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Approval voting

Multi-winner elections
Every voter selects a subset of candidates that he 
approves of
Used by numerous organizations (IEEE, Game Theory 
Society, INFORMS,…) for selecting committees

Notation:
n voters
m candidates
k: size of the committee to be elected
Votes  ⇒ elements of {0,1}m
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Electing a committee from approval 
ballots

What is the best committee 
of size k = 2?

m = 5 candidates

n = 4 ballots
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The minisum solution
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Pick the committee that minimizes the sum of the Hamming 
distances to the voters

⇒ Pick the k candidates with the highest approval rate
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Maximum Hamming distance
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The preferences of some voters may be completely ignored



7

The minimax solution
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[Brams, Kilgour, Sanver ’07]: Pick the k candidates that 
minimize the maximum Hamming distance to a voter
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Some difficulties…

[LeGrand, Markakis, Mehta ’07]:

Computing a minimax solution is NP-hard

Any algorithm that computes a minimax solution 
is manipulable

⇒ Resort to approximation algorithms
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Some difficulties…

[LeGrand, Markakis, Mehta ’07]: dictatorial 3-
approximation strategyproof algorithm

Non-dictatorial algorithms?
∃ better than 3-approximation algorithms?
∃ better than 3-approximation strategyproof
algorithms?
Group-strategyproof algorithms? 
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Approximation algorithms

Pi: approval set of voter i
d(K, Pi): Hamming distance of voter i from an outcome K

Definition: An outcome K is Pareto-efficient if there is no 
other outcome K’ with

d(K’, Pi) ≤ d(K, Pi) ∀ voter i
d(K’, Pi) < d(K, Pi) for some voter i

Theorem: Any Pareto efficient algorithm has an 
approximation ratio of at most 3 - 2/(k+1)

Corollary: The minisum solution is a non-dictatorial (3 -
2/(k+1))-approximation.
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A Linear Programming approach

Integer Program:
min         q

s.t.           d(x, Pi) ≤ q ∀ voter i

∑ xj = k

xj ∈ {0,1}      

where
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A Linear Programming approach

Algorithm:
Relax to xj ∈ [0,1]
Solve the LP
Pick the committee that corresponds to the k highest 
values xj

Theorem:
(i) The approximation ratio of the LP-based algorithm is 2
(ii) The integrality gap of the integer program is 2
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Mechanism Design (without money)

3 notions of immunity to manipulation

Strategyproof (SP): no voter can benefit by unilaterally 
changing his vote

Group-strategyproof (GSP): no set of voters can all benefit 
by changing their votes

Strongly group-strategyproof (strongly GSP): no set of 
voters can change their votes so that at least one of them 
benefits and no-one is worse off 
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SP algorithms

Upper bound: 3 – 2/(k+1)  
The minisum algorithm with proper tie breaking is 
strategyproof

Theorem: No strategyproof algorithm can have a 
ratio better than 2 for k=1, and better than 2 –
2/(k+1), for k≥2.
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SP algorithms

Proof of lower bound for k=1

• Suppose outcome is a1 on 1st

profile (same for other cases)

• On 2nd profile outcome must 
also be a1 by SP property

• Then d(a1, P2) = 4

• OPT = 2 (choose a4)
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GSP algorithms

Minisum is not GSP

The dictatorial algorithm of [LeGrand, Markakis, 
Mehta ’07] with appropriate tie breaking is GSP

Can also be made Pareto-efficient   ⇒
(3 – 2/(k+1))-approximation

Known lower bound: same as for SP 



18

Strongly GSP algorithms

Theorem: If a mechanism is strongly GSP, its ratio is 
either 3 – 2/(k+1) or  ∞

Follows by:
Lemma 1: A strongly GSP algorithm with finite ratio is 
Pareto-efficient

If not, ∃ better outcome K’
Suppose everyone changes vote to K’
Finite ratio  ⇒ new output is K’

Lemma 2: Any strongly GSP algorithm has ratio at least 3 
– 2/(k+1)



19

Conclusions

∞3 – 2/(k+1)Strongly GSP

3 – 2/(k+1)2 – 2/(k+1)GSP

3 – 2/(k+1)2 – 2/(k+1)SP  

2NP-hardApprox. ratio

Upper BoundLower Bound
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Future work

What is the best approximation ratio achievable in polynomial time? ∃
PTAS?

∃ PTAS for unrestricted version (no constraints on size of committee) 

Characterization of (group) strategyproof algorithms

Investigate weighted version of minimax [Brams, Kilgour & Sanver, ’07]

Other concepts in Approval Voting
[Brams, Kilgour ’10]: Satisfaction Approval Voting (SAV): Pick 
committee that maximizes the sum of satisfaction scores of the voters

Thank you!


