Approximation Algorithms

Presentation: Valia Mitsou
Outline

1. Introduction
2. Vertex Cover
3. Knapsack
4. TSP
1. Introduction
Optimization Problems

• **Optimization Problem**: Every instance of the problem corresponds to some feasible solutions each of them having a value via an **Objective Function**.

• We seek for an **Optimal Solution** i.e. a feasible solution that has an optimal value.

• Optimization problems can be either **Maximization** or **Minimization**

• **Example**: The Vertex Cover Problem
 - **Min or Max**: Minimization
 - **Instance**: A graph
 - **Feasible Solutions**: Every Vertex Cover
 - **Objective Function**: The cardinality $|\star|$ function
 - **Optimal Solution**: A Vertex Cover of minimum cardinality
The PO-class (i)

Consider a minimization problem:
Given an instance of size n try to find the minimum possible feasible solution.

Then the corresponding decision problem would be:
Given an instance of size n and a fixed k (in binary) is there any feasible solution of value less or equal to k?

⇝ If the decision version is polynomially solvable on n and $\log k$ then we can construct a polynomial time algorithm for the optimization version.
The PO-class (ii)

- Determine $l, k = 2^l$ such that there is a feasible solution of value less or equal to 2^l but there is not a feasible solution of value less or equal to 2^{l-1}, by running $\log k$ times the polynomial time algorithm for the decision version.

- Then do binary search to find the exact value of k ($\log k$ runs of the decision version algorithm).

This implies a polynomial time algorithm on the size of the input. We call the class of problems that have a polynomial time solvable decision version PO class (PO stands for P-Optimization).
The NPO-class

Problems in PO are polynomial time solvable. Thus we turn our attention to **NP-Optimization Problems** (i.e. the corresponding decision problem is in NP) and especially in **NP-hard problems**. Unless P=NP we cannot have a polynomial time algorithm to compute the optimal value for general instance of an NP-hard problem.

- Solve the problem exactly on limited instances.
- Find polynomial time approximation algorithms
Notation

- Π: Problem
- I: Instance
- $\text{SOL}_A(\Pi, I)$: The solution we obtain for the instance I of the problem Π using algorithm A.
- $\text{OPT}(\Pi, I)$: The optimal solution for the instance I of the problem Π.

Note: We usually omit Π, I and A from the above notation.
Approximability

• An algorithm A for a minimization problem Π achieves a ρ_A approximation factor, $(\rho_A : \mathbb{N} \rightarrow \mathbb{Q}^+)$ if for every instance I of size $|I| = n$:

$$\frac{\text{SOL}_A(I)}{\text{OPT}(I)} \leq \rho_A(n)$$

• An algorithm A for a maximization problem Π achieves a ρ_A approximation factor, $(\rho_A : \mathbb{N} \rightarrow \mathbb{Q}^+)$ if for every instance I of size $|I| = n$:

$$\frac{\text{SOL}_A(I)}{\text{OPT}(I)} \geq \rho_A(n)$$

\Rightarrow An approximation algorithm of factor ρ guarantees that the solution that the algorithm computes cannot be worse than ρ times the optimal solution.
Approximation Schemes

Informally: We can have as good approximation factor as we want trading off time.

Formally:

• A is an **Approximation Scheme (AS)** for problem Π if on input (I, ε), where I an instance and $\varepsilon > 0$ an error parameter:
 ◦ $SOL_A(I, \varepsilon) \leq (1 + \varepsilon) \cdot OPT(I)$, for minimization problem
 ◦ $SOL_A(I, \varepsilon) \geq (1 - \varepsilon) \cdot OPT(I)$, for maximization problem

• A is a **PTAS** (Polynomial Time AS) if for every fixed $\varepsilon > 0$ it runs in polynomial time in the size of I.

• A is an **FPTAS** (Fully PTAS) if for every fixed $\varepsilon > 0$ it runs in polynomial time in the size of I and in $1/\varepsilon$.
Approximation World

Depending on the approximation factor we have several classes of approximation:

- **logn**: $\rho(n) = O(\log n)$
- **APX**: $\rho(n) = \rho$ (constant factor approximation)
Representatives

- **Non-approximable**: Traveling Salesman Problem
- **log\(n\)**: Set Cover
- **APX**: Ferry Cover 😊
- **PTAS**: Makespan Scheduling
- **FPTAS**: Knapsack
2. Vertex Cover
The (Cardinality) Vertex Cover Problem

Definition: Given a graph $G(V, E)$ find a minimum cardinality Vertex Cover, i.e. a set $V' \subseteq V$ such that every edge has at least one endpoint in V'.

- A trivial feasible solution would be the set V
- Finding a minimum cardinality Vertex Cover is NP-hard (reduction from 3-SAT)
- An approximation algorithm of factor 2 will be presented
Lower Bounding

A general strategy for obtaining a ρ-approximation algorithm (for a minimization problem) is the following:

- Find a lower bound l of the optimal solution ($l \leq \text{OPT}$)
- Find a factor ρ such that $\text{SOL} = \rho \cdot l$

\Rightarrow The previous scheme implies $\text{SOL} \leq \rho \cdot \text{OPT}$
Matchings

- **Definition**: Given a graph $G(V, E)$ a matching is a subset of the edges $M \subseteq E$ such that no two edges in M share an endpoint.

- **Maximal Matching**: A matching that no more edges can be added.

- **Maximum Matching**: A maximum cardinality matching.

→ Maximal Matching is solved in polynomial time with the greedy algorithm
→ Maximum Matching is also solved in polynomial time via a reduction to max-flow
A 2-Approximation Algorithm for Vertex Cover

- **The Algorithm**: Find a maximal matching M of the graph and output the set V' of matched vertices.

- **Correctness**:
 - Edges belonging in M are all covered by V'.
 - Since M is a maximal matching, any other edge $e \in E \setminus M$ will share at least one endpoint v with some $e' \in M$. So v is in V' and guards e.

- **Analysis**:
 - Any vertex cover should pick at least one endpoint of each matched edge $\rightarrow |M| \leq \text{OPT}$
 - $|V'| = 2|M|

Thus $\text{SOL} = |V'| = 2|M| \leq 2\text{OPT} \Rightarrow \text{SOL} \leq 2\text{OPT}$

\Rightarrow Vertex Cover is in APX
Can we do better?

Questions

• Can the approximation guarantee be improved by a better analysis?

• Can an approximation algorithm with a better guarantee be designed using the same lower bounding scheme?

• Is there some other lower bounding methods that can lead to an improved approximation algorithm?

Answers

• Tight Examples

• Other kind of examples

• This is not so immediate...
Tight Examples

- **A better analysis** might imply an \(l' \) s.t. \(l < l' \leq \text{OPT} \). Then there would be a \(\rho' < \rho \) s.t. \(\rho \cdot l = \rho' \cdot l' \), so

\[
\text{SOL} = \rho \cdot l = \rho' \cdot l' \leq \rho' \text{OPT}
\]

Thus we could obtain a better approximation factor \(\rho' < \rho \).

- **Definition**: An infinite family of instances in which \(l = \text{OPT} \) is called **Tight Example** for the \(\rho \)-approximation algorithm.

- If \(l = \text{OPT} \) then there is no \(l' > l \) s.t. \(l' \leq \text{OPT} \).
 \(\sim \)So we can’t find a better factor by better analysis.
Tight Example for the matching algorithm

- The infinite family $K_{n,n}$ of the complete balanced bipartite graphs is a tight example.
- $|M| = n = \text{OPT}$. So the solution returned is 2 times the optimal solution.
Other kind of examples

- Using the same lower bound $l \leq \text{OPT}$ we might find a better algorithm with $\rho' < \rho$ that computes $\text{SOL} = \rho' \cdot l$. This would imply a better ρ' approximation algorithm.

- An infinite family where $l = \frac{1}{\rho} \text{OPT}$ implies that $\text{SOL} = l \cdot \rho' = \frac{1}{\rho} \rho' \text{OPT} < \text{OPT}$ (contradiction).

Thus it is impossible to find another algorithm with better approximation factor using the lower bound $l \leq \text{OPT}$.
Using the matching lower bound

- The infinite family K_{2n+1} of the complete bipartite graphs with odd number of vertices have an optimal vertex of cardinality $2n$

- A maximal matching could be $|M| = n = \frac{1}{2}\text{OPT}$. So the solution returned is the optimal solution.
Other lower bounds for Vertex Cover

- This is still an open research area.
- Best known result for the approximation factor (until 2004) is $2 - \Theta\left(\frac{1}{\sqrt{\log n}}\right)$ (due to George Karakostas)
- Uses Linear Programming.
3. Knapsack
Pseudo-polynomial time algorithms

- An instance I of any problem $Π$ consists of objects (sets, graphs, ...) and numbers.
- The size of I ($|I|$) is the number of bits needed to write the instance I.
- Numbers in I are written in binary.
- Let I_u be the instance I where all numbers are written in unary.
- **Definition**: A pseudo-polynomial time algorithm is an algorithm running in polynomial time in $|I_u|$.
- Pseudo-polynomial time algorithms can be obtained using Dynamic Programming.
Strong NP-hardness

- **Definition**: A problem is called strongly NP-hard if any problem in NP can be polynomially reduced to it and numbers in the reduced instance are written in unary.

- **Informally**: A strongly NP-hard problem remains NP-hard even if the input numbers are less than some polynomial of the size of the objects.

$$\implies$$ Strongly NP-hard problems cannot admit a pseudo-polynomial time algorithm, assuming $P \neq NP$ (else we could solve the reduced instance in polynomial time, thus we could solve every problem in NP in polynomial time. That would imply $P = NP$)
The existence of FPTAS

Theorem: For a minimization problem Π if \forall instance I,

• OPT is strictly bounded by a polynomial of $|I_u|$ and

• the objective function is integer valued

then Π admits an FPTAS \Rightarrow Π admits a pseudo-polynomial time algorithm

$\sim\Rightarrow$ A strongly NP-hard problem (under the previous assumptions) cannot admit an FPTAS unless $P = NP$
The Knapsack Problem (i)

- **Definition**: The discrete version is given a set of \(n \) items \(X = \{x_1, \ldots, x_n\} \) where a profit : \(X \rightarrow \mathbb{N} \) and a weight : \(X \rightarrow \mathbb{N} \) function are provided and a “knapsack” of total capacity \(B \in \mathbb{N} \), find a subset \(Y \subseteq X \) whose total size is bounded by \(B \) and maximizes the total profit.

- **Definition**: The continuous version is given a set of \(n \) continuous items \(X = \{x_1, \ldots, x_n\} \) where profit and weight function are provided and a “knapsack” of total capacity \(B \in \mathbb{N} \), find a sequence \(\{w_1, \ldots, w_n\} \) of portions where \(\sum_{i=1}^{n} w_i = B \) that maximizes the total profit.
The Knapsack Problem (ii)

- The greedy algorithm (sort the objects by decreasing ratio of profit to weight) solves in polynomial time the continuous version.
- The greedy algorithm can be made to perform arbitrarily bad for the discrete version.
- Discrete Knapsack is NP-hard.
- Pseudo-polynomial time and FPTAS algorithms will be presented for the discrete version.
- For now on we focus on discrete knapsack and call it "knapsack"
A pseudo-polynomial time algorithm for knapsack (i)

• Let P be the profit of the most profitable object
• nP is a trivial upper bound on the total profit
• For $i \in \{1, \ldots, n\}$ and $p \in \{1, \ldots, nP\}$ let $S(i, p)$ denote a subset of $\{x_1, \ldots, x_i\}$ whose total profit is exactly p and its total weight is minimized
• Let $W(i, p)$ denote the weight of $S(i, p)$ (∞ if no such a set exists)
A pseudo-polynomial time algorithm for knapsack (ii)

The following inductive relation computes all values $W(i, p)$ in $O(n^2 P)$

- $W(1, p)$ is $weight(x_1)$ if $p = profit(x_1)$, ∞ else

- $W(i + 1, p) =$

 \[
 \begin{cases}
 W(i, p), \ profit(x_{i+1}) > p \\
 \min\{W(i, p), weight(x_{i+1}) + W(i, p - profit(x_{i+1}))\}, \text{ else}
 \end{cases}
 \]

The optimal solution of the problem is $\max\{p | W(n, p) \leq B\}$

The optimal solution can be computed in polynomial time on n and P
An FPTAS for Knapsack

- **Idea:** The previous algorithm could be a polynomial time algorithm if P was bounded by a polynomial of n
- Ignore a number of least significant bits of the profits of the objects
- Modified profits $profit'$ should now be numbers bounded by a polynomial of n and $\frac{1}{\varepsilon}$ (ε is the error parameter)
- The algorithm:
 1. Given $\varepsilon > 0$ define $K = \frac{\varepsilon P}{n}$
 2. Set new profit function $profit'$, $profit'(x_i) = \left\lfloor \frac{profit(x_i)}{K} \right\rfloor$
 3. Run the pseudo-polynomial time algorithm described previously and output the result
Analysis

Theorem: The previous algorithm is an FPTAS

1. \(\text{SOL} \geq (1 - \varepsilon) \text{OPT} \)
2. Runs in polynomial time in \(n \) and \(\frac{1}{\varepsilon} \)

Proof:

1. Let \(S \) and \(O \) denote the output set and the optimal set
 - \(\text{profit}'(x_i) = \left\lfloor \frac{\text{profit}(x_i)}{K} \right\rfloor \Rightarrow \text{profit}(x_i) \geq K \cdot \text{profit}'(x_i) \geq \text{profit}(x_i) - K \)
 - \(K = \frac{\varepsilon P}{n} \)
 - \(\text{profit}'(S) \geq \text{profit}'(O) \)
 - \(\text{OPT} \geq P \)

 Thus, \(\text{SOL} = \text{profit}(S) \geq K \cdot \text{profit}'(S) \geq K \cdot \text{profit}'(O) \geq \text{profit}(O) - nK = \text{OPT} - \varepsilon P \geq (1 - \varepsilon) \cdot \text{OPT} \)

2. The algorithm’s running time is \(O(n^2 \left\lceil \frac{P}{K} \right\rceil) = O(n^2 \left\lceil \frac{n}{\varepsilon} \right\rceil) \)
4. TSP
Hardness of Approximation

To show that an optimization problem Π is hard to approximate, we can use

- A **Gap-introducing reduction**: Reduces an NP-complete decision problem Π' to Π
- A **Gap-preserving reduction**: Reduces a hard to approximate optimization problem Π' to Π
Gap-introducing reductions (i)

Suppose that Π' is a decision problem and Π a minimization problem (similar for maximization).
A reduction h from Π' to Π is called gap-introducing if:

1. Transforms (in polynomial time) any instance I' of Π' to an instance $I = h(I')$ of Π
2. There are functions f and α s.t.
 - If I' is a ‘yes instance’ of Π' then $\text{OPT}(\Pi, I) \leq f(I)$
 - If I' is a ‘no instance’ of Π' then $\text{OPT}(\Pi, I) > \alpha(|I|) \cdot f(I)$
Gap-introducing reductions (ii)

Theorem: If Π' is NP-complete then Π cannot be approximated with a factor α

Proof: If Π had an approximation algorithm of factor α then $\text{SOL} \leq \alpha \cdot \text{OPT}$. So,

- I' is a ‘yes instance’ of Π' \Rightarrow $\text{SOL} \leq \alpha \cdot \text{OPT}(\Pi, I) \leq \alpha \cdot f(I)$
- I' is a ‘no instance’ of Π' \Rightarrow $\text{SOL} > \text{OPT}(\Pi, I) > \alpha(|I|) \cdot f(I)$

Then by using the approximation algorithm for P_i we could be able to determine in polynomial time whether the instance I' is ‘yes’ or ‘no’.

Since P_i is NP-complete, this would imply $P = NP$.
Gap-preserving reductions (i)

Suppose that Π' is a minimization problem and Π a minimization (similar for other cases).
A reduction h from Π' to Π is called gap-preserving if:

1. Transforms (in polynomial time) any instance I' of Π' to an instance $I = h(I')$ of Π

2. There are functions f, f', α, β s.t.
 - $\text{OPT}(\Pi', I') \leq f'(I') \Rightarrow \text{OPT}(\Pi, I) \leq f(I)$
 - $\text{OPT}(\Pi', I') > \beta(|I'|) \cdot f'(I') \Rightarrow \text{OPT}(\Pi, I) > \alpha(|I|) \cdot f(I)$
Gap-preserving reductions (ii)

Theorem: If Π' is non-approximable with a factor β then Π cannot be approximated with a factor α unless $P = NP$

Proof: If Π had an approximation algorithm of factor α then $\text{SOL} \geq \alpha \cdot \text{OPT}$. So,

- $\text{OPT}(\Pi', I') \leq f'(I') \Rightarrow \text{SOL} \leq \alpha \cdot \text{OPT}(\Pi, I) \leq \alpha \cdot f(I)$
- $\text{OPT}(\Pi', I') > \beta(|I'|)f'(I') \Rightarrow \text{SOL} > \text{OPT}(\Pi, I) > \alpha(|I|) \cdot f(I)$

But $P_{i'}$ cannot be approximated with a factor β means that there is an NP-complete decision problem $P_{i''}$ and a gap-introducing reduction from $P_{i''}$ to $P_{i'}$ s.t.

- I'' is a ‘yes instance’ of $\Pi'' \Rightarrow \text{OPT}(\Pi', I') \leq f''(I')$
- I'' is a ‘no instance’ of $\Pi'' \Rightarrow \text{OPT}(\Pi', I') > \beta(|I'|) \cdot f''(I')$

Thus, by running the algorithm for Π we could decide Π''. This implies $P = NP$
The Traveling Salesman Problem

Definition: Given a complete graph $K_n(V, E)$ and a weight function $w : E \to \mathbb{Q}$ find a tour, i.e. a permutation of the vertices, that has minimum total weight.

- The TSP problem is NP-hard
- TSP is non-approximable with a factor $\alpha(n)$ polynomial in n, via a gap-introducing reduction from Hamilton Cycle.

Definition: Given a graph $G(V, E)$ a Hamilton Cycle is a cycle that uses every vertex only ones.

- To determine whether G has a Hamilton Cycle or not is NP-complete.
TSP is non-approximable (i)

Reduction: $G(V, E), |V| = n$, is an instance of Hamilton Cycle. The instance of TSP will be K_n with a weight function w, $w(e) = 1$ if $e \in E$ else $w(e) = n + 2$. Then

- If G has a Hamilton Cycle then $\text{OPT}(\text{TSP}) = n$
- If I' is a ‘no instance’ of Π' then $\text{OPT}(\text{TSP}) > 2n$
TSP is non-approximable (ii)

\[\Rightarrow \text{TSP is APX-hard, i.e there exist a constant } \alpha \text{ (in the example 2) that TSP cannot be approximated with factor } \alpha, \text{ unless } P = NP \]

\[\Rightarrow \text{Bonus!!! In the reduction if we set } w(e) = \alpha(n) \cdot n, e \notin E \text{ then we cannot have an } \alpha(n) \text{ approximation factor for TSP. Thus TSP is non-approximable} \]
THE END!!!