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Distributed ledger 

↓

Open (decentralised) consensus



Proof-of-Work
● A compute cycle is one identity
● Limit the amount of identities per person

○ Cannot create more identities than CPU cycles one controls
○ Sybil protection



Proof-of-Work
● A compute cycle is one identity
● Limit the amount of identities per person

○ Cannot create more identities than CPU cycles one controls
○ Sybil protection

● Core security assumption: 50%+1 CPU cycles are honest



51% attacks are real



Overview
● How can checkpoints secure an insecure ledger?

○ Checkpointing ideal functionality
○ Security guarantees
○ Ethereum Classic analysis
○ The protocol that realizes checkpointing functionality

● Distributed checkpointing prototype implementation
● Timestamping: decentralizing checkpoints



Our goals
● Secure a ledger temporarily against 51% attacks
● Avoid trivializing the ledger maintenance
● Minimize storage/time overhead

Core idea
● Introduce an external set of parties to guarantee security



Preliminaries
● Fixed number of parties (n)
● Round-based execution
● All messages are delivered by the end of a round (synchronous)
● Block size is unlimited



Preliminaries (cont.)
● Each party has q queries to a random oracle (hashing power)
● Each query is succesful with probability p
● The adversary A: 

○ controls t parties (equiv. μA = t/n hashing power)
○ adaptive: corrupts parties on the fly
○ rushing: decides strategy after (possibly) delaying honest messages



Ledger properties
● Stable transaction τ: each honest party reports τ in the same position in the 

ledger

● Persistence: a transaction in a block at least k blocks away from the ledger’s 
head is stable

● Liveness: a transaction which is continuously provided to the parties 
becomes stable after at most u rounds
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Security of the checkpointed ledger

Persistence
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Persistence
● k (persistence parameter) ≥ kc (checkpoint interval)
● At least one in the last k blocks is a checkpoint
● Checkpoints cannot be reverted
● All blocks up to the last checkpoint are stable



Security of the checkpointed ledger

Liveness

(a transaction which is continuously provided to the parties becomes stable after 
at most u rounds)



Liveness
● If an honest block B gets checkpointed after a transaction τ is created, then τ 

becomes stable
○ Proof: if τ is not in any block prior to B, then B will include it (because honest parties include all 

unpublished transactions and blocks are unlimited)

● Creating checkpoints is not enough; they need to be put in the chain



Front-running: An attack against liveness



Liveness analysis
● Separate the honest from the adversarial parties
● Argue about security wrt. honest parties (regardless of adversarial strategy)
● Stochastic Markov chain for protocol execution modelling



Liveness Markov chain
● Each state is identified by (i, j):

○ i: the number of blocks an honest party needs to produce to reach the next checkpoint
○ j: the number of blocks the adversary necessarily needs to produce to reach the next 

checkpoint

● Random variables:
○ H:  if at least one honest party produces a block at a given round, then H = 1, else H = 0
○ M(i):  if all adversarial parties produce i blocks at a given round, then M(i) = 1, else M(i) = 0

● Expectations:
○ E(H) = h = 1 − (1−p)q(n−t)

○ E(M(i)) = m(i) = ( qi
t
 ) · p

i · (1−p)qt−i

● Transition probabilities (b ≥ 0):
○ To (i, j - b): (1 - h) · m(b)

○ To (i - 1, j - b): h · m(b)



Liveness Markov chain (kc = 1)



Markov chain properties
● Stochastic transition matrix: matrix that defines the transition probabilities 

between two states

● Canonical form:                                (Q: transition states, R: absorption states)

● Probability of transition from si to sj after u rounds: ij-th column of Mu

● Expected number of steps before absorption:                             ,



Liveness of a checkpointed Ethereum Classic
Liveness probability for 51% adversary



Liveness of a checkpointed Ethereum Classic
Expected number of steps before absorption



The checkpointing protocol
● Parameterized by a fail-stop protocol πfs
● Every kc blocks:

○ Pick a random nonce (eg. randomized signature)
○ Run πfs to agree on checkpoint
○ Append nonce to chosen block



The checkpointing protocol



Proof strategy
● Show that ideal and real worlds are indistinguishable

≈



Chain decision using checkpoints
● Every kc blocks, send the last block to checkpoint authority
● Retrieve checkpoint, append it to the chain, and then keep mining



Prototype implementation
● PKI for checkpointing nodes
● 15 Amazon EC2 t2.micro nodes
● Raft: fail-stop consensus protocol
● kc = 4
● Checkpoints are aggregated signatures
● Test blockchain: Private Ethereum Proof-of-Authority



Prototype evaluation
Storage (size of checkpoints):

● 8 (nodes) ∙ 64 (bytes of a single signature) = 512 bytes
● 0.6% increase in ledger’s size



Prototype evaluation

Latency

(time between retrieval of block and issuing of signed checkpoint)



Timestamps: Decentralized checkpoints



Chain decision using timestamps



Timestamping security
● Security guarantees: Same as checkpoints with kc = 1
● Timestamping every block is important:

○ A chain segment that follows a non-timestamped block can be removed in the future

● The entire block header needs to be timestamped:
○ Timestamping a hash is not enough, as the adversary can keep a timestamped block secret



Decentralized timestamping



Future work
● Byzantine Fault Tolerant checkpointing service
● Randomized checkpointing (intervals)
● Non-rushing adversaries
● Non-interactive (but centralised) timestamping
● Checkpoints for Proof-of-Stake



Conclusion
● In case of adversarial majority, an external set of honest parties needs to be 

introduced
● Checkpoints need to become part of the chain to ensure liveness

○ Front-running attack

● Checkpoints can be decentralized via distributed ledger-based timestamping

Thank you!


