
Minimum-Cost Network Design
with (Dis)economies of Scale

Spyridon Antonakopoulos

Joint work with Matthew Andrews and Lisa Zhang

Athens Colloquium on Algorithms and Complexity, August 27th 2010

Overview

1. Background

• Motivation

• Relation to buy-at-bulk network design

2. Achieving a polylogarithmic approximation

• Cost discretization

• Well-cut-linked flow decomposition

• Construction of expander virtual topology

• Edge-disjoint routing

3. Concluding remarks

3 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Background

4 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Network design

 Network: carries people and/or commodities (oil, data, etc.) between a number
of locations.

 Example: optical-core communications network covering the United States.

ALB

ATL

BAL

BOS

BUF

CHI

CIN

CL
EDEN

DET

ELP

HOU
JAC

KAN

LOS

LAS

MIA

MIL

NAS

NOR

NYC
PHI

PHO

PIT

RAL

SAI

SAL

SFO

SPR

SEA

TAM

WAS NYC-PIT 10 Gbps
BOS-SEA 5 Gbps
ATL-SFO 8 Gbps
CHI-DEN 7 Gbps
…

so
ur

ce
de

sti
na

tio
n

ba
nd

widt
h

traffic demands

5 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Network design (contd.)

 Typical formulation of minimum-cost network design problem:

Available network topology

Tree, ring, general graph, …

Set of end-to-end traffic demands

Single sink, all pairs, multi-commodity, …

A function representing the cost of a network element in relation to the traffic
carried by that element

Uniform vs. non-uniform

Problem-specific requirements, if any

Latency, fault tolerance, “hard” capacity constraints, …

Goal: determine a minimum-cost network that can serve all traffic demands
(and respect any additional requirements)

6 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Some simple cost functions

Linear cost function ⇒ decomposes to a shortest-paths problem for each
traffic demand

Easy – solvable in polynomial time [Dijkstra]

Step-function (“flat cost”) ⇒ Steiner forest problem

Somewhat easy – we can find a solution with at most twice the optimal cost in
polynomial time (i.e. approximation ratio 2) [Agrawal-Klein-Ravi, Goemans-Williamson]

link load

co
st

link load

co
st

linear step-function (“flat”)

7 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Buy-at-bulk cost functions

Sub-additive cost function (continuous or discontinuous) ⇒ buy-at-bulk
network design problem

Sub-additivity: f(x1 + x2) ≤ f(x1) + f(x2)

Models economies of scale

Manageable – we can find a solution with at most O(log n) times or polylog(n) times the
optimal cost in polynomial time (uniform/non-uniform version resp.) [Awerbuch-Azar,
Chekuri-Hajiaghayi-Kortsarz-Salavatipour]

link load
co

st

sub-additive

av
er

ag
e

8 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Energy costs and (dis)economies of scale

 What if the cost function has the form f(x) = σ + xα for x > 0, f(0) = 0?

Motivation: describes power consumption of CMOS circuits with speed scaling

Reflects a combination of economies and diseconomies of scale

Similarly-shaped cost curves commonly encountered in many industries ⇒ potential for
wide model applicability

link load
co

st

sub-additive

av
er

ag
e

9 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Energy costs and (dis)economies of scale (contd.)

Bad news: a lower bound on the approximation ratio is exponentially
dependent on α [A, Andrews-Fernandez-Zhang-Zhao]

Good(?) news: in case of CMOS power, α ≤ 3 and thus may be considered a constant

More good news: for the uniform version, we can find a solution with at most
polylog(n) times the optimal cost in polynomial time

link load
co

st

sub-additive

av
er

ag
e

α determines degree
of polynomial

10 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Achieving a polylogarithmic
approximation

11 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Algorithm outline

Partition traffic demands by bandwidth, in buckets [1, 2), [2, 4), [4, 8), …

Discretize cost function

For each bucket, while there exist unrouted demands:

Solve LP relaxation and decompose fractional solution into well-cut-linked flows

Construct an expander graph as virtual network topology

Route (at least) some of the demands via edge-disjoint paths on the virtual topology

Output the union of all partial routings

 We need to ensure that each partial routing (i) serves at least a polylogarithmic
fraction of the demands, and (ii) has cost at most polylog(n) times the optimum.

Recall the analysis of the greedy set-cover algorithm…

However, a low ratio of cost / (#demands served) for every partial solution does not
suffice in our case. We must bound the overall number of partial solutions as well.

12 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Bucketing demands

Place demands with bandwidth [2j – 1, 2j) in bucket j.

Round up the bandwidth of all demands in bucket j to 2j.

Lose only a factor of 2 in the approximation.

Henceforth, we deal with the demands in one bucket at a time.

All such demands have the same bandwidth (convenient).

W.l.o.g. we also assume that each demand has distinct endpoints (terminals) from
other demands in the same bucket.

For a bucket j such that 2j ≥ σ1 / α, replace the cost function with f*(x) = 2xα at
a loss of another factor 2 in the approximation.

Then, apply a CP-rounding algorithm from [Andrews-Fernandez-Zhang-Zhao] to route
the demands in that bucket.

For a bucket j such that 2j < σ1 / α, aggregate demands.

For simplicity, let’s forget about aggregation; assume σ1 / α = 1 and unit demands…

13 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Discretizing the cost function

Replace each link by a collection of parallel edges, with a fixed capacity equal
to σ1 / α, and flat (step-function) costs:

f(σ1 / α) – f(0) = 2σ,

f(2σ1 / α) - f(σ1 / α) = (2α – 1)σ,

f(3σ1 / α) - f(2σ1 / α) = (3α – 2α)σ,

and so on.

f(x)
⇒ (3α – 2α)σ

(2α – 1)σ

2σ
…

Clearly, cheap edges will be used before expensive ones.

Note: this transformation does not make the problem equivalent to Steiner
forest, because of edge capacities.

14 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

LP relaxation and well-cut-linked flows

We formulate and solve an LP relaxation of the problem instance (including
only the demands in the current bucket).

In the (fractional) solution, each demand may be routed along more than one
paths, each carrying only part of the demand’s bandwidth.

These paths constitute a flow associated with the demand.

Not acceptable as a solution to our problem.

Decompose into well-cut-linked terminals
[Chekuri-Khanna-Shepherd]

Create node-disjoint subgraphs of original graph.
– Discard demands with terminals in different subgraphs.
– At least a certain fraction of demands survives.

Salient property: In order to cut one such subgraph in two parts, we would have to
remove edges carrying a substantial total amount of flow (in the above fractional
solution), proportional to the smaller total remaining demand in either part.

15 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Constructing an expander topology

When is a graph G′ = (V′, E′) an expander?

Regular

Expansion: for any S ⊂ V′ with |S| ⊂ |V′| / 2, the number of edges in the cut (S, V′ - S)
is at least c|S|, for a constant c > 0.

Very similar the property of well-cut-linked terminals we saw earlier.

But how to use it for expander construction?

Suppose we are given a routine that for any balanced partition (A, B) of a node set V*
produces a perfect matching. Then, we can construct an expander by calling this
routine O(log2 |V*|) times. [Khandekar-Rao-Vazirani]

We build an expander on the terminals of each subgraph of the decomposition.

Here, perfect matchings consist of entire paths joining terminals, not just edges.

Well-cut-linkedness ensures the existence of such a path-matching.

Result: a virtual expander topology that uses each edge of the real topology at most a
polylogarithmic number of times crucial for bounding

routing cost

16 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Edge-disjoint routing in the virtual topology

Given an expander and a set of node pairs (with each node belonging to at
most one pair), we can route at least a polylogarithmic fraction of those pairs
via edge-disjoint paths. [Rao-Zhou]

Expander graphs tend to have many short paths…

Thus, in the real topology we can route at least a polylogarithmic fraction of
the demands, while the load on every edge is at most polylogarithmically
larger compared to the solution of the LP relaxation.

We apply the same process on the remaining demands. No more than a
polylogarithmic number of iterations required.

 Putting it all together:

Theorem. Uniform network design with (dis)economies of scale is polylog(n)-
approximable.

17 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Concluding remarks

18 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Concluding remarks

Applicability extends to more general cost functions (not necessarily
polynomial) as long as they increase at least at a linear rate – but not too
quickly, of course.

Asymptotically linear concave functions are also covered. In general, though, concave
cost functions are better handled in the buy-at-bulk framework.

 Open questions

What is the (in)approximability of the non-uniform version?

The intermediate capacitated problem may be viewed as a special case of
Fixed Charge Network Flow, which has been well-studied from a heuristics
perspective. Can our algorithm be adapted for the latter problem too?

Thank you!

