
Mining in Logarithmic Space

Aggelos Kiayias, Nikos Leonardos, Dionysis Zindros
ATHECRYPT 2020, NTUA

An exponential improvement on blockchain storage

Notational conventions
Concat: B0 B1 B2 … Bn

i-th item from the beginning or the end: C[i], C[-i]

Range: C[i:j], C[i:], C[:j]

Range with items: C{A:Z}, C{A:}, C{:Z}

Keep only μ-superblocks: C↑μ

Blockchains as transaction serializers
● Blockchains are chains of blocks: C = B0 B1 B2 … Bn
● The first block is Genesis: C[0] = G
● A transaction is part of a block

○ and belongs to a transaction language Ltx

● Each block contains transaction sequences: B.data = tx0 tx1 tx2 … txm
● The blockchain serializes transactions into a ledger:

○ L = B0.data || B1.data || … || Bn.data

● A ledger is a transaction sequence across the whole chain

block

tx

tx

tx

tx

tx

tx

tx

tx

B =

B[1]

tx

tx

tx

tx

tx

tx

tx

tx

B[0]

tx

tx

tx

tx

tx

tx

tx

tx

B[2]

tx

tx

tx

tx

tx

tx

tx

tx

L =

The ledger

The chain

C =

B[0].data B[1].data B[2].data

Blockchains as a state machine
● Blockchains have a current state

○ Belongs to a state language LS

● It starts with the Genesis state: SG
● It evolves by applying a transition function δ

○ It takes a previous state and a transaction
○ It outputs the next state, or ⊥ if transaction cannot be applied

● δ: LS x Ltx → LS ∪ {⊥}

● S’ = δ(S, tx)

Applying the transition function repeatedly
● We can apply δ multiple times:

δ*(S, ε) = S
δ*(S, tx0 || tx) = δ*(δ(S, tx0), tx), if δ(S, tx0) ≠ ⊥
 ⊥, otherwise

● We can apply δ to blocks:
δ(S, B) = δ*(S, tx0 tx1 … txn), where B.data = tx0 tx1 … txn

● We can apply δ* to chains:
δ*(S, ε) = S
δ*(S, BC) = δ*(δ(S, B), C), if δ(S, B) if δ(S, B) ≠ ⊥
 ⊥, otherwise

δSG δ δ δ δ δ δ δ δ δ
SB[0]

Historical VS current state
● Blockchain systems contain two types of state:

○ Historical state
○ Current state

● Historical state involves all transactions
● Current state involves data needed to verify new blocks

Examples of current state and evolution
BTC current state: S is the UTXO set.
Transaction consumes UTXOs and produces new UTXOs:
δ(S, (ins, outs)) = S \ ins ∪ outs, if ins ⊆ S and Σp∈ins p.v > Σp∈outs p.v
 ⊥, otherwise

ETH current state: S is account balances.
Transaction consumes balance and creates new balance:

δ(S, (from, to, value)) = S \ {(from, a), (to, b)} ∪ {(from, a - value), (to, b + value)},
if (from, a) ∈ S, (to, b) ∈ S and a ≥ value
⊥, otherwise

The problem of state storage
Idea! As full nodes, we can drop history and keep current state only:

● We can know how much balance every user has (in UTXOs or accounts)
● We cannot know what transactions they did in the past
● We cannot know how their balance evolved over time

Historical data is pruned for efficiency. Interested parties can still store it.

Dropping both block headers and txs
● We propose a new blockchain protocol in which no one stores the chain
● We prune:

○ Historical txs
○ Old blocks
○ Old block headers

What to store? What to send?
● Proposal: Full nodes no longer store a chain
● Instead, they store a compressed chain
● They mine on top of a compressed chain and extend it
● If they mine successfully, they send the new compressed chain to the network
● Upon receiving a compressed chain from the network, the nodes compare it

against their currently adopted compressed chain for length
● Nodes adopt the longest compressed chain

The chain compression algorithm
● We want an algorithm that, given a chain C, compresses it to compressed

chain π = compress(C)
● We want to be able to mine on top of π
● Given π, mine a block B, then calculate the post-mining compressed state
● The online condition must hold:

if compress(C) = π, then compress(π || B) = compress(CB)

Extending the Backbone protocol to compress

maxvalid(π1, π2, … πk)

max predicate must be defined

π = compress(πB)
return π

pow(x, π)

Committing to current state within a block
● If we know only the tip B of the blockchain C is valid and we receive a new

block B’
● How do we validate the application data of CB’?
● How to validate application data of block B’?
● The known valid block B must commit to the current state:

B.commit = δ(SG, C[:-1])
● Then it suffices to check that δ(B.commit, B’.data) ≠ ⊥
● Ethereum already does this: Blocks include the root of the

State Merkle–Patricia Trie
● Bitcoin doesn’t do it, but can easily (soft fork) be extended to include a

UTXO Merkle Tree root

The problem of block verification: Forking chains
Can we verify a new incoming block for correctness if we don’t have history? Yes!

Consider incoming block B extending chain C into CB.
Consider state after block C, SC = δ(SG, C). If δ(SC, B) ≠ ⊥, then block B is valid.

Suppose we receive from the network a chain C’ longer than our adopted chain C.
We have already validated C. All we need to do is check:
δ(SC∩C’ , C’{(C∩C’)[-1]:}) ≠ ⊥

We have already (C∩C’)[-1].state. To validate, we need to know all the blocks in
C’{(C∩C’)[-1]:}.

Extending the Backbone protocol to compress

validation predicate must be redefined

sufficient to validate δ in last k blocks

Keeping the last k blocks
● Honest majority assumption gives rise to Common Prefix property
● There will never be accidental forks longer than k blocks

i.e. |C’{(C∩C’)[-1]:}| ≤ k
● Therefore, for validation we just need to keep the last k blocks of the chain
● Define compress(C) = C[-k:]
● The online condition holds: If π = compress(C), then

compress(CB) = C[-k+1:] B = compress(compress(C)B)

G C’

C

(C∩C’)[-1] C’{(C∩C’)[-1]:}

Bootstrapping from genesis
● ...but we can’t just keep the last k blocks
● How can a node waking up from genesis sync?
● They need to know what the longest chain is

? ? ?? ???G C

k

NIPoPoWs to the rescue

SPV protocol

Verifier

Honest prover

Adversarial prover

Chain CH

Chain C
A

|CH| > |CA|?

genesis

Proof of Proof-of-Work protocol

Verifier

Honest prover

Adversarial prover

Short proof πH

Short proof π
Aensure π contains

μ-superblocks
|πH| > |πA|?

genesis

The Prover/Verifier model
● We don’t care about adversarial verifiers!
● Honest verifier connects to multiple provers
● At least one prover is honest -- we don’t know which
● Prover runs a full node

Prover runs a light node! Everyone runs a light node!
● Verifier wakes up stateless (has genesis block only)
● Each prover sends a proof (=compressed chain) to the verifier
● Verifier chooses one of the proofs as legitimate
● Verifier decides about a value of a predicate p of the honest chain

Can we use any NIPoPoW?
There are two NIPoPoW constructions in the literature:

● Superblock NIPoPoWs (Kiayias, Miller, Z)
○ Deterministic

● FlyClient NIPoPoWs (Benedikt Bünz, Kiffer, Luu, Zamani)
○ Probabilistic

Online property requires determinism. We will use superblock NIPoPoWs.

The proof-of-work equation

H(block) ≤ T

proof-of-work
“target”

hash function
(random oracle)

block meta data,
transactions, nonce

Superblocks

Some blocks achieve a lower target than required

Pr[H(block) ≤ T / 2μ | H(block) ≤ T] = 2-μ

The μ-superblock condition ● All blocks are 0-superblocks
● Half the blocks are 1-superblocks
● ¼ of blocks are 2-superblocks
● ⅛ of blocks are 3-superblocks

μ-supertarget

The superchain*

* your results may vary – probabilistic structure

Is the chain interlinked in practice?
● Yes! Ethereum has approved EIP-210 for adoption
● Will be implemented soon
● EIP-210 commits to block headers of all past blocks in an MMR in every block

“... it allows blocks to directly point to blocks far behind them, which enables
extremely efficient and secure light client protocols” –Vitalik Buterin

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-210.md

0 0 0

2

1 1

3

0 ?

Provable predicates
● We are creating a proof π that the last k blocks are χ = B-k , B-k+1 , … , B-1

Compressing state
● Proof π is a bag of blocks, as subset of blocks from C

π ⊆ C

● Take blockchain C and diffuse it into levels μ = 1…log(|C|)
● For every level μ with more than 2m blocks, create the diffusion D[μ]
● D[μ] for every level contains most recent 2m blocks
● D[μ] contains blocks to cover m most recent blocks of μ + 1 level
● π is the union of all D[μ]

Comparing state
● Receive two proofs π1, π2
● We want to find which one is the best

Succinctness
How big is |π|?

● |D| ∈ Θ(polylog(|C|))
● ∀μ: |D[μ]| ∈ Θ(m) = const

|π| = Σ|D[μ]|

NIPoPoWs are succinct: |π| ∈ Θ(polylog(|C|))

We have reduced the storage space required by light nodes (|π|)
compared to legacy nodes (|C|) exponentially

Shortcomings of the logspace scheme
● Contrary to the full protocol, it cannot withstand temporary dishonest majority
● To understand why, we must redefine persistence as computational

Thanks! Questions?

Only some rights reserved

