Enumerating classes of regular triangulations

Vissarion Fisikopoulos joint work with Ioannis Z. Emiris and Christos Konaxis

National and Kapodistrian University of Athens Department of Informatics and Telecommunications

27 August 2010

イロト イヨト イヨト ニヨー シッペ

Motivation

Computation of Resultants

- solve polynomial systems
- Implicitization
 - parametric (hyper)surfaces

• Reduction to graph enumeration problems

イロト イヨト イヨト イヨト

ж

Outline

イロト イボト イヨト イヨト ヨー のくべ

1 Triangulations and mixed subdivisions

· definitions and the connection between them

2 Mixed cell configurations and R-equivalent classes

- define equivalence classes of mixed subdivisions
- flips between classes of mixed subdivisions

Outline

イロト イボト イヨト イヨト ヨー のくべ

1 Triangulations and mixed subdivisions

· definitions and the connection between them

2 Mixed cell configurations and R-equivalent classes

- define equivalence classes of mixed subdivisions
- flips between classes of mixed subdivisions

Triangulations

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

Definition

A **triangulation** of a point set A in \mathbb{R}^d is a collection T of subsets of A called cells s.t.

- The cells cover *convex_hull(A)*
- Every pair of cells intersect at a (possibly empty) common face
- · Every cell is a simplex

The operation of switching from one triangulation to another is called flip.

Regular Triangulations

イロト イ押ト イヨト イヨト

Definition

A triangulation T of a point set A in \mathbb{R}^d is **regular** if there exist a lifting function $w : A \to \mathbb{R}$ s.t. T is the projection to \mathbb{R}^d of the lower hull of $\widetilde{A} = (a, w(a)), a \in A$.

The Secondary Polytope

イロト (四) (日) (日) (日) (日) (日)

Let A a set of n points in \mathbb{R}^d .

Theorem [Gelfand-Kapranov-Zelevinsky]

To every point set *A* corresponds a Secondary polytope $\Sigma(A)$ with dimension n - d - 1. The vertices correspond to the regular triangulations of *A* and the edges to flips.

Enumeration of regular triangulations: [Rambau02], [Masada et al.96]

Minkowski Sum

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

Definition

The **Minkowski sum** of two convex polytopes P_1 and P_2 is the convex polytope:

$$P=P_1+P_2:=\{p1+p2\mid p_1\in P_1, p_2\in P_2\}$$

Mixed Subdivisions

イロト (四) (日) (日) (日) (日) (日)

Let A_0, A_1, \ldots, A_d point sets in \mathbb{R}^d and $A = A_0 + A_1 + \ldots + A_d$ their Minkowski sum.

Definition

A fine mixed subdivision of A is a collection of subsets (cells) of A s.t.

- the cells cover *convex_hull(A)* and intersect properly
- every cell $\sigma = F_0 + \cdots + F_d$ for $F_0 \subseteq A_0, \ldots, F_d \subseteq A_d$
- all F_i are affinely independent and σ does not contain any other cell

The Cayley Trick

イロト (四) (日) (日) (日) (日) (日)

Definition

The **Cayley embedding** of A_0, \ldots, A_d in \mathbb{R}^d is the point set

$$\mathcal{C}(A_0,\ldots, A_d) = A_0 \times \{e_0\} \cup \cdots \cup A_d \times \{e_d\} \subseteq \mathbb{R}^d \times \mathbb{R}^d$$

where e_0, \ldots, e_d are an affine basis of \mathbb{R}^d .

Proposition (the Cayley trick)

Outline

イロト イボト イヨト イヨト ヨー のくべ

Triangulations and mixed subdivisions

• definitions and the connection between them

2 Mixed cell configurations and R-equivalent classes

- define equivalence classes of mixed subdivisions
- flips between classes of mixed subdivisions

i-mixed cells

Let $A_0, A_1, ..., A_d$ and $A = A_0 + A_1 + \cdots + A_d$

Definition

A cell σ of a mixed subdivision is called **i-mixed** if for all j exists $F_j \subseteq A_j$ s.t.

$$\sigma = F_0 + \cdots + F_{i-1} + F_i + F_{i+1} + \cdots + F_d$$

where $|F_j| = 2$ (edges) for all $j \neq i$ and $|F_i| = 1$ (vertex).

i - Mixed Cells Configurations

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト … ヨ

Generalizing mixed cells configurations of [MichielsVerschelde99]

Definition

i-mixed cells configurations are the equivalence classes of mixed subdivisions with the same *i*-mixed cells for all $i \in \{0, 1, ..., d\}$.

i - Mixed Cells Configurations

Generalizing mixed cells configurations of [MichielsVerschelde99]

Definition

i-mixed cells configurations are the equivalence classes of mixed subdivisions with the same *i*-mixed cells for all $i \in \{0, 1, ..., d\}$.

Proposition

There exist flips that transform one i-mixed cell configuration to another by destroying at least one i-mixed cell.

R-equivalent classes

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト … ヨ

- The equivalence classes of mixed subdivisions as defined in [Sturmfels94].
- There exist flips, called **cubical** flips, that takes us from one R-equivalent class to another.

Proposition

A flip is cubical if and only if it involves exactly 2 points from each A_i .

An illustration

Disconnected graph of cubical flips

Disconnected graph of cubical flips

Complexity

input point sets			# Secondary polytope vertices	<i>i</i> -mixed cell configurations	R-equivalent classes
	\bigtriangleup	I	122	98	8
	·	••	104148	43018	21
			76280	32076	95
			3540	3126	22

 $i\mathchar`-mixed$ cell configurations

Secondary Polytope

i-mixed cell configurations

R-equivalence

R-equivalent classes

Conclusion - Future Work

- # Σ vertices \geq #*i*-mixed cell configurations \geq #*R*-equivalent classes
- Algorithmic tests for flips between equivalent classes, disconnected graph of cubical flips
- Wiki page with experiments http://ergawiki.di.uoa.gr/index.php/Implicitization
- Enumerate *R*-equivalent classes
- The polytope defined by *R*-equivalent classes is a Minkowski summand of the Secondary polytope [MichielsCools00],[Sturmfels94]
- In some applications (e.g. implicitization) we need to compute only a silhouette w.r.t. a projection of this polytope [EmirisKonaxisPalios07]

Thank You!

