Coloring Circular Arc Graphs

Revisiting Tucker’s algorithm

Alex Angelopoulos

July 22, 2014
Outline

Introduction

Analyzing Tucker’s algorithm
The problem

Input: a family F of circular arcs

Output: is there a proper coloring with $\leq k$ colors?

what is the minimum k s.t. F has a proper coloring?
The problem

Input: a family F of circular arcs
The problem

Input: a family F of circular arcs

Output: is there a proper coloring with $\leq k$ colors?
what is the minimum k s.t. F has a proper coloring?
Some quantities

\[L(F) = 3 \]

\[l(F) = 4 \]

\[\omega(F) = \text{Load of } N \text{ circular-cover: } l \]

\[N \text{ max. clique of } F: \omega \text{(as usual)} \]

We also discretize and use the -at most- \(|F|\) points defining the arcs.
Some quantities

Load of F: L
Some quantities

- Load of F: L
- Circular-cover: l
Some quantities

- Load of F: L
- circular-cover: l
- max. clique of F: ω (as usual)
Some quantities

- Load of F: L
- circular-cover: l
- max. clique of F: ω
 (as usual)
- We also discretize and use the -at most- $2|F|$ points defining the arcs.
Results

Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load $L = L(F)$ and circular-cover $l = l(F)$. If $l(F) \geq 4$, then $\lfloor \frac{3}{2} L \rfloor$ colors suffice to properly color F.

- This is actually a **2-approximation** algorithm.
 - Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2} \omega(F)$.
 - Karapetian (1980) proves the above.
 - Garey et al. (1980) show NP-completeness for CIRCULAR ARC COLOR
 - Many exact algos for subfamilies of graphs ($\geq O(|F|^{1.5})$).
Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load $L = L(F)$ and circular-cover $l = l(F)$. If $l(F) \geq 4$, then $\left\lfloor \frac{3}{2} L \right\rfloor$ colors suffice to properly color F.

- This is actually a 2-approximation algorithm.
- Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2} \omega(F)$.
- Karapetian (1980) proves the above.
- Garey et al. (1980) show NP-completeness for CIRCULAR ARC COLOR.
- Many exact algos for subfamilies of graphs ($\geq O(|F|^{1.5})$).
Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load $L = L(F)$ and circular-cover $l = l(F)$. If $l(F) \geq 4$, then $\lceil \frac{3}{2} L \rceil$ colors suffice to properly color F.

- This is actually a **2-approximation** algorithm.
- Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2} \omega(F)$.
- Karapetian (1980) proves the above.
- Garey et al. (1980) show **NP**-completeness for **Circular Arc Color**
- Many exact algos for subfamilies of graphs ($\geq O(|F|^{1.5})$).
Theorem 1 (Tucker (1975)).

Let F be a family of circular arcs with load $L = L(F)$ and circular-cover $l = l(F)$. If $l(F) \geq 4$, then $\left\lceil \frac{3}{2} L \right\rceil$ colors suffice to properly color F.

- This is actually a **2-approximation** algorithm.
- Tucker, [4] conjecture that $\chi(F) \leq \frac{3}{2} \omega(F)$.
- Karapetian (1980) proves the above.
- Garey et al. (1980) show NP-completeness for Circular Arc Color
- Many exact algos for subfamilies of graphs ($\geq O(|F|^{1.5})$).
More recently:

Theorem 2 (Valencia-Pabon (2003)).

Consider F with load $L(F)$ and circular-cover $l(F) \geq 5$. Then
\[
\left\lceil \frac{l-1}{l-2} L \right\rceil
\]
colors suffice to color F, bound being tight.

That's this presentation about!

It is based exactly on the algorithm proposed by Tucker, [4].
More recently:

Theorem 2 (Valencia-Pabon (2003)).

Consider F with load $L(F)$ and circular-cover $l(F) \geq 5$. Then

$$\left\lceil \frac{l-1}{l-2} L \right\rceil$$

colors suffice to color F, bound being tight.

That’s this presentation about!

It is based exactly on the algorithm proposed by Tucker, [4].
More recently:

Theorem 2 (Valencia-Pabon (2003)).

Consider F with load $L(F)$ and circular-cover $l(F) \geq 5$. Then
\[
\left\lceil \frac{l-1}{l-2} L \right\rceil \text{ colors suffice to color } F, \text{ bound being tight.}
\]

That’s this presentation about!

It is based exactly on the algorithm proposed by Tucker, [4].
Introduction

Analyzing Tucker’s algorithm
Tucker’s algorithm

Select p so that $L(F)$ arcs contain it.

Assign color #1 to the arc which extends at least on the counterclockwise side of p.

Move clockwise, assign current color to the first arc to begin after the previous ends.

Unless it is not possible, so use next color.
Tucker’s algorithm

- Select p so that $L(F)$ arcs contain it
Tucker’s algorithm

- Select \(p \) so that \(L(F) \) arcs contain it
- Assign color \#1 to the arc which extends at least on the counterclockwise side of \(p \)
Tucker’s algorithm

- Select p so that $L(F)$ arcs contain it
- Assign color #1 to the arc which extends at least on the counterclockwise side of p
- Move clockwise, assign current color to the first arc to begin after the previous ends
Tucker’s algorithm

- Select p so that $L(F)$ arcs contain it
- Assign color $\#1$ to the arc which extends at least on the counterclockwise side of p
- Move clockwise, assign current color to the first arc to begin after the previous ends
- Unless it is not possible, so use next color
Tucker’s algorithm

- Select p so that $L(F)$ arcs contain it
- Assign color #1 to the arc which extends at least on the counterclockwise side of p
- Move clockwise, assign current color to **the first arc to begin after the previous ends**
- Unless it is not possible, so use next color
Notations needed

Starting point: \(t \) first arc colored with \(A_i \):

Arcs colored until \(k \)th round: \(F_k \)
Notations needed

- starting point: t

Coloring Circular Arc Graphs • Analyzing Tucker’s algorithm
Notations needed

- starting point: t
- first arc colored with i: A_i
Notations needed

• starting point: \(t \)

• first arc colored with \(i \): \(A_i \)

• arcs colored until \(k^{th} \) round: \(F_k \)
Notations needed

- starting point: t
- first arc colored with i: A_i
- arcs colored until k^{th} round: F_k
1. A_i intersects A_{i-1} or else no new color is needed
Properties

1. A_i intersects A_{i-1}
 or else no new color is needed

2. $L(F \setminus F_i) \leq L(F) - i$
 OK, verify again later*
Properties

1. A_i intersects A_{i-1}
 or else no new color is needed

2. $L(F \setminus F_i) \leq L(F) - i$
 OK, verify again later*

3. For $1 \leq i \leq l - 2$, F_i
 is colored with at most
 $i + 1$ colors by the
 Algorithm...
Properties

1. A_i intersects A_{i-1} or else no new color is needed

2. $L(F \setminus F_i) \leq L(F) - i$
 OK, verify again later*

3. For $1 \leq i \leq l - 2$, F_i is colored with at most $i + 1$ colors by the Algorithm...
 Proof?

Base of induction
$1 \leq i \leq l - 2$

Suppose F_{i-1} is properly colored with i colors. Let:
Proving Property 3

Suppose \(F_{i-1} \) is properly colored with \(i \) colors. Let:

- \(A_i \) the first to get color \(i \) in round \(i - 1 \)
- \(A_i^f \) the last of round \(i - 1 \) to traverse \(t \)

1 \(\leq i \leq l - 2 \)
Proving Property 3

$1 \leq i \leq l - 2$

Suppose F_{i-1} is properly colored with i colors. Let:

- A_i the first to get color i in round $i - 1$
- A_i^f the last of round $i - 1$ to traverse t

these may be the same arc
Proving Property 3

1 ≤ i ≤ l − 2

Suppose \(F_{i-1} \) is properly colored with \(i \) colors. Let:

- \(A_i \) the first to get color \(i \) in round \(i-1 \)
- \(A_i^f \) the last of round \(i-1 \) to traverse \(t \)
 these may be the same arc
- Now think about \(A_{i+1} \) and \(A_{i+1}^f \)
Suppose F_{i-1} is properly colored with i colors. Let:

- A_i the first to get color i in round $i - 1$
- A_i^f the last of round $i - 1$ to traverse t
- These may be the same arc
- Now think about A_{i+1} and A_{i+1}^f
- Same color except...
Proving Property 3

\[1 \leq i \leq l - 2 \]

Suppose \(F_{i-1} \) is properly colored with \(i \) colors. Let:

- \(A_i \) the first to get color \(i \) in round \(i - 1 \)
- \(A_i^f \) the last of round \(i - 1 \) to traverse \(t \)
 - these may be the same arc
- Now think about \(A_{i+1} \) and \(A_{i+1}^f \)
 - Same color except...

In this case:
\(A_2, A_3, \ldots, A_i, A_i^f \) cover the circle!
Proving Property 3

Suppose F_{i-1} is properly colored with i colors. Let:

- A_i the first to get color i in round $i - 1$
- A_i^f the last of round $i - 1$ to traverse t

These may be the same arc.

Now think about A_{i+1} and A_i^f.

Same color except...

In this case:
$A_2, A_3, ..., A_i, A_i^f$ cover the circle!
Proving Property 3

Suppose F_{i-1} is properly colored with i colors. Let:

- A_i the first to get color i in round $i - 1$
- A_{i}^{f} the last of round $i - 1$ to traverse t
- These may be the same arc
- Now think about A_{i+1} and A_{i+1}^{f}
- Same color except...

In this case:
- $A_2, A_3, ..., A_i, A_{i}^{f}$ cover the circle!
Proving Property 3

Suppose F_{i-1} is properly colored with i colors. Let:

- A_i the first to get color i in round $i - 1$
- A_i^f the last of round $i - 1$ to traverse t these may be the same arc

- Now think about A_{i+1} and A_i^f
 Same color except...

In this case:

$A_2, A_3, ..., A_i, A_i^f$

cover the circle!
Recap

Property 2. \(L(F \setminus F_{l-2}) \leq L - (l - 2) \)

Property 3. \(F_{l-2} \) are properly colored with \(l - 1 \) colors.

But how to use some induction here?

Maintain little arcs \((p, p + 1)\) to create a constant load of \(L(F) \) around the circle. Neither \(\chi(F) \) nor the Algorithm’s output is changed! *Now check again Property 2!*

Now: \(F' = F \setminus F_{l-2} \) has \(l_{F'} \geq l_F \geq 5 \), so use induction!...

- \(L \) rounds, every \(l - 2 \) rounds need at most \(l - 1 \) colors
- \(\lceil \frac{l-1}{l-2} L \rceil \) is the output of the algorithm.
Recap

Property 2. \(L(F \setminus F_{l-2}) \leq L - (l - 2) \)

Property 3. \(F_{l-2} \) are properly colored with \(l - 1 \) colors.

But how to use some induction here?

Maintain little arcs \((p, p + 1)\) to create a constant load of \(L(F) \) around the circle. Neither \(\chi(F) \) nor the Algorithm’s output is changed! *Now check again Property 2!*

Now: \(F' = F \setminus F_{l-2} \) has \(l_{F'} \geq l_F \geq 5 \), so use induction!...

- \(L \) rounds, every \(l - 2 \) rounds need at most \(l - 1 \) colors
- \(\Rightarrow \left\lceil \frac{l-1}{l-2} L \right\rceil \) is the output of the algorithm.
Recap

Property 2. \(L(F \setminus F_{l-2}) \leq L - (l - 2) \)

Property 3. \(F_{l-2} \) are properly colored with \(l - 1 \) colors.

But how to use some induction here?

Maintain little arcs \((p, p + 1)\) to create a constant load of \(L(F) \) around the circle. Neither \(\chi(F) \) nor the Algorithm’s output is changed! *Now check again Property 2!*

Now: \(F' = F \setminus F_{l-2} \) has \(l_{F'} \geq l_F \geq 5 \), so use induction!...

- \(L \) rounds, every \(l - 2 \) rounds need at most \(l - 1 \) colors
- \(\Rightarrow \left\lceil \frac{l-1}{l-2} L \right\rceil \) is the output of the algorithm.
Recap

Property 2. \(L(F \setminus F_{l-2}) \leq L - (l - 2) \)

Property 3. \(F_{l-2} \) are properly colored with \(l - 1 \) colors.

But how to use some induction here?

Maintain little arcs \((p, p + 1) \) to create a constant load of \(L(F) \) around the circle. Neither \(\chi(F) \) nor the Algorithm’s output is changed! *Now check again Property 2!

Now: \(F' = F \setminus F_{l-2} \) has \(l_{F'} \geq l_F \geq 5 \), so use induction!...

- \(L \) rounds, every \(l - 2 \) rounds need at most \(l - 1 \) colors
- \(\Rightarrow \left\lceil \frac{l-1}{l-2} L \right\rceil \) is the output of the algorithm.
Property 2. \(L(F \setminus F_{l-2}) \leq L - (l - 2) \)

Property 3. \(F_{l-2} \) are properly colored with \(l - 1 \) colors.

But how to use some induction here?

Maintain little arcs \((p, p + 1)\) to create a constant load of \(L(F') \) around the circle. Neither \(\chi(F') \) nor the Algorithm’s output is changed! *Now check again Property 2!*

Now: \(F' = F \setminus F_{l-2} \) has \(l_{F'} \geq l_F \geq 5 \), so use induction!...

\(L \) rounds, every \(l - 2 \) rounds need at most \(l - 1 \) colors

\[\left\lceil \frac{l - 1}{l - 2} L \right\rceil \] is the output of the algorithm.
Property 2. \(L(F \setminus F_{l-2}) \leq L - (l - 2) \)

Property 3. \(F_{l-2} \) are properly colored with \(l - 1 \) colors.

But how to use some induction here?

Maintain little arcs \((p, p + 1)\) to create a constant load of \(L(F') \) around the circle. Neither \(\chi(F) \) nor the Algorithm’s output is changed! *Now check again Property 2!*

Now: \(F' = F \setminus F_{l-2} \) has \(l_{F'} \geq l_F \geq 5 \), so use induction!...

- \(L \) rounds, every \(l - 2 \) rounds need at most \(l - 1 \) colors
- \(\Rightarrow \left\lceil \frac{l-1}{l-2} L \right\rceil \) is the output of the algorithm.
Recap

Property 2. \(L(F \setminus F_{l-2}) \leq L - (l - 2) \)

Property 3. \(F_{l-2} \) are properly colored with \(l - 1 \) colors.

But how to use some induction here?

Maintain little arcs \((p, p + 1)\) to create a constant load of \(L(F') \) around the circle. Neither \(\chi(F) \) nor the Algorithm’s output is changed! *Now check again Property 2!*

Now: \(F' = F \setminus F_{l-2} \) has \(l_{F'} \geq l_F \geq 5 \), so use induction!...

- \(L \) rounds, every \(l - 2 \) rounds need at most \(l - 1 \) colors
- \(\Rightarrow \left\lceil \frac{l - 1}{l - 2} L \right\rceil \) is the output of the algorithm.
Some final interaction

◆ What if every arc in F spans at most n/k “points” of the circle?

$$l \geq k + 1 \Rightarrow SOL = \left\lceil \frac{k}{k-1} L \right\rceil$$

◆ What if every arc spans more than a semi-circle?

The circular arc graph is complete!

◆ To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding

r-tuple colorings...

Major open problem: better than $\frac{3}{2}$-approximation?
What if every arc in F spans at most n/k “points” of the circle?

$$l \geq k + 1 \Rightarrow SOL = \left\lceil \frac{k}{k-1} L \right\rceil$$

What if every arc spans more than a semi-circle?

The circular arc graph is complete!

To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding r-tuple colorings...

Major open problem: better than $\frac{3}{2}$-approximation?
What if every arc in F spans at most n/k “points” of the circle?

$l \geq k + 1 \Rightarrow SOL = \left\lceil \frac{k}{k-1} L \right\rceil$

What if every arc spans more than a semi-circle?

The circular arc graph is complete!

To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding r-tuple colorings...

Major open problem: better than $\frac{3}{2}$-approximation?
Some final interaction

◆ What if every arc in F spans at most n/k “points” of the circle?

$$l \geq k + 1 \Rightarrow SOL = \left\lceil \frac{k}{k-1} L \right\rceil$$

◆ What if every arc spans more than a semi-circle?

The circular arc graph is complete!

◆ To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding r-tuple colorings...

Major open problem: better than $\frac{3}{2}$-approximation?
Some final interaction

- What if every arc in F spans at most n/k “points” of the circle?
 $$l \geq k + 1 \Rightarrow SOL = \left\lceil \frac{k}{k-1} L \right\rceil$$

- What if every arc spans more than a semi-circle?
 The circular arc graph is complete!

- To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding r-tuple colorings...

Major open problem: better than $\frac{3}{2}$-approximation?
Some final interaction

- What if every arc in F spans at most n/k “points” of the circle?

 \[l \geq k + 1 \Rightarrow SOL = \left\lceil \frac{k}{k-1} L \right\rceil \]

- What if every arc spans more than a semi-circle?

 The circular arc graph is complete!

- To show tightness, Valencia-Pabon uses a result of Stahl, [3] regarding r-tuple colorings...

Major open problem: better than $\frac{3}{2}$-approximation?
That's all folks!

Thank you!

