w
and p do not affect
approximability [Woeginger’03]

⇒

precedence constraints

Dimension theory of partial orders
provides a well established
characterization of precedence
constraints [Trotter’92]

General framework

Yields a (2− 2/f)-approximation algorithm whenever the fractional
dimension of the poset is ≤ f . (interval orders, bounded degree, . . .)

Motivation & Results

Hard problem

We don’t know of a better than 2-approximation algorithm for the
general case.

Impose restrictions on. . .
weights / proc. times

Severe restrictions on w
and p do not affect
approximability [Woeginger’03]

⇒

precedence constraints

Dimension theory of partial orders
provides a well established
characterization of precedence
constraints [Trotter’92]

General framework

Yields a (2− 2/f)-approximation algorithm whenever the fractional
dimension of the poset is ≤ f . (interval orders, bounded degree, . . .)

Motivation & Results

Hard problem

We don’t know of a better than 2-approximation algorithm for the
general case.

Impose restrictions on. . .
weights / proc. times

Severe restrictions on w
and p do not affect
approximability [Woeginger’03]

⇒

precedence constraints

Dimension theory of partial orders
provides a well established
characterization of precedence
constraints [Trotter’92]

General framework

Yields a (2− 2/f)-approximation algorithm whenever the fractional
dimension of the poset is ≤ f . (interval orders, bounded degree, . . .)

Motivation & Results

Hard problem

We don’t know of a better than 2-approximation algorithm for the
general case.

Impose restrictions on. . .
weights / proc. times

Severe restrictions on w
and p do not affect
approximability [Woeginger’03]

⇒

precedence constraints

Dimension theory of partial orders
provides a well established
characterization of precedence
constraints [Trotter’92]

General framework

Yields a (2− 2/f)-approximation algorithm whenever the fractional
dimension of the poset is ≤ f . (interval orders, bounded degree, . . .)

The algorithmic framework - Overview

fixed cost

variable cost Vertex Cover

instance

(2− 2
k/t
)-approx.

A

Indep.

Set

fractional coloring

(2− 2
k/t)-approx.

for

Scheduling

VC by

complem.

Sched. Instance

k :t-realizerStandard

preprocessing

Postprocessing

Dimension

Theory B

The algorithmic framework - Fixed cost

fixed cost

variable cost

Indep.

Set

fractional coloring

VC by

complem.

A

Sched. Instance

Vertex Cover

instance

Standard

preprocessing

k :t-realizer

Dimension

Theory B

(2− 2
k/t
)-approx.

(2− 2
k/t)-approx.

for

Scheduling

Postprocessing

The algorithmic framework - Fixed cost

val(L) =
∑

j

wjCj

=
∑

j

wjpj+
∑

(i,j)∈L

wjpi

=

own proc. time︷ ︸︸ ︷∑

j

wjpj +

poset︷ ︸︸ ︷∑

(i,j)∈P

wjpi

︸ ︷︷ ︸
fixed cost

+
∑

(i,j)∈L\P

wjpi

︸ ︷︷ ︸
variable cost

j2 5

j1 3 j3 2

j4 1

Instance

The algorithmic framework - Fixed cost

val(L) =
∑

j

wjCj =
∑

j

wjpj+
∑

(i,j)∈L

wjpi

=

own proc. time︷ ︸︸ ︷∑

j

wjpj +

poset︷ ︸︸ ︷∑

(i,j)∈P

wjpi

︸ ︷︷ ︸
fixed cost

+
∑

(i,j)∈L\P

wjpi

︸ ︷︷ ︸
variable cost

j2 5

j1 3 j3 2

j4 1

0 1 2 3 4 5 6 7 8

L

Instance

j2 5︸ ︷︷ ︸
≥p2

3

The algorithmic framework - Fixed cost

val(L) =
∑

j

wjCj =
∑

j

wjpj+
∑

(i,j)∈L

wjpi =

own proc. time︷ ︸︸ ︷∑

j

wjpj +

poset︷ ︸︸ ︷∑

(i,j)∈P

wjpi

︸ ︷︷ ︸
fixed cost

+
∑

(i,j)∈L\P

wjpi

︸ ︷︷ ︸
variable cost

j2 5

j1 3 j3 2

j4 1

j2 5 j1 3

0 1 2 3 4 5 6 7 8

L

Instance

︸ ︷︷ ︸
≥p2

73

The algorithmic framework - Fixed cost

val(L) =
∑

j

wjCj =
∑

j

wjpj+
∑

(i,j)∈L

wjpi =

own proc. time︷ ︸︸ ︷∑

j

wjpj +

poset︷ ︸︸ ︷∑

(i,j)∈P

wjpi

︸ ︷︷ ︸
fixed cost

+
∑

(i,j)∈L\P

wjpi

︸ ︷︷ ︸
variable cost

j2 5

j1 3 j3 2

j4 1

j2 5 j1 3

0 1 2 3 4 5 6 7 8

L

Instance

︸ ︷︷ ︸
≥p2

73

fixed cost: 34+15=49

The algorithmic framework - Sched. & Vertex Cover

variable cost Vertex Cover

instance
A

Indep.

Set

fractional coloring

VC by

complem.

fixed cost

Sched. Instance

Standard

preprocessing

k :t-realizer

Dimension

Theory B

(2− 2
k/t
)-approx.

(2− 2
k/t)-approx.

for

Scheduling

Postprocessing

The algorithmic framework - Sched. & Vertex Cover

Theorem

Problem 1|prec|
∑

j wjCj is a special case of MINIMUM WEIGHTED
VERTEX COVER.

Obtained by studying several IP-formulations of 1|prec|
∑

j wjCj .

The algorithmic framework - Sched. & Vertex Cover

Theorem

Problem 1|prec|
∑

j wjCj is a special case of MINIMUM WEIGHTED
VERTEX COVER.

Obtained by studying several IP-formulations of 1|prec|
∑

j wjCj .

[Potts’80]

Sched.

The algorithmic framework - Sched. & Vertex Cover

Theorem

Problem 1|prec|
∑

j wjCj is a special case of MINIMUM WEIGHTED
VERTEX COVER.

Obtained by studying several IP-formulations of 1|prec|
∑

j wjCj .

[Chudak & Hochbaum’99]

[Potts’80]

Sched.

The algorithmic framework - Sched. & Vertex Cover

Theorem

Problem 1|prec|
∑

j wjCj is a special case of MINIMUM WEIGHTED
VERTEX COVER.

Obtained by studying several IP-formulations of 1|prec|
∑

j wjCj .

[Correa & Schulz’04]

[Chudak & Hochbaum’99]

[Potts’80]

Sched.

The algorithmic framework - Sched. & Vertex Cover

Theorem

Problem 1|prec|
∑

j wjCj is a special case of MINIMUM WEIGHTED
VERTEX COVER.

Obtained by studying several IP-formulations of 1|prec|
∑

j wjCj .

Vertex Cov.

[Correa & Schulz’04]

[Chudak & Hochbaum’99]

[Potts’80]

Sched.

The algorithmic framework - Sched. & Vertex Cover

Theorem

Problem 1|prec|
∑

j wjCj is a special case of MINIMUM WEIGHTED
VERTEX COVER.

Obtained by studying several IP-formulations of 1|prec|
∑

j wjCj .

Vertex Cov.

[Correa & Schulz’04]

[Chudak & Hochbaum’99]

[Potts’80]

Sched.

The algorithmic framework - Sched. & Vertex Cover

Theorem

Problem 1|prec|
∑

j wjCj is a special case of MINIMUM WEIGHTED
VERTEX COVER.

Obtained by studying several IP-formulations of 1|prec|
∑

j wjCj .

Vertex Cov.

[Chudak & Hochbaum’99]

[Correa & Schulz’04]

[Potts’80]

Sched.

The algorithmic framework - Sched. & Vertex Cover

Theorem

Problem 1|prec|
∑

j wjCj is a special case of MINIMUM WEIGHTED
VERTEX COVER.

Obtained by studying several IP-formulations of 1|prec|
∑

j wjCj .

Vertex Cov.

[Chudak & Hochbaum’99]

[Correa & Schulz’04]

[Potts’80]

Sched.
?

The algorithmic framework - Sched. & Vertex Cover

Theorem

Problem 1|prec|
∑

j wjCj is a special case of MINIMUM WEIGHTED
VERTEX COVER.

Obtained by studying several IP-formulations of 1|prec|
∑

j wjCj .

Vertex Cov. [Potts’80]

[Chudak & Hochbaum’99]

[Correa & Schulz’04]

[Ambühl & Mastrolilli’06]

Sched.

The algorithmic framework - VC & coloring

Vertex Cover

instance

(2− 2
k/t
)-approx.

Indep.

Set

fractional coloring

VC by

complem.

variable cost A

Standard

preprocessingfixed cost

Sched. Instance

k :t-realizer

Dimension

Theory B

(2− 2
k/t)-approx.

for

Scheduling

Postprocessing

The algorithmic framework - VC & coloring

Given: Graph G(V ,E).
Find: Coloring of V s.t. no e ∈ E
is “monochromatic”.

[HOCHBAUM’83]
The heaviest color weighs at

least
W
k

(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W −W/k
W/2

≤
(

2− 2
k

)

The algorithmic framework - VC & coloring

Given: Graph G(V ,E).
Find: Coloring of V s.t. no e ∈ E
is “monochromatic”.

[HOCHBAUM’83]
The heaviest color weighs at

least
W
k

(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W −W/k
W/2

≤
(

2− 2
k

)

The algorithmic framework - VC & coloring

Given: Graph G(V ,E).
Find: Coloring of V s.t. no e ∈ E
is “monochromatic”.

[HOCHBAUM’83]
The heaviest color weighs at

least
W
k

(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W −W/k
W/2

≤
(

2− 2
k

)

The algorithmic framework - VC & coloring

Given: Graph G(V ,E).
Find: Coloring of V s.t. no e ∈ E
is “monochromatic”. [HOCHBAUM’83]

The heaviest color weighs at

least
W
k

(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W −W/k
W/2

≤
(

2− 2
k

)

The algorithmic framework - VC & coloring

Given: Graph G(V ,E).
Find: Coloring of V s.t. no e ∈ E
is “monochromatic”. [HOCHBAUM’83]

The heaviest color weighs at

least
W
k

(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W −W/k
W/2

≤
(

2− 2
k

)

The algorithmic framework - VC & coloring

Given: Graph G(V ,E).
Find: Coloring of V s.t. no e ∈ E
is “monochromatic”. [HOCHBAUM’83]

The heaviest color weighs at

least
W
k

(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W −W/k
W/2

≤
(

2− 2
k

)

The algorithmic framework - VC & fractional coloring

The algorithmic framework - VC & fractional coloring

Fractional Coloring: color each
vertex t times using a k -palette,
s.t. k/t is minimized.

k = 5, t = 2

[THIS APPROACH]
The heaviest color weighs at

least
t ·W

k
(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W − t ·W/k
W/2

≤
(

2− 2
k/t

)

Here:
6
5

Using coloring [HOCHBAUM’83]:(
2− 2

3

)
=

4
3

The algorithmic framework - VC & fractional coloring

Fractional Coloring: color each
vertex t times using a k -palette,
s.t. k/t is minimized.

k = 5, t = 2

[THIS APPROACH]
The heaviest color weighs at

least
t ·W

k
(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W − t ·W/k
W/2

≤
(

2− 2
k/t

)

Here:
6
5

Using coloring [HOCHBAUM’83]:(
2− 2

3

)
=

4
3

The algorithmic framework - VC & fractional coloring

Fractional Coloring: color each
vertex t times using a k -palette,
s.t. k/t is minimized.

k = 5, t = 2

[THIS APPROACH]
The heaviest color weighs at

least
t ·W

k
(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W − t ·W/k
W/2

≤
(

2− 2
k/t

)

Here:
6
5

Using coloring [HOCHBAUM’83]:(
2− 2

3

)
=

4
3

The algorithmic framework - VC & fractional coloring

Fractional Coloring: color each
vertex t times using a k -palette,
s.t. k/t is minimized.

k = 5, t = 2

[THIS APPROACH]
The heaviest color weighs at

least
t ·W

k
(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W − t ·W/k
W/2

≤
(

2− 2
k/t

)

Here:
6
5

Using coloring [HOCHBAUM’83]:(
2− 2

3

)
=

4
3

The algorithmic framework - VC & fractional coloring

Fractional Coloring: color each
vertex t times using a k -palette,
s.t. k/t is minimized.

k = 5, t = 2

[THIS APPROACH]
The heaviest color weighs at

least
t ·W

k
(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W − t ·W/k
W/2

≤
(

2− 2
k/t

)

Here:
6
5

Using coloring [HOCHBAUM’83]:(
2− 2

3

)
=

4
3

The algorithmic framework - VC & fractional coloring

Fractional Coloring: color each
vertex t times using a k -palette,
s.t. k/t is minimized.

k = 5, t = 2

[THIS APPROACH]
The heaviest color weighs at

least
t ·W

k
(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W − t ·W/k
W/2

≤
(

2− 2
k/t

)

Here:
6
5

Using coloring [HOCHBAUM’83]:(
2− 2

3

)
=

4
3

The algorithmic framework - VC & fractional coloring

Fractional Coloring: color each
vertex t times using a k -palette,
s.t. k/t is minimized.

k = 5, t = 2

[THIS APPROACH]
The heaviest color weighs at

least
t ·W

k
(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W − t ·W/k
W/2

≤
(

2− 2
k/t

)

Here:
6
5

Using coloring [HOCHBAUM’83]:(
2− 2

3

)
=

4
3

The algorithmic framework - VC & fractional coloring

Fractional Coloring: color each
vertex t times using a k -palette,
s.t. k/t is minimized.

k = 5, t = 2

[THIS APPROACH]
The heaviest color weighs at

least
t ·W

k
(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W − t ·W/k
W/2

≤
(

2− 2
k/t

)

Here:
6
5

Using coloring [HOCHBAUM’83]:(
2− 2

3

)
=

4
3

The algorithmic framework - VC & fractional coloring

Fractional Coloring: color each
vertex t times using a k -palette,
s.t. k/t is minimized.

k = 5, t = 2

[THIS APPROACH]
The heaviest color weighs at

least
t ·W

k
(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W − t ·W/k
W/2

≤
(

2− 2
k/t

)

Here:
6
5

Using coloring [HOCHBAUM’83]:(
2− 2

3

)
=

4
3

The algorithmic framework - VC & fractional coloring

Fractional Coloring: color each
vertex t times using a k -palette,
s.t. k/t is minimized.

k = 5, t = 2

[THIS APPROACH]
The heaviest color weighs at

least
t ·W

k
(average weight).

Define VC by taking the
complement.

val(A)
OPT

≤ W − t ·W/k
W/2

≤
(

2− 2
k/t

)

Here:
6
5

Using coloring [HOCHBAUM’83]:(
2− 2

3

)
=

4
3

The algorithmic framework - VC & fractional coloring

Vertex Cover

instance

(2− 2
k/t
)-approx.

Indep.

Set

fractional coloring

VC by

complem.

variable cost A

Standard

preprocessingfixed cost

Sched. Instance

k :t-realizer

Dimension

Theory B

(2− 2
k/t)-approx.

for

Scheduling

Postprocessing

The algorithmic framework - VC & fractional coloring

Vertex Cover

instance

(2− 2
k/t
)-approx.

Indep.

Set

fractional coloring

VC by

complem.

variable cost A

k :t-realizerStandard

preprocessing

Dimension

Theory B

fixed cost

Sched. Instance

(2− 2
k/t)-approx.

for

Scheduling

Postprocessing

The algorithmic framework - Dimension Theory

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

L1 L2

Poset P Extension Lin. Ext. Realizer

Definition
A

k :

t-realizer of a poset P is a set of t linear extensions of P s.t. any
(ordered) incomparable pair is reversed in at least 1 linear extension

s

.

Definition [DUSHNIK & MILLER, 1941]

The

fractional

dimension of a poset P is the smallest t

/k

such that
there exists a

k :

t-realizer of P.

The algorithmic framework - Dimension Theory

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

L1 L2

Poset P Extension Lin. Ext. Realizer

Definition
A k :t-realizer of a poset P is a set of t linear extensions of P s.t. any
(ordered) incomparable pair is reversed in at least k linear extensions.

Definition [BRIGHTWELL & SCHEINERMAN’92]

The fractional dimension of a poset P is the smallest t/k such that
there exists a k :t-realizer of P.

The algorithmic framework - Graph Structure

Scheduling Instance

jb 3

ja 5

jd 2

jc 1

The algorithmic framework - Graph Structure

8

6

Scheduling Instance

jb 3

ja 5

jd 2

jc 1

da ad cb bc

ca ac

db bd

10

15 3

9 4

6

pd · wa

A vertex for each (ordered) pair of incomparable jobs.
Intuitively: If (a,d) ∈ VC then job a is scheduled before job d .

The algorithmic framework - Graph Structure

8

6

Scheduling Instance

jb 3

ja 5

jd 2

jc 1

da ad cb bc

ca ac

db bd

10

15 3

9 4

6

Edge type (1): Either schedule a before d or d before a.

The algorithmic framework - Graph Structure

8

6

Scheduling Instance

jb 3

ja 5

jd 2

jc 1

da ad cb bc

ca ac

db bd

10

15 3

9 4

6

Edge type (2): Schedule c before a or a before d to avoid cycles
of this type.

The algorithmic framework - Graph Structure

8

6

Scheduling Instance

jb 3

ja 5

jd 2

jc 1

da ad cb bc

ca ac

db bd

10

15 3

9 4

6

Edge type (3): Schedule c before b or a before d to avoid cycles
of this type.

The algorithmic framework - Graph Structure

8

6

Scheduling Instance

jb 3

ja 5

jd 2

jc 1

da ad cb bc

ca ac

db bd

10

15 3

9 4

6

The algorithmic framework - Graph Structure

8

6

Scheduling Instance

jb 3

ja 5

jd 2

jc 1

da ad cb bc

ca ac

db bd

10

15 3

9 4

6

ad bc

ac

bd

6

3

4

Corresponding Graph GP

8

The green nodes represent an optimal vertex cover with value
3 + 6 + 8 + 4 = 21 (variable part).

The algorithmic framework - Graph Structure

8

6

Scheduling Instance

jb 3

ja 5

jd 2

jc 1

da ad cb bc

ca ac

db bd

10

15 3

9 4

6

ad bc

ac

bd

6

3

4

Corresponding Graph GP

8

Observe that any linear extension L defines a vertex cover of the
graph. [L = (a,b, c,d) defines this vertex cover.]

The algorithmic framework - Graph Structure

8

6

Scheduling Instance

jb 3

ja 5

jd 2

jc 1

da ad cb bc

ca ac

db bd

10

15 3

9 4

6

ad bc

ac

bd

6

3

4

Corresponding Graph GP

8

Observe that any linear extension L defines a vertex cover of the
graph. [L = (a,b, c,d) defines this vertex cover.]
Pairs that are reversed in L form an independent set in GP .

Posets & (Hyper)graph of incomparable pairs

In Dimension theory the following Hypergraph HP is well-known:
Vertices: (Ordered) Incomparable pairs

Hyperedges: (Minimal) Subsets of incomparable pairs that no linear
extension can reverse simultaneously.

Dimension & Coloring

χ(HP) = dim(P) [FELSNER & TROTTER’00]
χf (HP) = fdim(P) [BRIGHTWELL & SCHEINERMANN’92]

[AMBÜHL ET AL.’06] observed that the underlying graph (hyperedges
of cardinality two) and the graph of [CORREA & SCHULZ’04]
coincide.

Posets & (Hyper)graph of incomparable pairs

In Dimension theory the following Hypergraph HP is well-known:
Vertices: (Ordered) Incomparable pairs

Hyperedges: (Minimal) Subsets of incomparable pairs that no linear
extension can reverse simultaneously.

Dimension & Coloring

χ(HP) = dim(P) [FELSNER & TROTTER’00]
χf (HP) = fdim(P) [BRIGHTWELL & SCHEINERMANN’92]

[AMBÜHL ET AL.’06] observed that the underlying graph (hyperedges
of cardinality two) and the graph of [CORREA & SCHULZ’04]
coincide.

The Approximability of the Fractional Dimension

Corrolary

If we have a “small” realizer, we have a “good” coloring of the
Hypergraph⇒ good approximation for 1|prec|

∑
j wjCj .

Theorem [Jain & Hegde’06]

It is hard to approximate the (fractional) dimension of a poset with n
elements within a factor n0.5−ε for any ε > 0.

However for several interesting posets we can do better. . .

The Approximability of the Fractional Dimension

Corrolary

If we have a “small” realizer, we have a “good” coloring of the
Hypergraph⇒ good approximation for 1|prec|

∑
j wjCj .

Theorem [Jain & Hegde’06]

It is hard to approximate the (fractional) dimension of a poset with n
elements within a factor n0.5−ε for any ε > 0.

However for several interesting posets we can do better. . .

The Approximability of the Fractional Dimension

Corrolary

If we have a “small” realizer, we have a “good” coloring of the
Hypergraph⇒ good approximation for 1|prec|

∑
j wjCj .

Theorem [Jain & Hegde’06]

It is hard to approximate the (fractional) dimension of a poset with n
elements within a factor n0.5−ε for any ε > 0.

However for several interesting posets we can do better. . .

Scheduling & Coloring - Applications

Using coloring:

Prec. Constr. Other approaches This approach
2-dimensional 3/2 [CORREA & SCHULZ’04] 1
semi-orders ≈ 1.618 [WOEGINGER’03] 4/3

convex bipartite ≈ 1.618 [WOEGINGER’03] 4/3
interval-orders ≈ 1.618 [WOEGINGER’03] 2

interval dimension 2 2 2
Bounded degree d 2 2

For remaining classes, use
fractional coloring
randomization

Scheduling & Coloring - Applications

Using coloring:

Prec. Constr. Other approaches This approach
2-dimensional 3/2 [CORREA & SCHULZ’04] 1
semi-orders ≈ 1.618 [WOEGINGER’03] 4/3

convex bipartite ≈ 1.618 [WOEGINGER’03] 4/3
interval-orders ≈ 1.618 [WOEGINGER’03] 2

interval dimension 2 2 2
Bounded degree d 2 2

For remaining classes, use
fractional coloring
randomization

Scheduling & Coloring - Applications

Using coloring:

Prec. Constr. Other approaches This approach
2-dimensional 3/2 [CORREA & SCHULZ’04] 1
semi-orders ≈ 1.618 [WOEGINGER’03] 4/3

convex bipartite ≈ 1.618 [WOEGINGER’03] 4/3
interval-orders ≈ 1.618 [WOEGINGER’03] 2

interval dimension 2 2 2
Bounded degree d 2 2

For remaining classes, use
fractional coloring
randomization

Scheduling & Coloring - Applications

Using fractional coloring:

Prec. Constr. Other approaches This approach
2-dimensional 3/2 [CORREA & SCHULZ’04] 1
semi-orders ≈ 1.618 [WOEGINGER’03] 4/3

convex bipartite ≈ 1.618 [WOEGINGER’03] 4/3
interval-orders ≈ 1.618 [WOEGINGER’03] 1.5

interval dimension 2 2 1.75
Bounded degree d 2 2− 2

d+1

For remaining classes, use
fractional coloring
randomization

Example - Interval Orders

Interval orders is a well studied class of posets [FISHBURN’85]

[WOEGINGER’03] showed that 1|prec|
∑

j wjCj with interval order
precedence constraints has a (≈ 1.61803)-approximation.

Interval Orders
A poset is an interval order if it can be represented by intervals such
that (a,b) ∈ P iff a’s interval is completely before b’s.

=̂

Interval orders can be recognized in O(n2)

1.5-Approximation for Interval Orders

1.5-Approximation for Interval Orders

Partition the set of jobs into

2 sets (blue and red)

There are 2n partitions

1.5-Approximation for Interval Orders

Partition the set of jobs into

2 sets (blue and red)

There are 2n partitions

1 2
3

4

5

6
7

8
9

10

11
12

Lemma [RABINOVITCH’78]

For any (blue,red)-partition there is an L where blue jobs are
scheduled before red jobs (if incomparable).

Consider these t = 2n linear extensions
Observe that there are k = 2n−2 linear extensions where any inc.
pair (a,b) is reversed: (a,b): yes, (a,b): no, (a,b): maybe,
(a,b): maybe.
This set of t = 2n linear extensions is a k :t-realizer (t/k = 4)

α =

(
2− 2

t/k

)
= 2− 2

4
= 1.5

1.5-Approximation for Interval Orders

Partition the set of jobs into

2 sets (blue and red)

There are 2n partitions

1 2
3

4

5

6
7

8
9

10

11
12

Lemma [RABINOVITCH’78]

For any (blue,red)-partition there is an L where blue jobs are
scheduled before red jobs (if incomparable).

Consider these t = 2n linear extensions
Observe that there are k = 2n−2 linear extensions where any inc.
pair (a,b) is reversed: (a,b): yes, (a,b): no, (a,b): maybe,
(a,b): maybe.
This set of t = 2n linear extensions is a k :t-realizer (t/k = 4)

α =

(
2− 2

t/k

)
= 2− 2

4
= 1.5

1.5-Approximation for Interval Orders

Partition the set of jobs into

2 sets (blue and red)

There are 2n partitions

1 2
3

4

5

6
7

8
9

10

11
12

Lemma [RABINOVITCH’78]

For any (blue,red)-partition there is an L where blue jobs are
scheduled before red jobs (if incomparable).

Consider these t = 2n linear extensions
Observe that there are k = 2n−2 linear extensions where any inc.
pair (a,b) is reversed: (a,b): yes, (a,b): no, (a,b): maybe,
(a,b): maybe.
This set of t = 2n linear extensions is a k :t-realizer (t/k = 4)

α =

(
2− 2

t/k

)
= 2− 2

4
= 1.5

1.5-Approximation for Interval Orders

Partition the set of jobs into

2 sets (blue and red)

There are 2n partitions

1 2
3

4

5

6
7

8
9

10

11
12

Lemma [RABINOVITCH’78]

For any (blue,red)-partition there is an L where blue jobs are
scheduled before red jobs (if incomparable).

Consider these t = 2n linear extensions
Observe that there are k = 2n−2 linear extensions where any inc.
pair (a,b) is reversed: (a,b): yes, (a,b): no, (a,b): maybe,
(a,b): maybe.
This set of t = 2n linear extensions is a k :t-realizer (t/k = 4)

α =

(
2− 2

t/k

)
= 2− 2

4
= 1.5

1.5-Approximation for Interval Orders

Partition the set of jobs into

2 sets (blue and red)

There are 2n partitions

1 2
3

4

5

6
7

8
9

10

11
12

Problem
k :t-Realizer is of exponential size (2n).

Solution
Randomization: we only need to sample a good extension efficiently.

Note: Randomization is merely a “detour”

Method of Conditional Probabilities
⇒ deterministic 1.5-approximation algorithm.

1.5-Approximation for Interval Orders

P r [blue] = 1/2

Pick lin. ext. uniformly at

random by coloring randomly.

Problem
k :t-Realizer is of exponential size (2n).

Solution
Randomization: we only need to sample a good extension efficiently.

Note: Randomization is merely a “detour”

Method of Conditional Probabilities
⇒ deterministic 1.5-approximation algorithm.

1.5-Approximation for Interval Orders

P r [blue] = 1/2

Pick lin. ext. uniformly at

random by coloring randomly.

Problem
k :t-Realizer is of exponential size (2n).

Solution
Randomization: we only need to sample a good extension efficiently.

Note: Randomization is merely a “detour”

Method of Conditional Probabilities
⇒ deterministic 1.5-approximation algorithm.

The algorithmic Framework - Applications

fixed cost

variable cost Vertex Cover

instance

(2− 2
k/t
)-approx.

A

Indep.

Set

fractional coloring

(2− 2
k/t)-approx.

for

Scheduling

VC by

complem.

Sched. Instance

k :t-realizerStandard

preprocessing

Postprocessing

Dimension

Theory B

The algorithmic Framework - Applications

Prec. Constr. Other approaches This approach
2-dimensional 3/2 [CORREA & SCHULZ’04] 1
semi-orders ≈ 1.618 [WOEGINGER’03] 4/3

convex bipartite ≈ 1.618 [WOEGINGER’03] 4/3
interval-orders ≈ 1.618 [WOEGINGER’03] 1.5

interval dimension 2 2 1.75
Bounded degree d 2 2− 2

d+1

Summary

Scheduling problem→ weighted vertex cover on GP (+ a fixed
cost)

Adds more structure to the problem

2-approximates the variable part!

Suggests a unified way of constructing the currently best-known
approximation ratios for all considered posets.

We did not improve the approximation ratio for the general case
No better than 2-approximation, assuming variant of UGC

[BANSAL & KHOT’09]

How good is SDP (...for special cases)?
A better understanding of the graph (e.g. when is it perfect?)

Summary

Scheduling problem→ weighted vertex cover on GP (+ a fixed
cost)

Adds more structure to the problem

2-approximates the variable part!

Suggests a unified way of constructing the currently best-known
approximation ratios for all considered posets.

We did not improve the approximation ratio for the general case
No better than 2-approximation, assuming variant of UGC

[BANSAL & KHOT’09]

How good is SDP (...for special cases)?
A better understanding of the graph (e.g. when is it perfect?)

Outlook

Hypergraph of incomparable pairs has nice properties:
Vertex Cover =̂ Feedback Arc Set
Independent Set =̂ Maximum Acyclic Subgraph

1|prec|
∑

j wjCj can be seen as Feedback Arc Set with “specially
structured” weights.
“Special structure”⇒ all hyperedges > 2 can be ignored!
Hypothesis: Other ordering problems lie in between.
Work in Progress: Rank Aggregation (with triangle inequality) =̂
ignore hyperedges > 3

Thank you for your attention!

