Approximation algorithms and mechanism design for minimax approval voting

Ioannis Caragiannis Dimitris Kalaitzis University of Patras

Vangelis Markakis

Athens University of Economics and Business

- Approval Voting
 - The minisum and the minimax solution
- Approximation algorithms for the minimax solution
 - Pareto-efficiency and approximability
 - An LP-based algorithm
- Immunity to manipulation
 - Strategy-proof and group-strategyproof algorithms and lower bounds

Approval voting

- Multi-winner elections
- Every voter selects a subset of candidates that he approves of
- Used by numerous organizations (IEEE, Game Theory Society, INFORMS,...) for selecting committees

Notation:

- *n* voters
- *m* candidates
- *k*: size of the committee to be elected
- Votes \Rightarrow elements of $\{0,1\}^m$

Electing a committee from approval ballots

m = 5 candidates n = 4 ballots

What is the best committee of size k = 2?

11001

11110

11000

Pick the committee that minimizes the sum of the Hamming distances to the voters

 \Rightarrow Pick the *k* candidates with the highest approval rate

The preferences of some voters may be completely ignored

[Brams, Kilgour, Sanver '07]: Pick the *k* candidates that minimize the maximum Hamming distance to a voter

[LeGrand, Markakis, Mehta '07]:

Computing a minimax solution is NP-hard

Any algorithm that computes a minimax solution is manipulable

 \Rightarrow Resort to approximation algorithms

[LeGrand, Markakis, Mehta '07]: dictatorial 3approximation strategyproof algorithm

- Non-dictatorial algorithms?
- ∃ better than 3-approximation algorithms?
- ∃ better than 3-approximation strategyproof algorithms?
- Group-strategyproof algorithms?

Approximation algorithms

- P_i : approval set of voter *i*
- $d(K, P_i)$: Hamming distance of voter *i* from an outcome K
- Definition: An outcome K is Pareto-efficient if there is no other outcome K' with
 - $d(K', P_i) \leq d(K, P_i) \forall \text{ voter } i$
 - $d(K', P_i) < d(K, P_i)$ for some voter *i*
- Theorem: Any Pareto efficient algorithm has an approximation ratio of at most 3 2/(k+1)
- Corollary: The minisum solution is a non-dictatorial (3 2/(k+1))-approximation.

A Linear Programming approach

Integer Program:

 $\begin{array}{ll} \min & q\\ \text{s.t.} & d(x, P_i) \leq q \quad \forall \text{ voter } i\\ & \sum x_j = k\\ & x_j \in \{0, 1\} \end{array}$

where
$$d(x, P_i) = \sum_{j \notin P_i} x_j + \sum_{j \in P_i} (1 - x_j)$$

A Linear Programming approach

Algorithm:

- Relax to $x_j \in [0,1]$
- Solve the LP
- Pick the committee that corresponds to the k highest values x_j

Theorem:

- (i) The approximation ratio of the LP-based algorithm is 2
- (ii) The integrality gap of the integer program is 2

- Approval Voting
 - The minisum and the minimax solution
- Approximation algorithms for the minimax solution
 - Pareto-efficiency and approximability
 - An LP-based algorithm
- Immunity to manipulation
 - Strategy-proof and group-strategyproof algorithms and lower bounds

Mechanism Design (without money)

3 notions of immunity to manipulation

- Strategyproof (SP): no voter can benefit by unilaterally changing his vote
- Group-strategyproof (GSP): no set of voters can all benefit by changing their votes
- Strongly group-strategyproof (strongly GSP): no set of voters can change their votes so that at least one of them benefits and no-one is worse off

- Upper bound: 3 2/(k+1)
 - The minisum algorithm with proper tie breaking is strategyproof
- Theorem: No strategyproof algorithm can have a ratio better than 2 for k=1, and better than 2 2/(k+1), for k≥2.

SP algorithms

- Proof of lower bound for k=1
- Suppose outcome is a₁ on 1st profile (same for other cases)
- On 2^{nd} profile outcome must also be a_1 by SP property
- Then $d(a_1, P_2) = 4$
- OPT = 2 (choose a_4)

	a_1	a_2	a_3	a_4	a_5	a_6
1	1	1	1	0	0	0
2	0	0	0	1	1	1
I	1					
	a_1	a_2	a_3	a_4	a_5	a_6
1	1	0	0	0	0	0
2	0	0	0	1	1	1

- Minisum is not GSP
- The dictatorial algorithm of [LeGrand, Markakis, Mehta '07] with appropriate tie breaking is GSP
- Can also be made Pareto-efficient \Rightarrow (3 2/(k+1))-approximation
- Known lower bound: same as for SP

Strongly GSP algorithms

Theorem: If a mechanism is strongly GSP, its ratio is either 3 - 2/(k+1) or ∞

Follows by:

- Lemma 1: A strongly GSP algorithm with finite ratio is Pareto-efficient
 - If not, ∃ better outcome K'
 - Suppose everyone changes vote to K'
 - Finite ratio \Rightarrow new output is K'
- Lemma 2: Any strongly GSP algorithm has ratio at least 3 -2/(k+1)

	Lower Bound	Upper Bound
Approx. ratio	NP-hard	2
SP	2-2/(k+1)	3-2/(k+1)
GSP	2-2/(k+1)	3 – 2/(k+1)
Strongly GSP	3 – 2/(k+1)	Ø

- What is the best approximation ratio achievable in polynomial time? ∃ PTAS?
 - ∃ PTAS for unrestricted version (no constraints on size of committee)
- Characterization of (group) strategyproof algorithms
- Investigate weighted version of minimax [Brams, Kilgour & Sanver, '07]
- Other concepts in Approval Voting
 - [Brams, Kilgour '10]: Satisfaction Approval Voting (SAV): Pick committee that maximizes the sum of satisfaction scores of the voters

Thank you!