
Efficient Constructions
of Bilinear

Accumulators

Ioanna Karantaidou, Foteini Baldimtsi

Set Membership

List of members

...

Alice

...

...

Bank, GMU, subscription-
based service, etc

I am Alice

Alice

List of members as a Data structure
• Size of List: O(n)
• (at least one of) Additions/Deletions,

lookups depends on n
• Privacy against list

holder/membership verification in a
privacy preserving way: Expensive!

Accumulator Setting

VERIFIERMANAGER

Set S

Acc.v

Initialize &
Create Acc.v

Accumulator Value: holds Set S

Positive Accumulator: adding User x

VERIFIERMANAGER

Set S

Acc.v

User x
Wx

UpdateAlg

update
message

x

Add(x)
Update Acc.v

Positive Accumulator: proving membership

VERIFIERMANAGER

Set S

Acc.v

User x
Wx

UpdateAlg

Wx

access/service

update
message

x

Add(x)
Update Acc.v

Accumulator value size: O(1)
Witness size: O(1)
UpdateAlg: O(1)

Membership Verification time:
O(1)

Security Properties (membership)

...

Alice

...

Charlie

Alice

Accumulator acc
Verification algorithm:VerMem(𝑤𝑥)

𝑥 ∈ 𝑎𝑐𝑐 → VerMem(𝑤𝑥)=1

𝑥 ∉ 𝑎𝑐𝑐 → VerMem(𝑤𝑥)=0
(or =1 with negligible
prob.)

Set/List
Verification=lookup

Alice is a member →
verification

Bob is not a member
→ verification

correctness

soundness

2 Types of Accumulators

RSA based accumulators [CL02, LLX07, BdM93]
• Accumulate odd prime numbers
• Factorization of group hidden
• Strong RSA assumption

Bilinear Pairing based accumulators [N05, CKS09, ATSM09, ZKP17]
• Accumulate integers
• Known order groups
• Witness, accumulator value belong in pairing friendly groups
• q-SDH assumption

Choice depends on the application!

Common Issues with Known Accumulators
• Unnecessary accumulator updates that cause high communication costs

• Expensive non-membership operations

• Computational overhead due to extra properties

Can we do better if we take advantage of the presence of a trusted
entity (manager)?

Discussion on the secret key model

• Most known constructions have a trusted setup
• Anonymous Credentials, subscription-based services, etc

Our Results

1. Positive Bilinear Accumulator with Optimal
Communication Cost

2. Universal Bilinear Accumulator with Constant Non-
Membership Witness Creation

3. ZK Accumulator with Constant Non-Membership
Witness Creation and Update

FIRST CONSTRUCTION

Positive Bilinear Accumulator with
Optimal Communication Cost

(sk)

Positive Bilinear Accumulator

𝐴𝑐𝑐. 𝑣 = 𝑔 𝑥1+𝑠𝑘 … 𝑥𝑛+𝑠𝑘

𝐴𝑐𝑐. 𝑣 = 𝑔 𝑥1+𝑠𝑘 … 𝑥𝑛+𝑠𝑘 (𝒙+𝑠𝑘)

User x

Set S

Add(x)

𝑤𝑥 = 𝑔 𝑥1+𝑠𝑘 … 𝑥𝑛+𝑠𝑘

upmsg

Positive Bilinear Accumulator
Verification

𝐴𝑐𝑐. 𝑣 = 𝑔 𝑥1+𝑠𝑘 … 𝑥𝑛+𝑠𝑘 (𝒙+𝑠𝑘)

𝑤𝑥 = 𝑔 𝑥1+𝑠𝑘 … 𝑥𝑛+𝑠𝑘

𝑤𝑥 = 𝐴𝑐𝑐. 𝑣(𝑥+𝑠𝑘)
−1

𝑤𝑥
(𝑥+𝑠𝑘) = 𝐴𝑐𝑐. 𝑣

Public parameters: 𝑔, 𝑔𝑠𝑘 , (𝑔𝑠𝑘)2, (𝑔𝑠𝑘)3, … →

𝑤𝑥
(𝑥+𝑠𝑘)

e(𝒘𝒙, 𝒈𝒙 𝒈𝒔𝒌)=e(𝑨𝒄𝒄. 𝒗 , 𝒈)
(VerMem)

Public parameters:

𝑔, 𝑔𝑠𝑘 , (𝑔𝑠𝑘)2, (𝑔𝑠𝑘)3,…→

𝑔𝑥 , 𝑔𝑠𝑘

(sk)

Positive Bilinear Accumulator

𝐴𝑐𝑐. 𝑣 = 𝑔 𝑥1+𝑠𝑘 … 𝑥𝑛+𝑠𝑘

𝐴𝑐𝑐. 𝑣 = 𝑔 𝑥1+𝑠𝑘 … 𝑥𝑛+𝑠𝑘 (𝒙+𝑠𝑘)

User x

Set S

Del(x)

upmsg

Positive Bilinear Accumulator

Minimum communication
bound (on update
messages) for positive
accumulators= |d|
(number of deletions)

Camacho, Philippe, and Alejandro
Hevia. "On the impossibility of batch
update for cryptographic
accumulators." International
Conference on Cryptology and
Information Security in Latin America.
Springer, Berlin, Heidelberg, 2010.

Positive Bilinear Accumulator with
Optimal Communication Cost-First try

(sk)

𝐴𝑐𝑐. 𝑣 = 𝑔𝑢

User x

Add(x)

𝑤𝑥 = 𝑔𝑢 (𝒙+𝑠𝑘)
−1

𝐴𝑐𝑐. 𝑣 = 𝑔𝑢 (𝒙+𝑠𝑘)
−1

Del(x)upmsg

Positive Bilinear Accumulator with
Optimal Communication Cost-First try

(sk)

𝐴𝑐𝑐. 𝑣 = 𝑔𝑢

User x

Add(x)

𝑤𝑥 = 𝑔𝑢 (𝒙+𝑠𝑘)
−1

𝐴𝑐𝑐. 𝑣 = 𝑔𝑢 (𝒙+𝑠𝑘)
−1

Del(x)upmsg

• Communication
efficient

• Dynamic (add,del)
• Positive

(membership)

• Correctness

holds and VerMem same
• Soundness??

Positive Bilinear Accumulator with
Optimal Communication Cost-First try

Proof overview:
• R (public parameters) runs an adversary A (public parameters)
• A submits lists of to-be-added, to-be-deleted elements 𝐿𝐴, 𝐿𝐷
• R simulates updates and witnesses
• A breaks acc soundness
• R breaks q-SDH assumption

q-SDH: Given (p, 𝐺, 𝐺𝑇 , 𝑒, 𝑔), {𝑔𝑠𝑘}𝑖 , 𝑖 = 0, … , 𝑞 there is negligible
probability of finding

𝑔
1

𝑠𝑘+𝑥 for 𝑥 ∈ ℤ𝑝

Positive Bilinear Accumulator with
Optimal Communication Cost-First try

Proof overview:
• R (public parameters) runs an adversary A (public parameters)
• A submits lists of to-be-added, to-be-deleted elements 𝐿𝐴, 𝐿𝐷
• R simulates updates and witnesses
• A breaks acc soundness
• R breaks q-SDH assumption

Adaptive soundness not achieved

Positive Bilinear Accumulator with
Optimal Communication Cost-

Modular Construction

(x,r) in A-
sound

positive
additive acc

r in NA-
sound

positive
dynamic acc

A-sound
positive
dynamic

acc

Baldimtsi, Foteini, et al. "Accumulators with applications to anonymity-preserving revocation." 2017 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2017.

Positive Bilinear Accumulator with
Optimal Communication Cost-

Modular Construction

• r=F(x), where F() is a
pseudorandom function

• Updates for deletions

Communication cost= |d|
Optimal!

No updates for positive
accumulator that supports
additions only

(x,r) in A-
sound

positive
additive acc

r in NA-
sound

positive
dynamic acc

A-sound
positive
dynamic

acc

• Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An accumulator based on bilinear maps and efficient revocation for anonymous credentials. In PKC 2009

• Lan Nguyen. Accumulators from bilinear pairings and applications. In CT-RSA 2005.

Positive

Camenisch et al 09 Nguyen 05 this work (NA-
sound)

this work (A-
sound)

Add 1 1 1 1

Del 1 1 1 1

MemWitCreate 1 1 1 1

NonMemWitCreate - - - -

MemWitUpOnAdd 1 1 0 0

MemWitUpOnDel 1 1 1 1

NonMemWitUpOnAd
d

- - - -

NonMemWitUpOnDe
l

- - - -

VerMem 1 1 1 1

VerNonMem - - - -

Manager storage 1 1 1 1

Parameters 2q q q q

Com. cost |a|+|d| |a|+|d| |d| |d|

Efficient ZKPs ✓ ✓ ✓ ✓

Adaptively-sound ✓ ✓ ✓

SECOND CONSTRUCTION

Universal Bilinear Accumulator with
Constant Non-Membership Witness Creation

Additional Properties (non-membership:NM)

Accumulator acc
NM verification algorithm:

VerNonMem(𝑤𝑥)

𝑥 ∉ 𝑎𝑐𝑐 → VerNonMem(𝑤𝑥)=1

𝑥 ∈ 𝑎𝑐𝑐 → VerNonMem(𝑤𝑥)=0
(or =1 with negligible prob.)

Set/List
NM verification=lookup

Bob is not a member
→ NM verification

Alice is a member
→ NM verification

Charlie

Alice

...

Alice

...

correctness

soundness

Generic Universal Modular Construction
motivation: Non membership for y

Users (public parameters):
S={𝑥𝑖}, polynomial division

Manager (sk):

ς𝑖=1
|S|

(𝑥𝑖+𝑠𝑘) ∈ ℤ, used as exponent

a (ς𝑖=1
|S|

𝑦𝑖) + 𝑏 𝑦 = 1
Users (public parameters)/Manager

(sk):

ς
𝑖=1
|S|

𝑦𝑖 ∈ ℤ, Euclidean algorithm

Bilinear ATSM09, S={𝑥𝑖}, 𝑥𝑖 ∈ ℤ𝑝 RSA LLX07, S={𝑦𝑖}, 𝑦𝑖 primes

Generic Universal Modular Construction
motivation: Non membership for y

Users (public parameters):
S={𝑥𝑖}, polynomial division

Manager (sk):

ς𝑖=1
|S|

(𝑥𝑖+𝑠𝑘) ∈ ℤ, used as exponent

a (ς𝑖=1
|S|

𝑦𝑖) + 𝑏 𝑦 = 1
Users (public parameters)/Manager

(sk):

ς
𝑖=1
|S|

𝑦𝑖 ∈ ℤ, Euclidean algorithm

Bilinear ATSM09, S={𝑥𝑖}, 𝑥𝑖 ∈ ℤ𝑝 RSA LLX07, S={𝑦𝑖}, 𝑦𝑖 primes

non-membership cost: |S|

Generic Universal Modular Construction
Overview

Can we replace non-membership with
constant-runtime membership??
Yes, with a trusted manager

A-sound
positive

dynamic acc
for

S

A-sound
positive

dynamic acc
for

D-S

A-sound
universal
dynamic
acc for S

Can we make sure that 𝐴𝐶𝐶1and
𝐴𝐶𝐶2 are disjoint?
The accumulator manager always
signs the most up to date value of
the accumulator

𝑨𝑪𝑪𝟏 𝑨𝑪𝑪𝟐

Generic Universal Modular Construction

(sk)

𝑨𝑪𝑪𝟏 . 𝐆𝐞𝐧(𝟏
𝛌, ∅)

𝑨𝑪𝑪𝟐 . 𝐆𝐞𝐧(𝟏
𝛌, 𝐃)

Generic Universal Modular Construction

(sk)

User x

Add(x)

𝑤𝑥 = 𝐴𝐶𝐶1 .𝑤

𝑨𝑪𝑪𝟏 (𝑺𝟏) 𝑨𝑪𝑪𝟐 (𝑺𝟐)

𝑥 ∈ 𝑆2

𝑨𝑪𝑪𝟏 (𝑺𝟏ڂ{𝒙}) 𝑨𝑪𝑪𝟐 (𝑺𝟐− {𝒙})
𝑨𝑪𝑪𝟏. 𝐚𝐝𝐝(𝐱)

𝑨𝑪𝑪𝟐. 𝐝𝐞𝐥(𝐱)

Generic Universal Modular Construction

(sk)

User x

Del(x)

𝑤𝑥 = 𝐴𝐶𝐶2 . 𝑤

𝑨𝑪𝑪𝟏 (𝑺𝟏) 𝑨𝑪𝑪𝟐 (𝑺𝟐)

𝑥 ∈ 𝑆1

𝑨𝑪𝑪𝟐 (𝑺𝟐ڂ{𝒙})𝑨𝑪𝑪𝟏 (𝑺𝟏− {𝒙})
𝑨𝑪𝑪𝟏. 𝐝𝐞𝐥(𝐱)

𝑨𝑪𝑪𝟐. 𝐚𝐝𝐝(𝐱)

𝑤 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝
𝑤 (non-membership)

Generic Universal Modular Construction

User x

𝑤𝑥

VERIFIER

𝑨𝑪𝑪𝟏. 𝐕𝐞𝐫𝐌𝐞𝐦(𝐰𝐱)

𝑨𝑪𝑪𝟐. 𝐕𝐞𝐫𝐌𝐞𝐦(𝑤𝑦)

𝑤𝑦

User y

O(1)

Generic Universal Modular Construction

Note on Efficiency
Concretes:
• Generation (run once) linear

to Domain size
• Add/Del of double cost

Asymptotics:
All operations constant,
independent of accumulated
set S

Generic Universal Modular Construction-
Soundness

Theorem: A combination of accumulators 𝐴𝐶𝐶1 , 𝐴𝐶𝐶2 is a universal dynamic
adaptively-sound accumulator if 𝐴𝐶𝐶1 , 𝐴𝐶𝐶2 are positive dynamic adaptively-sound

accumulators of domain D and one is holding S⊂D and the other one 𝑆 ⊂D and
public updates are not permitted.

Generic Universal Modular Construction
Soundness

Theorem: A combination of accumulators 𝐴𝐶𝐶1 , 𝐴𝐶𝐶2 is a universal dynamic
adaptively-sound accumulator if 𝐴𝐶𝐶1 , 𝐴𝐶𝐶2 are positive dynamic adaptively-sound

accumulators of domain D and one is holding S⊂D and the other one 𝑆 ⊂D and
public updates are not permitted.

INTUITION:
Information obtained by 2

accumulators with the same
instantiation could be obtained by
different states of 1 accumulator

Generic Universal Modular Construction
Soundness

Theorem: A combination of accumulators 𝐴𝐶𝐶1 , 𝐴𝐶𝐶2 is a universal dynamic
adaptively-sound accumulator if 𝐴𝐶𝐶1 , 𝐴𝐶𝐶2 are positive dynamic adaptively-sound

accumulators of domain D and one is holding S⊂D and the other one 𝑆 ⊂D and
public updates are not permitted.

INTUITION:
Information obtained by 2

accumulators with the same
instantiation could be obtained by
different states of 1 accumulator

PROOF:
R has access to Add/Del oracle.

A breaks ACC=(𝐴𝐶𝐶1 , 𝐴𝐶𝐶2)
soundness.

R breaks 𝐴𝐶𝐶1 (positive) soundness

Efficiency Results
Positive Universal

Camenisch et al
09

Nguyen 05 this work (A-
sound)

Au et al 09 This work-
Instantiation with
Nguyen 05

Add 1 1 1 1 1

Del 1 1 1 1 1

MemWitCreate 1 1 1 1 1

NonMemWitCreate - - - |S| 1

MemWitUpOnAdd 1 1 0 1 1

MemWitUpOnDel 1 1 1 1 1

NonMemWitUpOnAdd - - - 1 1

NonMemWitUpOnDel - - - 1 1

VerMem 1 1 1 1 1

VerNonMem - - - 1 1

Manager storage 1 1 1 |S| 1

Parameters 2q q q q q?

Com. cost |a|+|d| |a|+|d| |d| |a|+|d| |a|+|d|

Efficient ZKPs ✓ ✓ ✓ ✓ ✓

Adaptively-sound ✓ ✓ ✓ ✓ ✓

THIRD CONSTRUCTION

ZK Accumulator with
Constant Non-Membership Witness Creation and Update

Application: ZK Accumulator

Esha Ghosh , Olga Ohrimenko , Dimitrios Papadopoulos , Roberto Tamassia and Nikos Triandopoulos "Zero-Knowledge
Accumulators and Set Operations" IACR Cryptology ePrint Archive 2015 (2015): 404.

MANAGER

Acc.v

Member/non-
member, witness

x?

S ??

Adv

Application: ZK Accumulator

MANAGER

Member/non-
member, witness

x?

S ??

Goal:
• Adv can learn only the latest query

answers

How:
• Randomness in the exponent

Adv

Acc.v

Application: ZK Accumulator-
Why

1. Verifier is ZK
adversary

2. ZK
accumulator
is managed
by a trusted
entity

3. Randomness
harms
efficiency

Application: ZK Accumulator-
the need for randomness

MANAGER

Acc.v=𝑔𝑟(𝑥1+𝑠𝑘)(𝑥2+𝑠𝑘) S = {𝑥1, 𝑥2}

Acc.v=𝑔𝑟 𝒓
′(𝑥1+𝑠𝑘)(𝑥2+𝑠𝑘)(𝒙+𝑠𝑘) S = {𝑥1, 𝑥2, 𝒙}

Add(x)

Public parameters: 𝑔, 𝑔𝑠𝑘 , (𝑔𝑠𝑘)2, (𝑔𝑠𝑘)3,…

𝑆 = {𝑥1, 𝑥2}

𝑎𝑐𝑐. 𝑣 = 𝑔(𝑥1+𝑠𝑘)(𝑥2+𝑠𝑘) = 𝑔𝑥1𝑥2+(𝑥1+𝑥2)𝑠𝑘+𝑠𝑘
2
= 𝑔𝑥1𝑥2(𝑔𝑠𝑘)𝑥1+𝑥2(𝑔𝑠𝑘)2

1. First element’s witness is g (generator is public information)
2. A guess about S can be verified with public information
3. A witness can be updated with public information (still valid?)

Application: ZK Accumulator-
the need for randomness

MANAGER

Acc.v=𝑔𝑟(𝑥1+𝑠𝑘)(𝑥2+𝑠𝑘)

S = {𝑥1, 𝑥2}

Acc.v=𝑔𝑟 𝒓
′(𝑥1+𝑠𝑘)(𝑥2+𝑠𝑘)(𝒙+𝑠𝑘)

S′ = {𝑥1, 𝑥2, 𝒙}

aux’={rr’}

Set S (aux=r)

Add(x)

S ??

r ??

Verification
works!

Application: ZK Accumulator-
Non-membership usually

𝑔𝑢

𝑔𝑟𝑢

Non-membership
verification
requires r

Users (public parameters):
S={𝑥𝑖}, polynomial division

Manager (sk):

ς𝑖=1
|S|

(𝑥𝑖+𝑠𝑘) ∈ ℤ, used as exponent

Bilinear ATSM09, S={𝑥𝑖}, 𝑥𝑖 ∈ ℤ𝑝

Application: ZK Accumulator-
Non-membership by Ghosh et al

𝑆 ∩ {𝑥} ≠ ∅

𝑤𝑦 = 𝑊1,𝑊2 = (𝑔(𝑞1 𝑠𝑘 +𝛾(𝑦+𝑠𝑘)) 𝒓−1, 𝑔𝑞2 𝑠𝑘 −𝛾 ς𝑖=1
S
(𝑥𝑖+𝑠𝑘))

𝑒 𝑊1, 𝑨𝒄𝒄. 𝒗 𝑒 𝑊2, 𝑔
𝑥𝑔𝑠𝑘 = 𝑒(𝑔, 𝑔)

Remove
accumulator
randomness

Application: ZK Accumulator-
Non-membership by Ghosh et al

𝑆 ∩ {𝑥} ≠ ∅

𝑤𝑦 = 𝑊1,𝑊2 = (𝑔(𝑞1 𝑠𝑘 +𝜸(𝑦+𝑠𝑘)) 𝑟−1 , 𝑔𝑞2 𝑠𝑘 −𝜸 ς𝑖=1
S
(𝑥𝑖+𝑠𝑘))

𝑒 𝑊1, 𝐴𝑐𝑐. 𝑣 𝑒 𝑊2, 𝑔
𝑥𝑔𝑠𝑘 = 𝑒(𝑔, 𝑔)

Add
query/witness
specific
randomness

Application: ZK Accumulator-
Non-membership by Ghosh et al

𝑆 ∩ {𝑥} ≠ ∅

𝑤𝑦 = 𝑊1,𝑊2 = (𝑔(𝑞1 𝑠𝑘 +𝜸(𝑦+𝑠𝑘)) 𝑟−1 , 𝑔𝑞2 𝑠𝑘 −𝜸 ς𝑖=1
S
(𝑥𝑖+𝑠𝑘))

𝑒 𝑊1, 𝐴𝑐𝑐. 𝑣 𝑒 𝑊2, 𝑔
𝑥𝑔𝑠𝑘 = 𝑒(𝑔, 𝑔)

Add
query/witness
specific
randomness

(+) r not needed for verification
(-) no witness update algorithm

Update → NonMemWitCreate: O(|S|)

Application: ZK Accumulator-
Modular Construction

𝑆 ∩ {𝑥} ≠ ∅

𝑤𝑦 = 𝑊1,𝑊2 = (𝑔(𝑞1 𝑠𝑘 +𝜸(𝑦+𝑠𝑘)) 𝑟−1 , 𝑔𝑞2 𝑠𝑘 −𝜸 ς𝑖=1
S
(𝑥𝑖+𝑠𝑘))

𝑒 𝑊1, 𝐴𝑐𝑐. 𝑣 𝑒 𝑊2, 𝑔
𝑥𝑔𝑠𝑘 = 𝑒(𝑔, 𝑔)

Add
query/witness
specific
randomness

(+) r not needed for verification
(-) no witness update algorithm

Update → NonMemWitCreate: O(|S|)

Solution:
instantiate our generic modular universal
construction with ZK accumulators with

membership operations
Result:

Non-membership witness creation, Non-
membership witness update: O(1)

Summary

In the secret key model:

1. We can hit optimal communication cost (Positive Bilinear
Accumulator with Optimal Communication Cost)

2. We can have constant non-membership (Universal Bilinear
Accumulator with Constant Non-Membership Witness
Creation)

3. We can have constant ZK (ZK Accumulator with Constant
Non-Membership Witness Creation and Update)

Available on ePrint soon

