
Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Coordination Mechanisms for Weighted Sum of
Completion Times in Machine Scheduling

Vasilis Gkatzelis

Courant Institute, New York University

ACAC 2010

Joint work with:

Richard Cole Courant Institute, New York University

Vahab Mirrokni Google Research, New York

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Outline

1 Machine Scheduling
Model
Previous Results

2 Selfish Machine Scheduling
Model
Relevant Results

3 SmithRule
Robust PoA Bound

4 ProportionalSharing
Sum of Completion Times
Exact Potential Games
Robust PoA Bound

5 Approximation Algorithm

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Model
Previous Results

Machine Scheduling

We have a set N of n jobs and a set M of m machines

Each job needs to be assigned to exactly one machine

Each machine can process only one job at any time

A schedule defines which job will be processed by each
machine at any point

For each job i , we use the following notation:

It’s processing time on machine j is denoted by pij
It’s weight is denoted by wi

It’s completion time under a specific schedule is denoted by ci
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Objective Functions

Makespan (maxi ci )

Sum of completion times (
∑

i ci )

Weighted sum of completion times (
∑

i wici )
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Machine Models

Identical machines

Each job i has a processing requirement pi
The processing time of job i on any machine j will be pij = pi

Related machines

Each job i has a processing requirement pi
Each machine j has a speed qj
The processing time of job i on machine j will then be pij = pi

qj

Restricted machines

Each job i has a processing requirement pi
The processing time of job i on machine j will either be
pij = pi or pij =∞

Unrelated machines

The processing time of job i on machine j can be arbitrary
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Previous Results

Minimizing
∑

i ci is in P even for unrelated machines
[H 73, BCS 74]

Minimizing
∑

i wici is NP-hard even for identical machines
[LKB 77]

For identical machines there exists a PTAS [SW 00]
For unrelated machines the problem is APX-hard [HSW 98]
Constant factor approximation algorithms...

New: Combinatorial constant factor approximation algorithm
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Selfish Machine Scheduling

Let each job be controlled by a selfish agent

Each agent’s strategy set is the set of machines

Given a strategy choice si for each player i , we get an
assignment s of jobs to machines

The cost that each player will incur (it’s completion time),
given s, depends on the machines’ policies
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Strongly Local Policies

For example ShortestFirst and EqualSharing:

1

2

A

p3A = 3

p2A = 2

p1A = 4

3

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Model
Relevant Results

Strongly Local Policies

For example ShortestFirst and EqualSharing:

1

A

2

3
1

2

A

p3A = 3

p2A = 2

p1A = 4

3

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Model
Relevant Results

Coordination Mechanism

By Christodoulou, Koutsoupias and Nanavati [ICALP 04]
A set of local policies, one for each machine
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Normal Form Game

Assume that all the job weights are equal to 1

Given a coordination mechanism α we have defined a game

Each assignment (strategy profile) s implies a completion time
or cost denoted by cαi (s) for each player i

An assignment s is a Pure Nash Equilibrium (PNE) if:

∀i ∈ N,∀s ′i ∈ M, cαi (s−i , s
′
i ) ≥ cαi (s)

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Model
Relevant Results

Normal Form Game

Assume that all the job weights are equal to 1

Given a coordination mechanism α we have defined a game

Each assignment (strategy profile) s implies a completion time
or cost denoted by cαi (s) for each player i

An assignment s is a Pure Nash Equilibrium (PNE) if:

∀i ∈ N,∀s ′i ∈ M, cαi (s−i , s
′
i ) ≥ cαi (s)

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Model
Relevant Results

Normal Form Game

Assume that all the job weights are equal to 1

Given a coordination mechanism α we have defined a game

Each assignment (strategy profile) s implies a completion time
or cost denoted by cαi (s) for each player i

An assignment s is a Pure Nash Equilibrium (PNE) if:

∀i ∈ N,∀s ′i ∈ M, cαi (s−i , s
′
i ) ≥ cαi (s)

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Model
Relevant Results

Normal Form Game

Assume that all the job weights are equal to 1

Given a coordination mechanism α we have defined a game

Each assignment (strategy profile) s implies a completion time
or cost denoted by cαi (s) for each player i

An assignment s is a Pure Nash Equilibrium (PNE) if:

∀i ∈ N,∀s ′i ∈ M, cαi (s−i , s
′
i ) ≥ cαi (s)

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Model
Relevant Results

Price of Anarchy

Defined by Koutsoupias and Papadimitriou [STACS 99]

The PoA of the induced game w.r.t. the sum of completion
times is:

max
s∈PNE

∑
i∈N cαi (s)∑
i∈N cαi (sα)

The PoA of the coordination mechanism w.r.t. the sum of
completion times is:

max
s∈PNE

∑
i∈N cαi (s)∑

i∈N cSF
i (s∗)
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LongestFirst policy for identical machines [CKN 04]

Then [ILMS 05]

Study and survey results for four coordination mechanisms and
four machine models
Study convergence time and existence of PNE

Next [AJM 08]:

Prove that strongly local ordering policies are Ω(m)
Present a local policy that achieves O(logm) but doesn’t
induce potential games
Present a local policy that achieves O(log2 m) and induces
potential games
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Eventually [C 09]:

Presents three new coordination mechanisms for unrelated
machines
One of those mechanisms achieves O(logm) and induces
potential games
Another one of those mechanisms is preemptive and achieves
O(logm/log logm)

A lower bound of Ω(logm) for all local ordering policies was
presented by [FS 10]

EqualSharing induces potential games and has PoA Θ(m)
[DT 09]

SmithRule for related restricted machines and PNE [CQ 10]
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Robust PoA Bound

SmithRule policy

Non-preemptive policy

Each machine j gives higher priority to jobs with smaller
pij
wi

In the optimal solution, every machine must follow this policy

1

2

A

3
p3A = 2
w3 = 2

p2A = 2
w2 = 3

p1A = 4
w1 = 7

Smith ratio=1

Smith ratio= 2
3

Smith ratio= 4
7
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PoA for weighted sum of completion times

An assignment s is a Pure Nash Equilibrium if:

∀i ∈ N,∀s ′i ∈ M, wic
α
i (s−i , s

′
i ) ≥ wic

α
i (s)

The PoA of the induced game w.r.t. the weighted sum of

completion times is: maxs∈PNE

∑
i∈N wic

α
i (s)∑

i∈N wic
α
i (sα)

The PoA of the coordination mechanism w.r.t. the weighted
sum of completion times is:

max
s∈PNE

∑
i∈N wic

α
i (s)∑

i∈N wicSR
i (s∗)

= max
s∈PNE

∑
i∈N wic

α
i (s)

OPT
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Robust PoA Bound

Robust PoA

Defined by Roughgarden [STOC 09]

A coordination mechanism α is defined to be (λ, µ)-smooth if for
every two assignments s and s∗ of any game that it may induce∑

i∈N
wic

α
i (s−i , s

∗
i ) ≤ λ

∑
i∈N

wic
SR
i (s∗) + µ

∑
i∈N

wic
α
i (s).

Definition

The Robust PoA of a coordination mechanism is equal to

inf
{

λ
1−µ : (λ, µ) s.t. the mechanism is (λ, µ)-smooth

}
.
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Robust PoA Bound

Theorem

The Robust PoA of SmithRule for unrelated machines is at most 4.

We show that this coordination mechanism is (2, 1
2 )-smooth by

showing that for any two assignments s and s∗:∑
i∈N

wic
SR
i (s−i , s

∗
i ) ≤ 2CSR(s∗) +

1

2
CSR(s).
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Robust PoA Bound

Theorem

The pure PoA of any set of strongly local ordering policies for
restriced identical machines is at least 4. This is true even for the
unweighted case. (Generalizing [CFKKM 06] and [CQ 10])
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Sum of Completion Times
Exact Potential Games
Robust PoA Bound

Proportional Sharing

A generalization of the EqualSharing policy for weighted jobs
Each job gets a share of the processing time equal to the ratio
of its weight over the sum of the weights of all jobs being
processed on the same machine at that time

1

2

A

3
p3A = 2
w3 = 2

p2A = 2
w2 = 3

p1A = 4
w1 = 7

A

← 3
5 of processor time

← 3
12 of processor time

← 7
12 of processor time

1

2

3
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Exact Potential Games
Robust PoA Bound

EqualSharing

Theorem

The robust PoA of EqualSharing for unrelated machines is at most
2.5.
This bound is tight even for the restricted related machines model
[CFKKM 06].

We show that this coordination mechanism is (5/3, 1/3)-smooth
by showing that for any two assignments s and s∗:∑

i∈N
cESi (s−i , s

∗
i ) ≤ 5

3

∑
i∈N

cSFi (s∗) +
1

3

∑
i∈N

cESi (s).
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Sum of Completion Times
Exact Potential Games
Robust PoA Bound

Theorem

The ProportionalSharing coordination mechanism induces exact
potential games.

We show that Φ(s) = 1
2

∑
i ′∈N wi ′

(
ci ′(s) + pi ′si′

)
serves as an

exact potential function for these games.
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Sum of Completion Times
Exact Potential Games
Robust PoA Bound

Theorem

The robust PoA of ProportionalSharing for unrelated machines is

at most φ+ 1 = 3+
√

5
2 ≈ 2.618.

This bound is tight even for the restricted related machines model
[CFKKM 06].

We show that this coordination mechanism is
(
φ+2

2 , 1
2φ

)
-smooth

by showing that for any two assignments s and s∗:∑
i∈N

wic
PS
i (s−i , s

∗
i ) ≤ φ+ 2

2
CSR(s∗) +

1

2φ
CPS(s).
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Approximation Algorithm

For unrelated machines and weighted sum of completion
times, the minimization problem is NP-hard [LKB 77]

First constant factor ( 16
3 ) approximation algorithm [HSSW 97]

Later improved to 3
2 + ε [SS 02]

Independently further improved to 3
2 by [SS 99, S 01]

The only known constant factor approximation algorithms are
based on LP or convex quadratic program relaxations!

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Approximation Algorithm

For unrelated machines and weighted sum of completion
times, the minimization problem is NP-hard [LKB 77]

First constant factor ( 16
3 ) approximation algorithm [HSSW 97]

Later improved to 3
2 + ε [SS 02]

Independently further improved to 3
2 by [SS 99, S 01]

The only known constant factor approximation algorithms are
based on LP or convex quadratic program relaxations!

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Approximation Algorithm

For unrelated machines and weighted sum of completion
times, the minimization problem is NP-hard [LKB 77]

First constant factor ( 16
3 ) approximation algorithm [HSSW 97]

Later improved to 3
2 + ε [SS 02]

Independently further improved to 3
2 by [SS 99, S 01]

The only known constant factor approximation algorithms are
based on LP or convex quadratic program relaxations!

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Approximation Algorithm

For unrelated machines and weighted sum of completion
times, the minimization problem is NP-hard [LKB 77]

First constant factor ( 16
3 ) approximation algorithm [HSSW 97]

Later improved to 3
2 + ε [SS 02]

Independently further improved to 3
2 by [SS 99, S 01]

The only known constant factor approximation algorithms are
based on LP or convex quadratic program relaxations!

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Approximation Algorithm

For unrelated machines and weighted sum of completion
times, the minimization problem is NP-hard [LKB 77]

First constant factor ( 16
3 ) approximation algorithm [HSSW 97]

Later improved to 3
2 + ε [SS 02]

Independently further improved to 3
2 by [SS 99, S 01]

The only known constant factor approximation algorithms are
based on LP or convex quadratic program relaxations!

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Approximation Algorithm

We know that a PNE always exists for ProportionalSharing

For any such PNE s we know that
∑

i wic
PS
i (s) ≤ 2.619 OPT

Computing such a PNE implies a 2.619-approx. algorithm

In general, best response dynamics might need an exponential
number of deviations before we arrive at a PNE

A coordination mechanism with potential function Φ and social
cost function C is said to be β-nice if for any configuration s:

Φ(s) ≤ C (s)

C (s) ≤ βOPT + 2
∑

i (ci (s)− ci (s−i , s
′
i ))

Lemma

The ProportionalSharing coordination mechanism is β-nice with

β = 3+
√

5
2 ≈ 2.618.
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Corollary

Starting from some initial configuration s0 and moving the player
with the maximum absolute improvement in each step, leads to a
profile s with CPS(s) ≤ (2.619 + O(ε))CSR(s∗) in at most

O
(
n
ε log

(
Φ(s0)
Φ(s∗)

))
steps.
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Conclusion

SmithRule: Robust PoA is at most 4

For any set of strongly local ordering policies the pure PoA is
at least 4

EqualSharing: Robust PoA is 2.5

ProportionalSharing: Robust PoA is 2.619

Combinatorial 2.619-approximation algorithm

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Conclusion

SmithRule: Robust PoA is at most 4

For any set of strongly local ordering policies the pure PoA is
at least 4

EqualSharing: Robust PoA is 2.5

ProportionalSharing: Robust PoA is 2.619

Combinatorial 2.619-approximation algorithm

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Conclusion

SmithRule: Robust PoA is at most 4

For any set of strongly local ordering policies the pure PoA is
at least 4

EqualSharing: Robust PoA is 2.5

ProportionalSharing: Robust PoA is 2.619

Combinatorial 2.619-approximation algorithm

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Conclusion

SmithRule: Robust PoA is at most 4

For any set of strongly local ordering policies the pure PoA is
at least 4

EqualSharing: Robust PoA is 2.5

ProportionalSharing: Robust PoA is 2.619

Combinatorial 2.619-approximation algorithm

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Conclusion

SmithRule: Robust PoA is at most 4

For any set of strongly local ordering policies the pure PoA is
at least 4

EqualSharing: Robust PoA is 2.5

ProportionalSharing: Robust PoA is 2.619

Combinatorial 2.619-approximation algorithm

Vasilis Gkatzelis Coordination Mechanisms in Machine Scheduling



Machine Scheduling
Selfish Machine Scheduling

SmithRule
ProportionalSharing

Approximation Algorithm

Thank you!

Thank you!
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