Ethereum’s Fee Market Reform of EIP 1559

Barnabé Monnot1, Stefanos Leonardos2, Stratis Skoulakis2, Daniel Reijsbergen2 and Georgios Piliouras2

1Ethereum Foundation, Robust Incentives Group
2Singapore University of Technology and Design
Current Fee Market Mechanism

<table>
<thead>
<tr>
<th>Users</th>
<th>Transactions</th>
<th>Miners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit transactions to a common pool that is viewed by miners</td>
<td>Each transaction requires some predefined gas</td>
<td>Select which transactions to include</td>
</tr>
<tr>
<td>Users bids = gas prices: how much they are willing to pay for each unit of gas</td>
<td>Including a transaction poses risks: increases block size and propagation time → risk for stale blocks</td>
<td>Choose to include only transactions that cover their intrinsic marginal costs</td>
</tr>
</tbody>
</table>
Current Mechanism: **Generalized First Price Auction**

- A typical transaction requires 21k gas units.
- Block size is 20M gas units (about 950 transactions).
- Users with similar transactions but different valuations for their transactions/urgency to process their transactions.
- Typically: n users to bid for k slots with n >> k.
Current Mechanism: Problems

- Extremely volatile transaction fees
- Unnecessary transaction delays
- Unnecessary guesswork for the right fee

Random day: September 27

- Over 25% of blocks report a price ratio above 12!
Current Mechanism: **Problems**

- Extremely volatile transaction fees
- Unnecessary transaction delays
- Unnecessary guesswork for the right fee

Random week: September 21-27

- Median gas prices fluctuate from 400 Gwei to 100 Gwei.
Proposed Reform: EIP 1559

Idea: set a target block load and a dynamic minimum gas price, called basefee which

- increases when blocks are above target (“too full”)
- decreases when blocks are below target load (“too empty”)
Proposed Reform: **EIP 1559**

- Set a **target block load** and a dynamic **minimum gas price** to achieve this
- Parameters

<table>
<thead>
<tr>
<th>User bids</th>
<th>Protocol</th>
<th>Miners</th>
<th>Transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f = \text{feecap}$</td>
<td>$T/2 = \text{target load}$</td>
<td>$e = \text{minimum marginal cost}$</td>
<td>✔️ or ✗</td>
</tr>
<tr>
<td>$p = \text{premium}$</td>
<td>$b = \text{basefee}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **feecap**: the highest price the user is willing to pay
- **basefee**: a dynamic minimum gas price that is burnt
- **premium**: the maximum tip the miner may receive from the transaction
Proposed Reform: EIP 1559

- **Examples**

<table>
<thead>
<tr>
<th>User</th>
<th>Protocol</th>
<th>Miner</th>
<th>Transaction</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>f = 10, p = 2</td>
<td>b = 6</td>
<td>e = 2</td>
<td>✓ included</td>
<td>f > b + e, p > e</td>
</tr>
<tr>
<td>f = 10, p = 1</td>
<td>b = 6</td>
<td>e = 2</td>
<td>✗ not included</td>
<td>f > b + e but p < e</td>
</tr>
<tr>
<td>f = 10, p = 2</td>
<td>b = 9</td>
<td>e = 2</td>
<td>✗ not included</td>
<td>p > e but f < b + e</td>
</tr>
</tbody>
</table>

- **Condition for inclusion:**

 \[
 \min(f - b_t, p) > e
 \]

- **Left side:** miner’s tip
Proposed Reform: **EIP 1559**

If condition is met, then

- user pays **transactions fees** at most its feecap
- **basefee** is burnt
- **miner’s tip** at most the premium set by the user
Goals of EIP 1559

- Price discovery for the transaction fee (quickly match demand fees)
- Price-taking behavior (transparency, efficiency): next-block inclusion
- Not a goal: lower fees (but yes, lower variance of fees)
- Not a goal: always the same fee

Goal of this work

- Test the basefee dynamics theoretically and experimentally under different assumptions
Basefee: Dynamic Adjustment

The basefee, b_{t+1}, at block height $t+1$ is

$$b_{t+1} = b_t \left(1 + d \times \frac{g_t | b_t - T/2}{T/2} \right)$$

- $d = \text{adjustment parameter or step size (think } d = 12.5\%)$
- $T/2 = \text{target block size (think } T = 952\%)$
- $g_t | b_t = \text{number of included transactions in block } B_t, t>0 \text{ given that the basefee is } b_t$.

This a stochastic process with the Markov property.
Edge Cases

- Proofs of convergence difficult due to edge cases.

- E.g.: all users have similar valuation, and basefee jumps (by a step of d) from below to above and vice versa.

- Here: 3000 arrivals per block with equally spaced valuations in 200-230.
Basefee: Dynamics

- Pointwise convergence: not possible
- Convergence in expectation? If block size is unlimited, then

\[
E[g_l \mid b_l] = E\left[\sum_{i=1}^{N} X_i \mid b_l \right] = E[N]E[X \mid b_l] = \lambda \cdot (1 - F(b_l + \epsilon)),
\]

where \(\lambda \) is the Poisson arrival rate of transactions and \(F \) is the distribution of valuations.
Basefee: Dynamics

- Pointwise convergence: not possible
- Convergence in expectation? If we ignore the limit in block size for a while, then the sequence of conditional expectations is

\[
\mathbb{E}[b_{t+1} \mid b_t] = b_t + b_t \left(\frac{d}{T/2} \left[\lambda \left(1 - F(b_t + \epsilon)\right) - T/2 \right] \right)
\]

which yields a single fixed point candidate

\[
b^* = F^{-1}(1 - T/2\lambda) - \epsilon
\]
Theorem

- Consider the deterministic process $b_{t+1} = b_t \times (1 + r_t)$ with

$$b_{t+1} = b_t + b_t \times \frac{d}{T/2} \left(\min \{ T, \lambda(1 - F(b_t + \epsilon)) \} - T/2 \right)$$

- Then

$$b_{t+1} \to [(1 - d)b^*, (1 + d)b^*]$$
Proof

- One-dimensional deterministic dynamical system
- Sign analysis on the rate of change

\[r_t = d \times \left(\frac{\min\{T, \lambda(1-F(b_t+\epsilon))\} - T/2}{T/2} \right) \]

with \(r_t > 0 \) for \(b_t < b^* \) and \(r_t < 0 \) for \(b_t > b^* \).

- Bounded oscillations: starting at a \(b_t > b^* \)

\[b_{t+1} > b_t(1-d) > b^*(1-d) \]

and analogously when starting at a \(b_t < b^* \).
Relaxing the assumptions

- Block size = T, then

$$
\mathbb{E}[g_t \mid b_t] = \mathbb{E} \left[\min \left\{ T, \sum_{i=1}^{N} X_i \right\} \mid b_t \right] \leq \min \left\{ T, \mathbb{E} \left[\sum_{i=1}^{N} X_i \mid b_t \right] \right\}
$$

$$
= \min \left\{ T, \lambda (1 - F(b_t + \epsilon)) \right\}.
$$

- Hence

$$
\mathbb{E}[b_{t+1} \mid b_t] \leq b_t \left(1 + \frac{d}{T/2} \left[\min \left\{ T, \lambda (1 - F(b_t + \epsilon)) \right\} - T/2 \right] \right)
$$

and the same proof applies in an upper bound sense.
Non-Strategic Users

- Poisson arrivals of constant rate suggest that price discovery occurs fast and the basefee stabilizes there.

- Users bid their valuation as feecap and miner’s cost as premium.

\[
\text{payoff} = \text{value} - \text{waiting cost (per block)} - \text{transaction fee}
\]
Non-Strategic Users: Ex-post Rationality

- Some users receive negative utility but only before the basefee reaches its stationary level.

\[
\text{payoff} = \text{value} - \text{waiting cost (per block)} - \text{transaction fee}
\]
Non-Strategic Users: Demand Shocks

- Poisson arrivals with demand shocks suggest that price discovery occurs fast and the basefee stabilizes there.

- What is the speed of convergence?

payoff = value - waiting cost (per block) - transaction fee
Strategic Users

- **Non-strategic Users** (fixed bids according to their parameters)

Strategic Users (bid their valuation as feecap and min premium + increment seen in previous block)

early on: strategic users bid against each other instead of their true value
Strategic Users: Inclusion Rates

- First blocks only strategic users
- When the basefee stabilizes, strategic and non-strategic users are included in the same ratio

- Figure: numbers of included

but: when basefee settles, strategic behaviour does not help
Strategic Users: Valuations

- **First blocks**: strategic premium determines inclusion
- **Stationary blocks**: basefee and valuation determine inclusion

Figure: values of included

but: when basefee settles, strategic behaviour does not help
Open Questions - Current Work

- Study the mode of convergence (if any) of the dynamic update rule
- Continue to study different scenarios (already promising results)
- Transition period
- (Floating) Escalator
- ...

All code and notebooks open-sourced in the [abm1559 library (Github)](https://github.com/abm1559)
Thank you