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Motivation

• Computation of Resultants
• solve polynomial systems

• Implicitization
• parametric (hyper)surfaces

� Reduction to graph enumeration
problems
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Triangulations

Definition
A triangulation of a point set A in Rd is a collection T of subsets of A
called cells s.t.

• The cells cover convex hull(A)

• Every pair of cells intersect at a (possibly empty) common face

• Every cell is a simplex

The operation of switching from one triangulation to another is called flip.



Regular Triangulations

Definition
A triangulation T of a point set A in Rd is regular if there exist a lifting
function w : A! R s.t. T is the projection to Rd of the lower hull of
eA = (a ;w(a)); a 2 A.



The Secondary Polytope
Let A a set of n points in Rd .

Theorem [Gelfand-Kapranov-Zelevinsky]
To every point set A corresponds a Secondary polytope �(A) with
dimension n � d � 1. The vertices correspond to the regular
triangulations of A and the edges to flips.

Enumeration of regular triangulations: [Rambau02], [Masada et al.96]



Minkowski Sum

Definition
The Minkowski sum of two convex polytopes P1 and P2 is the convex
polytope:

P = P1 + P2 := fp1 + p2 j p1 2 P1; p2 2 P2g



Mixed Subdivisions
Let A0;A1; : : : ;Ad point sets in Rd and A = A0 +A1 + : : :+Ad their
Minkowski sum.

Definition
A fine mixed subdivision of A is a collection of subsets (cells) of A s.t.

• the cells cover convex hull(A) and intersect properly

• every cell � = F0 + � � �+ Fd for F0 � A0; : : : ;Fd � Ad

• all Fi are affinely independent and � does not contain any other cell

not fine fineA0 A1 A2 A



The Cayley Trick

Definition
The Cayley embedding of A0; : : : ;Ad in Rd is the point set

C(A0; : : : ; Ad ) = A0 � fe0g [ � � � [Ad � fedg � R
d � Rd

where e0; : : : ; ed are an affine basis of Rd .

Proposition (the Cayley trick)

regular
triangulations

of
C(A0, . . . , Ad)

regular
fine mixed

subdivisions
of

A0 + . . . + Ad
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i -mixed cells
Let A0;A1; : : : ;Ad and A = A0 +A1 + � � �+Ad

Definition
A cell � of a mixed subdivision is called i-mixed if for all j exists Fj � Aj

s.t.
� = F0 + � � �+ Fi�1 + Fi + Fi+1 + � � �+ Fd

where jFj j = 2 (edges) for all j , i and jFi j = 1 (vertex).

0-mixed

2-mixed



i - Mixed Cells Configurations

Generalizing mixed cells configurations of [MichielsVerschelde99]

Definition
i-mixed cells configurations are the equivalence classes of mixed
subdivisions with the same i -mixed cells for all i 2 f0; 1; : : : ; dg.



i - Mixed Cells Configurations

Generalizing mixed cells configurations of [MichielsVerschelde99]

Definition
i-mixed cells configurations are the equivalence classes of mixed
subdivisions with the same i -mixed cells for all i 2 f0; 1; : : : ; dg.

Proposition
There exist flips that transform one i -mixed cell configuration to another
by destroying at least one i -mixed cell.



R-equivalent classes

• The equivalence classes of mixed subdivisions as defined in
[Sturmfels94].

• There exist flips, called cubical flips, that takes us from one
R-equivalent class to another.

Proposition
A flip is cubical if and only if it involves exactly 2 points from each Ai .



An illustration
A0 A1 A2

Secondary polytope
i-mixed cell configurations
R-equivalent classes



Disconnected graph of cubical flips

A0 A1 A2



Disconnected graph of cubical flips

A0 A1 A2



Complexity

Secondary Polytope R-equivalent classesi-mixed cell configurations

i-mixed cell configurations R-equivalence

122 98 8

104148 43018 21

76280 32076 95

3540 3126 22

input point sets
i-mixed cell

configurations
# Secondary

polytope vertices
R-equivalent

classes



Conclusion - Future Work

• # � vertices � #i -mixed cell configurations � #R-equivalent classes
• Algorithmic tests for flips between equivalent classes, disconnected

graph of cubical flips
• Wiki page with experiments

http://ergawiki.di.uoa.gr/index.php/Implicitization

• Enumerate R-equivalent classes

• The polytope defined by R-equivalent classes is a Minkowski
summand of the Secondary polytope
[MichielsCools00],[Sturmfels94]

• In some applications (e.g. implicitization) we
need to compute only a silhouette w.r.t. a
projection of this polytope
[EmirisKonaxisPalios07]

 http://ergawiki.di.uoa.gr/index.php/Implicitization
 http://ergawiki.di.uoa.gr/index.php/Implicitization
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