New Models for Population Protocols

Othon Michail

Joint work with: Ioannis Chatzigiannakis Stavros Nikolaou Andreas Pavlogiannis Paul Spirakis

Research Academic Computer Technology Institute (RACTI)

ACAC '10 August 2010

Outline I

(1)

Population Protoco

- Intro Population Protocols
- Computational Power
- Enhancing the PP model

2 Mediated Population Protocols

- A Formal Model
- Computational Power

3 Passively Mobile Machines

- A Formal Model
- Computational Power

Intro - Population Protocols Computational Power Enhancing the PP model

Population Protocol Model [Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC '04]

- Tiny sensor nodes (agents) move passively
- Tiny:
 - Protocol descriptions independent of the # agents (uniformity)
 - Anonymity
- Passively mobile:
 - Mobility stems from some natural phenomenon
 - wind, water flow, animals moving . . .
 - modeled by some fair adversary scheduler selecting ordered pairs of agents to interact
- Fairness:
 - $(C \rightarrow C') \land (C \text{ appears infinitely often}) \Rightarrow C'$ appears infinitely often
 - Weak assumption[Chatzigiannakis, Dolev, Fekete, Michail, and Spirakis, OPODIS '09]: All consistent probabilistic schedulers satisfy it with probability 1

Intro - Population Protocols Computational Power Enhancing the PP model

A Formal Model

- finite input and output alphabets X and Y
- finite set of states Q
- input function $I: X \to Q$
- output function $O: Q \to Y$
- transition function $\delta: Q \times Q \rightarrow Q \times Q$
 - $\delta(p,q) = (p',q')$ or simply (p,q)
 ightarrow (p',q') is called a transition
- Population protocols do not halt, instead we require their outputs to stabilize

Population Protocols

Mediated Population Protocols Passively Mobile Machines Conclusions Intro - Population Protocols Computational Power Enhancing the PP model

Flock of Birds: A Canonical Example

- Assume a complete communication graph G
- Each agent senses the temperature of a distinct bird after a global start signal
- If detected elevated temperature input 1, else 0 (i.e. $X = \{0, 1\}$) "Find if at least 5 sensors have detected elevated temperature"
- We want every agent to eventually output
 - ${\scriptstyle \bullet }$ 1, if at least 5 birds were found sick
 - 0, otherwise

Intro - Population Protocols Computational Power Enhancing the PP model

Computational Power

Theorem ([Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC '04] & [Angluin, Aspnes, and Eisenstat, PODC '06])

A predicate is computable in the basic population protocol model if and only if it is semilinear (definable in Presburger arithmetic)

Stably Computable (semilinear)

- "The number of *a*s is greater than 5" (i.e. $N_a > 5$)
- $(N_a = N_b) \vee (\neg (N_b > N_c))$

Non-stably computable (non-semilinear)

 "The number of cs is the product of the number of as and the number of bs" (i.e. N_c = N_a · N_b)

Intro - Population Protocols Computational Power Enhancing the PP model

Enhancing the PP model

- SEM is a small class
- PPs can tolerate only O(1) crash failures and 0 Byzantine agents [Delporte-Gallet, Fauconnier, Guerraoui, Ruppert, '06]
- Major goal: Extend the PP model with extra realistic and implementable assumptions in order to improve:
 - computational power
 - fault tolerance
 - time to convergence

A Formal Model Computational Power

Mediated Population Protocols [Chatzigiannakis, Michail, Spirakis, ICALP '09]

- A MPP is a PP that additionally has
 - ${\scriptstyle \bullet}$ a finite set of edge states S

 ${\ensuremath{\, \bullet }}$ and an extended transition function δ of the form

• $\delta: Q \times Q \times S \rightarrow Q \times Q \times S$

 $\delta(q_1, q_2, s) = (q_1', q_2', s')$

Figure: Each link is a constant storage

A Formal Model Computational Powe

< □ ▶

4 A b

Question of Interest

What is the class of computable predicates here?

A Formal Model Computational Power

Computational Power

- Complete communication graphs (n denotes the population size)
- All edges are initially in a common state s₀
- MPS: the corresponding class
- For all $p \in MPS$, p is symmetric

Theorem ([Chatzigiannakis, Michail, Spirakis, ICALP '09] & [Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis, MFCS '10])

 $p \in MPS$ iff p is symmetric and $p \in NSPACE(n^2)$

A Formal Model Computational Power

The Lower Bound

Theorem ([Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis, MFCS '10])

Any symmetric predicate in $NSPACE(n^2)$ belongs to MPS

11/38

•

A Formal Model Computational Power

1. Spanning Process

1. Spanning process: Agents become organized into a correctly labeled spanning line graph

12/38

O. Michail, I. Chatzigiannakis, S. Nikolaou, A. Pavlogiannis, and P. Spirakis New Models for Population Protocols

< D >

Mediated Population Protocols

Computational Power

1. Spanning Process

O. Michail, I. Chatzigiannakis, S. Nikolaou, A. Pavlogiannis, and P. Spirakis

New Models for Population Protocols

A Formal Model Computational Power

1. Spanning Process

O. Michail, I. Chatzigiannakis, S. Nikolaou, A. Pavlogiannis, and P. Spirakis New Models for Population Protocols 14/38

Mediated Population Protocols

Computational Power

1. Spanning Process

O. Michail, I. Chatzigiannakis, S. Nikolaou, A. Pavlogiannis, and P. Spirakis

New Models for Population Protocols

Mediated Population Protocols

Computational Power

1. Spanning Process

A Formal Model Computational Power

1. Spanning Process

O. Michail, I. Chatzigiannakis, S. Nikolaou, A. Pavlogiannis, and P. Spirakis New Models for Population Protocols

A Formal Model Computational Power

1. Spanning Process

Figure: Separate line graphs formed

< □ ▶

合

O. Michail, I. Chatzigiannakis, S. Nikolaou, A. Pavlogiannis, and P. Spirakis New Models for Population Protocols

18/38

A Formal Model Computational Power

1. Spanning Process

 $\bullet \Box \bullet \bullet$

19/38

A Formal Model Computational Power

1. Spanning Process

igure: Line graphs get merged

 $\bullet \Box \bullet \bullet$

O. Michail, I. Chatzigiannakis, S. Nikolaou, A. Pavlogiannis, and P. Spirakis New Models for Population Protocols 20/38

A Formal Model Computational Power

1. Spanning Process

igure: Line graphs get merged

A Formal Model Computational Power

1. Spanning Process

Figure: A correctly labeled spanning line graph

A Formal Model Computational Power

2. Reinitialization Process

- 2. Reinitialization Process: The agents don't know when the spanning process ends
- Whenever a line graph is expanded they reinitialize the simulation

Figure: Just after merging. The leader endpoint has the special star mark. The reinitialization process begins.

 Whenever a line graph expands or two line graphs get merged the simulation is reinitialized in all agents and all outgoing edges

A Formal Model Computational Power

3. Simulation Process

 3. Simulation Process: The remaining O(n²) edges are used as tape cells to simulate a TM

Figure: The agent in k^* controls now the simulation.

Nondeterminism: Stems from the nondeterminism of the interaction pattern

A Formal Model Computational Power

The Upper Bound

Theorem ([Chatzigiannakis, Michail, Spirakis, ICALP '09])

 $p \in MPS$ implies that $p \in NSPACE(n^2)$

- A configuration consists of $O(n^2)$ states of constant size
- To compute p in $O(n^2)$ space we perform a nondeterministic search on the transition graph of the protocol that stably computes it (by always storing at most one configuration)

A Formal Model Computational Powe

Passively Mobile Machines [Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis, FRONTS-TR '10]

- In the PM model each agent
 - is a multitape Turing machine
 - has tapes unbounded to the right

26 / 38

< D >

A Formal Model Computational Powe

Passively Mobile Machines

- X is the input alphabet, where $\Box \notin X$ (\Box is the blank symbol)
- Γ is the **tape alphabet**, where $\Box \in \Gamma$ and $X \subset \Gamma$
- *Q* is the set of **states**
- δ : Q × Γ⁴ → Q × Γ⁴ × {L, R}⁴ × {0,1} is the internal transition function
- $\gamma: Q \times Q \rightarrow Q \times Q$ is the external transition function
- $q_0 \in Q$ is the initial state

A Formal Model Computational Powe

< □ ▶

Question of Interest

What is the class of computable predicates for each space bound?

O. Michail, I. Chatzigiannakis, S. Nikolaou, A. Pavlogiannis, and P. Spirakis New Models for Population Protocols

A Formal Model Computational Power

Computational Power

- Complete communication graphs
- *PMSPACE*(f(n)): the corresponding class when each agent uses space O(f(n))
- PMSPACE(c) = SEM
- For all f and $p \in PMSPACE(f(n))$, p is symmetric

Theorem ([Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis, FRONTS-TR '10])

 $\forall f \text{ s.t. } f(n) = \Omega(\log n), p \in PMSPACE(f(n)) \text{ iff } p \text{ is symmetric and } p \in NSPACE(nf(n))$

A Formal Model Computational Power

Another Natural Question

What happens below log n?

O. Michail, I. Chatzigiannakis, S. Nikolaou, A. Pavlogiannis, and P. Spirakis New Models for Population Protocols

A Formal Model Computational Power

log n: A Computational Threshold

Theorem ([Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis, FRONTS-TR '10])

For any $f : \mathbb{N} \to \mathbb{N}$, any predicate in PMSPACE(f(n)) is also in SNSPACE $(2^{f(n)}(f(n) + \log n))$

- 2^{O(f(n))} different agent configurations (internal configurations)
- each of size O(f(n))
- $O(f(n)2^{f(n)})$ space, together with a number per agent configuration representing # of agents in that agent configuration

31/38

A Formal Model Computational Power

log n: A Computational Threshold

Some examples:

- $f(n) = \log n, \ O(2^{\log n}(2\log n)) = O(n\log n) \ (\text{was } n\log n)$
- $f(n) = \log \log n$, $O(2^{\log \log n}(\log \log n + \log n)) = O(\log^2 n)$ (was $n \log \log n$)
- f(n) = n, $O(2^n(n + \log n)) = O(n2^n)$ (was n^2)

A Formal Model Computational Power

log n: A Computational Threshold

Theorem (Symmetric Space Hierarchy Theorem)

For any function $f : \mathbb{N} \to \mathbb{N}$, a symmetric language L exists that is decidable in O(f(n)) (non)deterministic space but not in o(f(n)) (non)deterministic space

Proof.

Follows immediately from the unary (tally) separation language presented in [Geffert, TCS '03] and the fact that any unary language is symmetric

CT

うみつ

A Formal Model Computational Power

log n: A Computational Threshold

Theorem

For any $f(n) = o(\log n)$ it holds that $PMSPACE(f(n)) \subsetneq SNSPACE(n f(n))$

Proof.

By considering the previous theorems, it suffices to show that $2^{f(n)}(f(n) + \log n) = o(nf(n))$ for $f(n) = o(\log n)$. We have that

$$2^{f(n)}(f(n) + \log n) = 2^{o(\log n)}O(\log n) = o(n)O(\log n)$$

which obviously grows slower than $nf(n) = n \cdot o(\log n)$.

Conclusion: $f(n) = \Theta(\log n)$ acts as a threshold

CT

Conclusions

- We have proposed 2 new theoretical models for passively mobile sensor networks
- Both MPP and PM with Ω(log n) available space per agent can use the whole memory for the simulation of a NTM that decides symmetric languages
 - Population protocols do not achieve this as they have O(n) space but cannot simulate linear-space NTMs
 - We showed that PM with $o(\log n)$ space also does not
- log n memory is more realistic than constant and it is also an extremely small requirement
- Due to its threshold behavior it seems to be the best memory selection

Open Problems

- Fault tolerance of both models (preconditions?)
- Expected time complexity of predicates under some probabilistic scheduling assumption
- Protocol verification (see e.g. [Chatzigiannakis, Michail, Spirakis, SSS '10] for PPs)
- Stable decidability of properties of the communication graph (see e.g. [Chatzigiannakis, Michail, Spirakis, SSS '10 - 2] for a first attempt for MPPs)
- Exact characterization of PMSPACE(f(n)) for all $f(n) = o(\log n)$
 - At a first glance it seems that log log n is another threshold and that between log log n and log n the power depends on the # of agents that can be assigned uids

36 / 38

FRONTS

- This work has been partially supported by the ICT Programme of the European Union under contract number ICT-2008-215270 (FRONTS).
- FRONTS is a joint effort of eleven academic and research institutes in foundational algorithmic research in Europe.
- The effort is towards establishing the foundations of adaptive networked societies of tiny artefacts.

Thank You!

O. Michail, I. Chatzigiannakis, S. Nikolaou, A. Pavlogiannis, and P. Spirakis New Models for Population Protocols

38 / 38

4 □ ト 4 同 ト 4 三 ト

4