New Models for Population Protocols

Othon Michail
Joint work with:
loannis Chatzigiannakis
Stavros Nikolaou
Andreas Pavlogiannis
Paul Spirakis

Research Academic Computer Technology Institute (RACTI)
ACAC '10
August 2010

Outline I

Population Protocols

- Intro - Population Protocols
- Computational Power
- Enhancing the PP model
(2) Mediated Population Protocols
- A Formal Model
- Computational Power
(3) Passively Mobile Machines
- A Formal Model
- Computational Power

Population Protocol Model

[Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC '04]

- Tiny sensor nodes (agents) move passively
- Tiny:
- Protocol descriptions independent of the \# agents (uniformity)
- Anonymity
- Passively mobile:
- Mobility stems from some natural phenomenon
- wind, water flow, animals moving
- modeled by some fair adversary scheduler selecting ordered pairs of agents to interact
- Fairness:
- $\left(C \rightarrow C^{\prime}\right) \wedge(C$ appears infinitely often $) \Rightarrow C^{\prime}$ appears infinitely often
- Weak assumption[Chatzigiannakis, Dolev, Fekete, Michail, and Spirakis, OPODIS '09]: All consistent probabilistic schedulers satisfy it with probability 1

A Formal Model

- finite input and output alphabets X and Y
- finite set of states Q
- input function $I: X \rightarrow Q$
- output function $O: Q \rightarrow Y$
- transition function $\delta: Q \times Q \rightarrow Q \times Q$
$\delta(p, q)=\left(p^{\prime}, q^{\prime}\right)$ or simply $(p, q) \rightarrow\left(p^{\prime}, q^{\prime}\right)$ is called a transition
- Population protocols do not halt, instead we require their outputs to stabilize

Flock of Birds: A Canonical Example

- Assume a complete communication graph G
- Each agent senses the temperature of a distinct bird after a global start signal
- If detected elevated temperature input 1, else 0 (i.e. $X=\{0,1\}$) "Find if at least 5 sensors have detected elevated temperature"
- We want every agent to eventually output
- 1 , if at least 5 birds were found sick
- 0 , otherwise

Computational Power

Theorem ([Angluin, Aspnes, Diamadi, Fischer, and Peralta, PODC '04] \& [Angluin, Aspnes, and Eisenstat, PODC '06])
A predicate is computable in the basic population protocol model if and only if it is semilinear (definable in Presburger arithmetic)

Stably Computable (semilinear)

- "The number of as is greater than 5" (i.e. $N_{a}>5$)
- $\left(N_{a}=N_{b}\right) \vee\left(\neg\left(N_{b}>N_{c}\right)\right)$

Non-stably computable (non-semilinear)

- "The number of cs is the product of the number of as and the number of $b s$ " (i.e. $N_{c}=N_{a} \cdot N_{b}$)

Enhancing the PP model

- $S E M$ is a small class
- PPs can tolerate only $O(1)$ crash failures and 0 Byzantine agents [Delporte-Gallet, Fauconnier, Guerraoui, Ruppert, '06]
- Major goal: Extend the PP model with extra realistic and implementable assumptions in order to improve:
- computational power
- fault tolerance
- time to convergence

Mediated Population Protocols

[Chatzigiannakis, Michail, Spirakis, ICALP '09]

- A MPP is a PP that additionally has
- a finite set of edge states S
v and an extended transition function δ of the form
- $\delta: Q \times Q \times S \rightarrow Q \times Q \times S$

$$
\delta\left(q_{1}, q_{2}, s\right)=\left(q_{1}^{\prime}, q_{2}^{\prime}, s^{\prime}\right)
$$

Figure: Each link is a constant storage

Question of Interest

What is the class of computable predicates here?

Computational Power

- Complete communication graphs (n denotes the population size)
- All edges are initially in a common state s_{0}
- MPS: the corresponding class
- For all $p \in$ MPS, p is symmetric

Theorem ([Chatzigiannakis, Michail, Spirakis, ICALP '09] \& [Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis, MFCS '10])
$p \in$ MPS iff p is symmetric and $p \in \operatorname{NSPACE}\left(n^{2}\right)$

The Lower Bound

Theorem ([Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis, MFCS '10])
Any symmetric predicate in $\operatorname{NSPACE}\left(n^{2}\right)$ belongs to MPS

1. Spanning Process

1. Spanning process: Agents become organized into a correctly labeled spanning line graph

1. Spanning Process

Figure: All agents are simple leaders

1. Spanning Process

Figure: An interaction takes place

1. Spanning Process

Figure: A line graph gets formed

1. Spanning Process

Figure: The line graph expands

틀

1. Spanning Process

Figure: The line graph expands

1. Spanning Process

Figure: Separate line graphs formed

1. Spanning Process

Figure: Line graphs get merged

1. Spanning Process

Figure: Line graphs get merged

1. Spanning Process

Figure: Line graphs get merged
gure. Line graphs get merged

1. Spanning Process

Figure: A correctly labeled spanning line graph

2. Reinitialization Process

- 2. Reinitialization Process: The agents don't know when the spanning process ends
- Whenever a line graph is expanded they reinitialize the simulation

Figure: Just after merging. The leader endpoint has the special star mark. The reinitialization process begins.

- Whenever a line graph expands or two line graphs get merged the simulation is reinitialized in all agents and all outgoing edges

3. Simulation Process

- 3. Simulation Process: The remaining $O\left(n^{2}\right)$ edges are used as tape cells to simulate a TM

Figure: The agent in k^{*} controls now the simulation.

- Nondeterminism: Stems from the nondeterminism of the interaction pattern

The Upper Bound

Theorem ([Chatzigiannakis, Michail, Spirakis, ICALP '09])
$p \in$ MPS implies that $p \in \operatorname{NSPACE}\left(n^{2}\right)$

- A configuration consists of $O\left(n^{2}\right)$ states of constant size
- To compute p in $O\left(n^{2}\right)$ space we perform a nondeterministic search on the transition graph of the protocol that stably computes it (by always storing at most one configuration)

Passively Mobile Machines

[Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis, FRONTS-TR '10]

- In the PM model each agent
- is a multitape Turing machine
- has tapes unbounded to the right

Passively Mobile Machines

- X is the input alphabet, where $\sqcup \notin X$ (\sqcup is the blank symbol)
- Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $X \subset \Gamma$
- Q is the set of states
- $\delta: Q \times \Gamma^{4} \rightarrow Q \times \Gamma^{4} \times\{L, R\}^{4} \times\{0,1\}$ is the internal transition function
- $\gamma: Q \times Q \rightarrow Q \times Q$ is the external transition function
- $q_{0} \in Q$ is the initial state

Question of Interest

What is the class of computable predicates for each space bound?

Computational Power

- Complete communication graphs
- PMSPACE $(f(n))$: the corresponding class when each agent uses space $O(f(n))$
- PMSPACE (c) = SEM
- For all f and $p \in \operatorname{PMSPACE}(f(n)), p$ is symmetric

Theorem ([Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis, FRONTS-TR '10])
$\forall f$ s.t. $f(n)=\Omega(\log n), p \in \operatorname{PMSPACE}(f(n))$ iff p is symmetric and $p \in \operatorname{NSPACE}(n f(n))$

Another Natural Question

What happens below $\log n ?$

폴

$\log n:$ A Computational Threshold

Theorem ([Chatzigiannakis, Michail, Nikolaou, Pavlogiannis, Spirakis, FRONTS-TR '10])
For any $f: \mathbb{N} \rightarrow \mathbb{N}$, any predicate in $\operatorname{PMSPACE}(f(n))$ is also in $\operatorname{SNSPACE}\left(2^{f(n)}(f(n)+\log n)\right)$

- $2^{O(f(n))}$ different agent configurations (internal configurations)
- each of size $O(f(n))$
- $O\left(f(n) 2^{f(n)}\right)$ space, together with a number per agent configuration representing \# of agents in that agent configuration

$\log n:$ A Computational Threshold

Some examples:

- $f(n)=\log n, O\left(2^{\log n}(2 \log n)\right)=O(n \log n)($ was $n \log n)$
- $f(n)=\log \log n, O\left(2^{\log \log n}(\log \log n+\log n)\right)=O\left(\log ^{2} n\right)$ (was $n \log \log n)$
- $f(n)=n, O\left(2^{n}(n+\log n)\right)=O\left(n 2^{n}\right)\left(\right.$ was $\left.n^{2}\right)$

$\log n:$ A Computational Threshold

Theorem (Symmetric Space Hierarchy Theorem)

For any function $f: \mathbb{N} \rightarrow \mathbb{N}$, a symmetric language L exists that is decidable in $O(f(n))$ (non)deterministic space but not in o($f(n)$) (non)deterministic space

Proof.

Follows immediately from the unary (tally) separation language presented in [Geffert, TCS '03] and the fact that any unary language is symmetric

$\log n:$ A Computational Threshold

Theorem

For any $f(n)=o(\log n)$ it holds that $\operatorname{PMSPACE}(f(n)) \subsetneq \operatorname{SNSPACE}(n$ $f(n)$)

Proof.

By considering the previous theorems, it suffices to show that $2^{f(n)}(f(n)+\log n)=o(n f(n))$ for $f(n)=o(\log n)$. We have that

$$
2^{f(n)}(f(n)+\log n)=2^{o(\log n)} O(\log n)=o(n) O(\log n)
$$

which obviously grows slower than $n f(n)=n \cdot o(\log n)$.
Conclusion: $f(n)=\Theta(\log n)$ acts as a threshold

Conclusions

- We have proposed 2 new theoretical models for passively mobile sensor networks
- Both MPP and PM with $\Omega(\log n)$ available space per agent can use the whole memory for the simulation of a NTM that decides symmetric languages
- Population protocols do not achieve this as they have $O(n)$ space but cannot simulate linear-space NTMs
- We showed that PM with $o(\log n)$ space also does not
o $\log n$ memory is more realistic than constant and it is also an extremely small requirement
- Due to its threshold behavior it seems to be the best memory selection

Open Problems

- Fault tolerance of both models (preconditions?)
- Expected time complexity of predicates under some probabilistic scheduling assumption
- Protocol verification (see e.g. [Chatzigiannakis, Michail, Spirakis, SSS '10] for PPs)
- Stable decidability of properties of the communication graph (see e.g. [Chatzigiannakis, Michail, Spirakis, SSS '10-2] for a first attempt for MPPs)
- Exact characterization of $\operatorname{PMSPACE}(f(n))$ for all $f(n)=o(\log n)$
- At a first glance it seems that $\log \log n$ is another threshold and that between $\log \log n$ and $\log n$ the power depends on the \# of agents that can be assigned uids

FRONTS

- This work has been partially supported by the ICT Programme of the European Union under contract number ICT-2008-215270 (FRONTS).
- FRONTS is a joint effort of eleven academic and research institutes in foundational algorithmic research in Europe.
- The effort is towards establishing the foundations of adaptive networked societies of tiny artefacts.

Thank You!

