
Securing Proof-of-Work
Ledgers via Checkpointing

Dimitris Karakostas, Aggelos Kiayias

Bitcoin’s novelties
● Hash chain +
● Proof-of-Work +
● Incentives for participation

Bitcoin’s novelties
● Hash chain +
● Proof-of-Work +
● Incentives for participation

Distributed ledger

↓

Open (decentralised) consensus

Proof-of-Work
● A compute cycle is one identity
● Limit the amount of identities per person

○ Cannot create more identities than CPU cycles one controls
○ Sybil protection

Proof-of-Work
● A compute cycle is one identity
● Limit the amount of identities per person

○ Cannot create more identities than CPU cycles one controls
○ Sybil protection

● Core security assumption: 50%+1 CPU cycles are honest

51% attacks are real

Overview
● How can checkpoints secure an insecure ledger?

○ Checkpointing ideal functionality
○ Security guarantees
○ Ethereum Classic analysis
○ The protocol that realizes checkpointing functionality

● Distributed checkpointing prototype implementation
● Timestamping: decentralizing checkpoints

Our goals
● Secure a ledger temporarily against 51% attacks
● Avoid trivializing the ledger maintenance
● Minimize storage/time overhead

Core idea
● Introduce an external set of parties to guarantee security

Preliminaries
● Fixed number of parties (n)
● Round-based execution
● All messages are delivered by the end of a round (synchronous)
● Block size is unlimited

Preliminaries (cont.)
● Each party has q queries to a random oracle (hashing power)
● Each query is succesful with probability p
● The adversary A:

○ controls t parties (equiv. μA = t/n hashing power)
○ adaptive: corrupts parties on the fly
○ rushing: decides strategy after (possibly) delaying honest messages

Ledger properties
● Stable transaction τ: each honest party reports τ in the same position in the

ledger

● Persistence: a transaction in a block at least k blocks away from the ledger’s
head is stable

● Liveness: a transaction which is continuously provided to the parties
becomes stable after at most u rounds

Checkpointing functionality
● The ideal definition of checkpoints
● An omnipresent entity
● Expresses the needed security properties

Checkpointing functionality
● The ideal definition of checkpoints
● An omnipresent entity
● Expresses the needed security properties

Security of the checkpointed ledger

Persistence

(a transaction in a block at least k blocks away from the ledger’s head is stable)

Persistence
● k (persistence parameter) ≥ kc (checkpoint interval)
● At least one in the last k blocks is a checkpoint
● Checkpoints cannot be reverted
● All blocks up to the last checkpoint are stable

Security of the checkpointed ledger

Liveness

(a transaction which is continuously provided to the parties becomes stable after
at most u rounds)

Liveness
● If an honest block B gets checkpointed after a transaction τ is created, then τ

becomes stable
○ Proof: if τ is not in any block prior to B, then B will include it (because honest parties include all

unpublished transactions and blocks are unlimited)

● Creating checkpoints is not enough; they need to be put in the chain

Front-running: An attack against liveness

Liveness analysis
● Separate the honest from the adversarial parties
● Argue about security wrt. honest parties (regardless of adversarial strategy)
● Stochastic Markov chain for protocol execution modelling

Liveness Markov chain
● Each state is identified by (i, j):

○ i: the number of blocks an honest party needs to produce to reach the next checkpoint
○ j: the number of blocks the adversary necessarily needs to produce to reach the next

checkpoint

● Random variables:
○ H: if at least one honest party produces a block at a given round, then H = 1, else H = 0
○ M(i): if all adversarial parties produce i blocks at a given round, then M(i) = 1, else M(i) = 0

● Expectations:
○ E(H) = h = 1 − (1−p)q(n−t)

○ E(M(i)) = m(i) = (qi
t
) · p

i · (1−p)qt−i

● Transition probabilities (b ≥ 0):
○ To (i, j - b): (1 - h) · m(b)

○ To (i - 1, j - b): h · m(b)

Liveness Markov chain (kc = 1)

Markov chain properties
● Stochastic transition matrix: matrix that defines the transition probabilities

between two states

● Canonical form: (Q: transition states, R: absorption states)

● Probability of transition from si to sj after u rounds: ij-th column of Mu

● Expected number of steps before absorption: ,

Liveness of a checkpointed Ethereum Classic
Liveness probability for 51% adversary

Liveness of a checkpointed Ethereum Classic
Expected number of steps before absorption

The checkpointing protocol
● Parameterized by a fail-stop protocol πfs
● Every kc blocks:

○ Pick a random nonce (eg. randomized signature)
○ Run πfs to agree on checkpoint
○ Append nonce to chosen block

The checkpointing protocol

Proof strategy
● Show that ideal and real worlds are indistinguishable

≈

Chain decision using checkpoints
● Every kc blocks, send the last block to checkpoint authority
● Retrieve checkpoint, append it to the chain, and then keep mining

Prototype implementation
● PKI for checkpointing nodes
● 15 Amazon EC2 t2.micro nodes
● Raft: fail-stop consensus protocol
● kc = 4
● Checkpoints are aggregated signatures
● Test blockchain: Private Ethereum Proof-of-Authority

Prototype evaluation
Storage (size of checkpoints):

● 8 (nodes) ∙ 64 (bytes of a single signature) = 512 bytes
● 0.6% increase in ledger’s size

Prototype evaluation

Latency

(time between retrieval of block and issuing of signed checkpoint)

Timestamps: Decentralized checkpoints

Chain decision using timestamps

Timestamping security
● Security guarantees: Same as checkpoints with kc = 1
● Timestamping every block is important:

○ A chain segment that follows a non-timestamped block can be removed in the future

● The entire block header needs to be timestamped:
○ Timestamping a hash is not enough, as the adversary can keep a timestamped block secret

Decentralized timestamping

Future work
● Byzantine Fault Tolerant checkpointing service
● Randomized checkpointing (intervals)
● Non-rushing adversaries
● Non-interactive (but centralised) timestamping
● Checkpoints for Proof-of-Stake

Conclusion
● In case of adversarial majority, an external set of honest parties needs to be

introduced
● Checkpoints need to become part of the chain to ensure liveness

○ Front-running attack

● Checkpoints can be decentralized via distributed ledger-based timestamping

Thank you!

