Securing Proof-of-Work
Ledgers via Checkpointing

Dimitris Karakostas, Aggelos Kiayias

HE weutouteun

Bitcoin’s novelties

e Hash chain +
e Proof-of-Work +
e Incentives for participation

Bitcoin’s novelties

e Hash chain +
e Proof-of-Work +
e Incentives for participation

Distributed ledger

l

Open (decentralised) consensus

Proof-of-Work

e A compute cycle is one identity

e Limit the amount of identities per person

o Cannot create more identities than CPU cycles one controls
o Sybil protection

Proof-of-Work

e A compute cycle is one identity

e Limit the amount of identities per person
o Cannot create more identities than CPU cycles one controls
o Sybil protection

e Core security assumption: 50%+1 CPU cycles are honest

51% attacks are real

<

Zencasn

classic

BITCOIN Pllﬁg?ir\

Overview

e How can checkpoints secure an insecure ledger?
Checkpointing ideal functionality

Security guarantees

Ethereum Classic analysis

The protocol that realizes checkpointing functionality

e Distributed checkpointing prototype implementation
e Timestamping: decentralizing checkpoints

o O O

@)

Our goals

e Secure a ledger temporarily against 51% attacks
e Avoid trivializing the ledger maintenance
e Minimize storage/time overhead

Core idea

e Introduce an external set of parties to guarantee security

Preliminaries

Fixed number of parties (n)

Round-based execution

All messages are delivered by the end of a round (synchronous)
Block size is unlimited

Preliminaries (cont.)

e Each party has g queries to a random oracle (hashing power)
e Each query is succesful with probability p
e The adversary A:

o controls t parties (equiv. M, = t/n hashing power)

o adaptive: corrupts parties on the fly
o rushing: decides strategy after (possibly) delaying honest messages

Ledger properties

e Stable transaction 1: each honest party reports T in the same position in the
ledger

e Persistence: a transaction in a block at least k blocks away from the ledger’s
head is stable

e Liveness: a transaction which is continuously provided to the parties
becomes stable after at most u rounds

Checkpointing functionality

e The ideal definition of checkpoints
e An omnipresent entity
e EXxpresses the needed security properties

Checkpointing functionality

e The ideal definition of checkpoints
e An omnipresent entity
e EXxpresses the needed security properties

Functionality Fcheckpoint

FCheckpoint interacts with a set of parties V and holds the local chain C' and the checkpoint
chain C., both initially set to €. It is parameterized by k., which defines the number of
blocks between two consecutive checkpoints, and the maxvalid(-, -) algorithm.

Upon receiving (CANDIDATECHECKPOINT, C’) from a party V, forward it to A. Upon
receiving (CANDIDATECHECKPOINT, C’) from A, if C. < C’ set C' := maxvalid(C, C"). Next,

if |C'\ C,| = k. compute a list R of |V| random values as r; L {0,1}* and send (NONCE, R)
to A. Upon receiving from A a response (NONCE, R'), such that R’ is a list of at least
L‘;' values from R, pick a value r; € R/, return (CHECKPOINT, tail(C)||r;) to V and set

=10 = Cllr;-

Security of the checkpointed ledger

Persistence

(a transaction in a block at least k blocks away from the ledger’s head is stable)

Persistence

® Kk (persistence parameter) 2 k_ (checkpoint interval)
e At least one in the last k blocks is a checkpoint

e Checkpoints cannot be reverted

e All blocks up to the last checkpoint are stable

Security of the checkpointed ledger

Liveness

(a transaction which is continuously provided to the parties becomes stable after
at most u rounds)

Liveness

e If an honest block B gets checkpointed after a transaction 71 is created, then 1

becomes stable

o Proof: if Tis not in any block prior to B, then B will include it (because honest parties include all
unpublished transactions and blocks are unlimited)

e Creating checkpoints is not enough; they need to be put in the chain

Front-running: An attack against liveness

Genesis

Honest chain

Front-running
private chain

Checkpoint
threshold

\
EEEER

Liveness analysis

e Separate the honest from the adversarial parties
e Argue about security wrt. honest parties (regardless of adversarial strategy)
e Stochastic Markov chain for protocol execution modelling

Liveness Markov chain

e Each state is identified by (i, j):
o i: the number of blocks an honest party needs to produce to reach the next checkpoint
o j: the number of blocks the adversary necessarily needs to produce to reach the next
checkpoint
e Random variables:
o H: if at least one honest party produces a block at a given round, then H=1,else H=0
o MO: if all adversarial parties produce i blocks at a given round, then M® =1, else MO =0
e Expectations:
o EMH)=h=1-(1-p)ir
o E(M(i)) =m®= (qit) : pi . (1_p)qt—i
e Transition probabilities (b = 0):
o To(i,j-b):(1-h)-m®
o To(i-1,j-b)h-m®

Liveness Markov chain (k. = 1)

hm©+h(1-m©)

-~ N

~_ h(@-m©®)

hmxg
1

Markov chain properties

e Stochastic transition matrix: matrix that defines the transition probabilities
between two states

e Canonical form: M = (g

eV

) (Q: transition states, R: absorption states)

e Probability of transition from s, to s, after u rounds: ij-th column of M“
e Expected number of steps before absorptlon t = [Zj ONZ]} I-Q)1'=N

Liveness of a checkpointed Ethereum Classic

Liveness probability for 51% adversary

1.001

0.751

Liveness probability
T

0.251

0.001

0 30 60 90 120 150 180 210 240 270 300
u (12 sec rounds)

Liveness of a checkpointed Ethereum Classic

Expected number of steps before absorption

x 107
13541 Adversarial 4.169
mining power
—_ 33%
10161 50%+1 >3.127A
2 —_— 66% b
= | =
- -
e o
9 6771 12.085 g
w w
& =
= =
3381 -1.042
01 -(0.000

0 5 10 15 20 25 30 35 40 45 50
k. (blocks)

The checkpointing protocol

e Parameterized by a fail-stop protocol T,
e Every k_ blocks:

o Pick a random nonce (eg. randomized signature)
o Run T to agree on checkpoint
o Append nonce to chosen block

The checkpointing protocol

Protocol 7checkpoint

A checkpointing party which runs Tcheckpoint 15 parameterized by the list V of n check-
pointing parties, a (fail-stop) consensus protocol mgs, a validation predicate Validate, the
function maxvalid, and k.. Tt keeps a local checkpointed block, B,, initially set to c.

Upon receiving (CANDIDATECHECKPOINT, C') from a party V, check:
e Ji: C'|i] = B. (i.e. if C' extends the checkpoint);
e Validate(C’) = 1 (i.e. if C' is valid);
e |C'| —i=k. (i.e. if C' is long enough).
If all hold do:
1. pick r; <i {0,1}~;
2. pick input (C’,r;) for the protocol mgs;

3. execute mrs with the parties in V to agree on an input (C”,7'), such that V(C,#) €
I : maxvalid(C’,C') = C" with T the set of inputs, i.e. choose the output according to
maxvalid;

4. set B, := tail(C")

|

Finally, return (CHECKPOINT, B3;) to V.

Proof strategy

e Show that ideal and real worlds are indistinguishable

Functionality Fcheckpoint

Fcheckpoint interacts with a set of parties V and holds the local chain C' and the checkpoint
chain C,, both initially set to €. It is parameterized by k., which defines the number of
blocks between two consecutive checkpoints, and the maxvalid(-, -) algorithm.

Upon receiving (CANDIDATECHECKPOINT, C’) from a party V, forward it to \A. Upon
receiving (CANDIDATECHECKPOINT, C) from A, if C, < C” set C' := maxvalid(C, C’). Next,
if |C'\ C¢| = k. compute a list R of |V| random values as r; & {0,1}* and send (NONCE, R)
to A. Upon receiving from A a response (NONCE, R'), such that R’ is a list of at least
L;,l values from R, pick a value 7; € R, return (CHECKPOINT, tail(C)||r;) to V and set
C:=C=C

Ti-

0

Protocol 7checkpoint

A checkpointing party which runs Tcpeckpoint i8 parameterized by the list V of n check-
pointing parties, a (fail-stop) consensus protocol 7gs, a validation predicate Validate, the
function maxvalid, and k.. Tt keeps a local checkpointed block, B, initially set to c.

Upon receiving (CANDIDATECHECKPOINT, C') from a party V, check:
e Ji: C'li| = B, (i.e. if C' extends the checkpoint);
e Validate(C’) = 1 (i.e. if C" is valid);
o |C'| —i= ke (ie. if C' is long enough).
If all hold do:
1. pick r; & {0,1}¥;
2. pick input (C’,r;) for the protocol mgs;

3. execute mgs with the parties in V to agree on an input (C’,7’), such that V((:,f) €
I : maxvalid(C”,C') = C”" with T the set of inputs, i.e. choose the output according to
maxvalid;

4. set B, := tail (C")||r".

Finally, return (CHECKPOINT, ;) to V.

Chain decision using checkpoints

e Everyk_blocks, send the last block to checkpoint authority
e Retrieve checkpoint, append it to the chain, and then keep mining

Protocol T CheckpointMiningRes

A party which runs mcheckpointMiningRes 18 parameterized by maxvalid, the n checkpointing
partics V which run mcpeckpoint; and k.. It keeps a local chain €' and the checkpoint index
i., initially set to € and 0.

Upon receiving (CANDIDATECHAIN, C') do:
o if [|C'| — |C|| < k¢ set C := maxvalid(C, C")
e clse set i := i, + k. and send C'[: i.] to all parties in V. Upon receiving ['—21] messages

(CHECKPOINT, B||r) from different checkpointing parties, if C'[i.] = B||r set C' := C’,
else if C'[ic] = B set C := C'[: i]||r.

Upon receiving (READ) return (CHAIN, C).

Prototype implementation

PKI for checkpointing nodes

15 Amazon EC2 t2.micro nodes

Raft: fail-stop consensus protocol

k. =4

Checkpoints are aggregated signatures

Test blockchain: Private Ethereum Proof-of-Authority

Prototype evaluation

Storage (size of checkpoints):

e 8 (nodes) - 64 (bytes of a single signature) = 512 bytes
e 0.6% increase in ledger’s size

Prototype evaluation

Latency

(time between retrieval of block and issuing of signed checkpoint)

2000
o . EE 5

e London (EU): 557 ms 15001
e N. California (US West): 620 ms B E,

i . 510001 ;.. .
e Sao Paulo (South America): 711 ms s e

3 '-'. ;,. > o, v

e Tokyo (Asia Pacific): 723 ms 0001 &EATT
e Singapore (Asia Pacific): 779 ms " _' .

0 320 640 960 1280 1600 1920 2240
Checkpoint index

Timestamps: Decentralized checkpoints

Functionality Frimestamp

FTimestamp holds the following items:
e 7jj: an initially empty list of timestamped strings;

e 7: a counter initially set to 0;

Upon receiving (TIMESTAMP, 5), if V(s,-) € Tjj : ' # s, set 7:= 7+ 1 and add (s,7) to 7).

Upon receiving (VERIFY, s,7), if 3(s,7) € T} then return (VERIFYTIMESTAMP, T).

Chain decision using timestamps

Timestamping security

e Security guarantees: Same as checkpoints with kc = 1
e Timestamping every block is important:
o Achain segment that follows a non-timestamped block can be removed in the future

e The entire block header needs to be timestamped:
o Timestamping a hash is not enough, as the adversary can keep a timestamped block secret

Decentralized timestamping

Smart contract deployment 0.4%
Ethereum | BTC* header timestamping 0.07%
Cost ETH* header timestamping 0.16$
o BTC* header timestamping 0.45%
Bitcoin
ETH* header timestamping 3.6%
Stable timestamp 9 minutes
Ethereum
Unstable timestamp 15 seconds
Latency
¥ Stable timestamp 60 minutes
Bitcoin
Unstable timestamp 10 minutes
Full node 181 GB
SPV implementation 5 GB
Ethereum
. NIPoPoW implementation 6 MB
Proof size
FlyClient implementation 3 MB
Full node 240 GB
Bitcoin
SPV implementation 418 GB

Future work

Byzantine Fault Tolerant checkpointing service
Randomized checkpointing (intervals)
Non-rushing adversaries

Non-interactive (but centralised) timestamping
Checkpoints for Proof-of-Stake

Conclusion

e In case of adversarial majority, an external set of honest parties needs to be

introduced

e Checkpoints need to become part of the chain to ensure liveness
o Front-running attack
e Checkpoints can be decentralized via distributed ledger-based timestamping

Thank you!

