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Preface

These are notes to a lecture taught by J. Matoušek at Charles University
in Prague for several years. The audience were students of mathematics or
computer science, usually with interest in combinatorics and/or theoretical
computer science.

Generally speaking, an introductory text on the probabilistic method
is rather superfluous, since at least two excellent sources are available: the
beautiful thin book

J. Spencer: Ten lectures on the probabilistic method, CBMS-
NSF, SIAM, Philadelphia, PA, 1987

and the more modern and more extensive but no less readable

N. Alon and J. Spencer: The Probabilistic Method, J. Wiley and
Sons, New York, NY, 2nd edition, 2000.

The lecture was indeed based on these. However, these books were not ge-
nerally available to students in Prague, and this was the main reason for
starting with the present notes. For students, the notes may have another
advantage too: they cover the material usually presented in the course rela-
tively concisely. Chapters 8 and 9 go beyond the usual scope of the course
and present, mostly without proofs, more recent and more advanced results
on strong concentration.

Our presentation is slightly more formal in some cases and includes a
brief review of the relevant probability theory notions. This keeps with the
Prague mathematical tradition and should be closer to the presentation
the students are used to from other math courses. Teaching experience also
shows that the students’ proficiency in application of the notions learned in
probability theory is limited and that it is useful to demonstrate concrete
applications of abstract probabilistic notions in some detail.

6

The techniques are usually illustrated with combinatorial examples. The
notation and definitions not introduced here can be found in the book

J. Matoušek and J. Nešetřil: Invitation to Discrete Mathematics,
Oxford University Press, Oxford 1998

(Czech version: Kapitoly z diskrétní matematiky, Nakladatelství Karolinum
2000).

A large part of the material is taken directly from the Alon–Spencer book
cited above, sometimes with a little different presentation. Readers wishing
to pursue the subject in greater depth are certainly advised to consult that
book. A more advanced source is

S. Janson, T.  Luczak, A. Ruciński: Topics in random graphs, J.
Wiley and Sons, New York, NY, 2000.

A very nice book on probabilistic algorithms, also including a chapter on
the probabilistic method per se, is

R. Motwani and P. Raghavan:Randomized Algorithms, Cambridge
University Press, Cambridge, 1995.

Two journals in whose scope the probabilistic method occupies a central
place are Random Structures & Algorithms and Combinatorics, Probability
& Computing. Papers with applications of the probabilistic method are
abundant and can be found in many other journals too.

A note for Czech students. Teorie pravděpodobnosti, podobně jako jiné
matematické disciplíny, má ustálenou základní českou terminologii, která se
v mnoha případech neshoduje s doslovným překladem terminologie ang-
lické. Do textu jsme zahrnuli některé české termíny jako poznámky pod
čarou, abychom nepodporovali bujení obratů typu “očekávaná hodnota”,
což je doslovný překlad anglického “expectation”, místo správného střední
hodnota.
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Preliminaries

1.1 Probability Theory

This section summarizes the fundamental notions of probability theory and
some results which we will need in the following chapters. In no way is it
intended to serve as a substitute for a course in probability theory.

1.1.1 Definition. A probability space1 is a triple (Ω,Σ,P), where Ω is
a set, Σ ⊆ 2Ω is a σ-algebra on Ω (a collection of subsets containing Ω and
closed on complements, countable unions and countable intersections), and
P is a countably additive measure2 on Σ with P[Ω] = 1. The elements of Σ
are called events3 and the elements of Ω are called elementary events.
For an event A, P[A] is called the probability of A.

In this text, we will consider mostly finite probability spaces where the
set of elementary events Ω is finite and Σ = 2Ω. Then the probability me-
asure is determined by its values on elementary events; in other words, by
specifying a function p : Ω→ [0, 1] with

∑

ω∈Ω
p(ω) = 1. Then the probabi-

lity measure is given by P[A] =
∑

ω∈A
p(ω).

The basic example of a probability measure is the uniform distribution4

on Ω, where

P[A] =
|A|

|Ω|
for all A ⊆ Ω.

1probability space=pravděpodobnostní prostor
2measure=míra
3event= jev
4uniform distribution= rovnoměrné rozdělení
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Such a distribution represents the situation where any outcome of an expe-
riment (such as rolling a die)5 is equally likely.

1.1.2 Definition (Random graphs). 6 The probability space of random
graphs G(n, p) is a finite probability space whose elementary events are all
graphs on a fixed set of n vertices, and where the probability of a graph
with m edges is

p(G) = pm(1− p)(
n

2
)−m.

This corresponds to generating the random graph by including every
potential edge independently with probability p. For p = 1

2
, we toss a fair

coin7 for each pair {u, v} of vertices and connect them by an edge if the
outcome is heads.8 9

Here is an elementary fact which is used all the time:

1.1.3 Lemma. For any collection of events A1, . . . , An,

P

[ n
⋃

i=1

Ai

]

≤
n

∑

i=1

P[Ai].

Proof. For i = 1, . . . , n, we define

Bi = Ai \ (A1 ∪ A2 ∪ . . . ∪ Ai−1).

Then
⋃

Bi =
⋃

Ai, P[Bi] ≤ P[Ai], and the events B1, . . . , Bn are disjoint.
By additivity of the probability measure,

P

[ n
⋃

i=1

Ai

]

= P

[ n
⋃

i=1

Bi

]

=
n

∑

i=1

P[Bi] ≤
n

∑

i=1

P[Ai].

✷

1.1.4 Definition. Events A, B are independent10 if

P[A ∩ B] = P[A] P[B] .

5rolling a die=hod kostkou
6random graph=náhodný graf
7toss a fair coin=hodit spravedlivou mincí
8heads= líc (hlava)
9tails= rub (orel)
10independent events =nezávislé jevy
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More generally, events A1, A2, . . . , An are independent if for any subset of
indices I ⊆ [n]

P

[

⋂

i∈I

Ai

]

=
∏

i∈I

P[Ai].

We use the convenient notation [n] for the set {1, 2, . . . , n}.
The independence of A1, A2, . . . , An is not equivalent to all the pairs Ai,

Aj being independent. Exercise: find three events A1, A2 and A3 that are
pairwise independent but not mutually independent.
Intuitively, the property of independence means that the knowledge of

whether some of the events A1, . . . , An occurred does not provide any in-
formation regarding the remaining events.

1.1.5 Definition (Conditional probability). For events A and B with
P[B] > 0, we define the conditional probability11 of A, given that B occurs,
as

P[A|B] =
P[A ∩ B]

P[B]
.

Note that if A and B are independent, then P[A|B] = P[A].

1.1.6 Definition (Random variable). A real random variable12 on a
probability space (Ω,Σ,P) is a function X : Ω → R that is P-measurable.
(That is, for any a ∈ R, {ω ∈ Ω: X(ω) ≤ a} ∈ Σ.)

We can also consider random variables with other than real values; for
example, a random variable can have complex numbers or n-component
vectors of real numbers as values. In such cases, a random variable is a
measurable function from the probability space into the appropriate space
with measure (complex numbers or Rn in the examples mentioned above).
In this text, we will mostly consider real random variables.

1.1.7 Definition. The expectation13 of a (real) random variable X is

E [X ] =

∫

Ω

X(ω) dP(ω).

11conditional probability=podmíněná pravděpodobnost
12random variable=náhodná proměnná
13expectation = střední hodnota!!!
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Any real function on a finite probability space is a random variable. Its
expectation can be expressed as

E [X ] =
∑

ω∈Ω

p(ω)X(ω).

1.1.8 Definition (Independence of variables). Real random variables
X, Y are independent if we have, for every two measurable sets A, B ⊆ R,

P[X ∈ A and Y ∈ B] = P[X ∈ A] · P[Y ∈ B] .

Note the shorthand notation for the events in the previous definition:
For example, P[X ∈ A] stands for P[{ω ∈ Ω: X(ω) ∈ A}].
Intuitively, the independence of X and Y means that the knowledge of

the value attained by X gives us no information about Y , and vice versa.
In order to check independence, one need not consider all measurable sets
A and B; it is sufficient to look at A = (−∞, a] and B = (−∞, b]. That is,
if

P[X ≤ a and Y ≤ b] = P[X ≤ a] P[Y ≤ b]

for all a, b ∈ R, then X and Y are independent.
As we will check in Chapter 3, E [X + Y ] = E [X ] +E [Y ] holds for any

two random variables (provided that the expectations exist). On the other
hand, E [XY ] is generally different from E [X ]E [Y ]. But we have

1.1.9 Lemma. If X and Y are independent random variables, then

E [XY ] = E [X ] ·E [Y ] .

Proof (for finite probability spaces). If X and Y are random variables
on a finite probability space, the proof is especially simple. Let VX , VY

be the (finite) sets of values attained by X and by Y , respectively. By
independence, we have P[X = a and Y = b] = P[X = a] P[Y = b] for any
a ∈ VX and b ∈ VY . We calculate

E [XY ] =
∑

a∈VX ,b∈VY

ab · P[X = a and Y = b]

=
∑

a∈VX ,b∈VY

ab · P[X = a] P[Y = b]

=

(

∑

a∈VX

a P[X = a]

)(

∑

b∈VY

bP[Y = b]

)

= E [X ]E [Y ] .
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For infinite probability spaces, the proof is formally a little more complicated
but the idea is the same. ✷

1.2 Useful Estimates

In the probabilistic method, many problems are reduced to showing that
certain probability is below 1, or even tends to 0. In the final stage of such
proofs, we often need to estimate some complicated-looking expressions.
The golden rule here is to start with the roughest estimates, and only if
they don’t work, one can try more refined ones. Here we describe the most
often used estimates for basic combinatorial functions.
For the factorial function n!, we can often do with the obvious upper

bound n! ≤ nn. More refined bounds are
(n

e

)n

≤ n! ≤ en
(n

e

)n

(where e = 2.718281828 . . . is the basis of natural logarithms), which can be
proved by induction. The well-known Stirling formula is very seldom needed
in its full strength.
For the binomial coefficient

(

n

k

)

, the basic bound is
(

n

k

)

≤ nk, and sharper
ones are

(n

k

)k

≤
(

n

k

)

≤
(en

k

)k

.

For all k, we also have
(

n

k

)

≤ 2n. Sometimes we need better estimates of the
middle binomial coefficient

(

2m

m

)

; we have

22m

2
√

m
≤

(

2m

m

)

≤
22m
√
2m

(also see Section 5.2 for a derivation of a slightly weaker lower bound).
Very often we need the inequality 1 + x ≤ ex, valid for all real x. In

particular, for bounding expressions of the form (1− p)m from above, with
p > 0 small, one uses

(1− p)m ≤ e−mp

almost automatically. For estimating such expressions from below, which is
usually more delicate, we can often use

1− p ≥ e−2p,

which is valid for 0 ≤ p ≤ 1

2
.
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The Probabilistic Method

The probabilistic method is a remarkable technique for proving the existence
of combinatorial objects with specified properties. It is based on probability
theory but, surprisingly, it can be used for proving theorems that have
nothing to do with probability. The usual approach can be described as
follows.
We would like to prove the existence of a combinatorial object with

specified properties. Unfortunately, an explicit construction of such a “good”
object does not seem feasible, and maybe we do not even need a specific
example; we just want to prove that something “good” exists. Then we can
consider a random object from a suitable probability space and calculate the
probability that it satisfies our conditions. If we prove that this probability
is strictly positive, then we conclude that a “good” object must exist; if all
objects were “bad”, the probability would be zero.
Let us start with an example illustrating how the probabilistic method

works in its basic form.

2.1 Ramsey Numbers

The Ramsey theorem states that any sufficiently large graph contains either
a clique or an independent set of a given size. (A clique1 is a set of vertices
inducing a complete subgraph and an independent set2 is a set of vertices
inducing an edgeless subgraph.)

1clique=klika (úplný podgraf)
2independent set=nezávislá množina
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2.1.1 Definition. The Ramsey number R(k, ℓ) is

R(k, ℓ) = min {n: any graph on n vertices contains a clique

of size k or an independent set of size ℓ}.

The Ramsey theorem guarantees that R(k, ℓ) is always finite. Still, the
precise values of R(k, ℓ) are unknown but for a small number of cases, and
it is desirable at least to estimate R(k, ℓ) for large k and ℓ. Here we use the
probabilistic method to prove a lower bound on R(k, k).

2.1.2 Theorem. For any k ≥ 3,

R(k, k) > 2k/2−1.

Proof. Let us consider a random graph G(n, 1/2) on n vertices where every
pair of vertices forms an edge with probability 12 , independently of the other
edges. (We can imagine flipping a coin for every potential edge to decide
whether it should appear in the graph.) For any fixed set of k vertices, the
probability that they form a clique is

p = 2−(
k

2
).

The same goes for the occurrence of an independent set, and there are
(

n
k

)

k-tuples of vertices where a clique or an independent set might appear.
Now we use the fact that the probability of a union of events is at most the
sum of their respective probabilities (Lemma 1.1.3), and we get

P[G(n, 1/2) contains a clique or an indep. set of size k] ≤ 2
(

n

k

)

2−(
k

2
).

It remains to choose n so that the last expression is below 1. Using
the simplest estimate

(

n
k

)

≤ nk, we find that it is sufficient to have 2nk <

2k(k−1)/2. This certainly holds whenever n ≤ 2k/2−1. Therefore, there are
graphs on ⌊2k/2−1⌋ vertices that contain neither a clique of size k nor an
independent set of size k. This implies R(k, k) > 2k/2−1. ✷

Let us remark that, by using finer estimates in the proof, the lower bound
for R(k, k) can be improved a little, say to 2k/2. But a result even slightly
better than this seems to require a more powerful technique. In particular,
no lower bound is known of the form ck with a constant c >

√
2, although

the best upper bound is about 4k.



15 2. The Probabilistic Method

One might object that the use of a probability space is artificial here and
the same proof can be formulated in terms of counting objects. In effect,
we are counting the number of bad objects and trying to prove that it is
less than the number of all objects, so the set of good objects must be
nonempty. In simple cases, it is indeed possible to phrase such proofs in
terms of counting bad objects. However, in more sophisticated proofs, the
probabilistic formalism becomes much simpler than counting arguments.
Furthermore, the probabilistic framework allows us to use many results of
probability theory—a mature mathematical discipline.
For many important problems, the probabilistic method has provided

the only known solution, and for others, it has provided accessible proofs in
cases where constructive proofs are extremely difficult.

2.2 Hypergraph Coloring

2.2.1 Definition. A k-uniform hypergraph is a pair (X, S) where X is the
set of vertices and S ⊆

(

X

k

)

is the set of edges (k-tuples of vertices).

2.2.2 Definition. A hypergraph is c-colorable if its vertices can be colored
with c colors so that no edge is monochromatic (at least two different colors
appear in every edge).

This is a generalization of the notion of graph coloring. Note that graphs
are 2-uniform hypergraphs and the condition of proper coloring requires that
the vertices of every edge get two different colors.
Now we will be interested in the smallest possible number of edges in a

k-uniform hypergraph that is not 2-colorable.

2.2.3 Definition. Let m(k) denote the smallest number of edges in a k-
uniform hypergraph that is not 2-colorable.

For graphs, we have m(2) = 3, because the smallest non-bipartite graph
is a triangle. However, the problem becomes much more difficult for larger
k. As we will prove, m(3) = 7, but the exact value of m(k) is unknown for
k > 3.
Again, we can get a lower bound by probabilistic reasoning.

2.2.4 Theorem. For any k ≥ 2,

m(k) ≥ 2k−1.

2.2 Hypergraph Coloring 16

Proof. Let us consider a k-uniform hypergraph H with less than 2k−1

edges. We will prove that it is 2-colorable.
We color every vertex of H independently red or blue, with probability

1

2
. The probability that the vertices of a given edge are all red or all blue is

p = 2 · (1
2
)k. Supposing H has |S| < 2k−1 edges, the probability that there

exists a monochromatic edge is at most p|S| < p2k−1 = 1. So there is a
non-zero probability that no edge is monochromatic and a proper coloring
must exist. ✷

Note that for k = 3, we get m(3) ≥ 4. On the other hand, the smallest
known 3-uniform hypergraph that is not 2-colorable is the finite projective
plane with 7 points, the Fano plane.

2.2.5 Definition. The Fano plane is the hypergraph H = (X, S), where

X = {1, 2, 3, 4, 5, 6, 7}

are the points and

S = {{1, 2, 3}, {3, 4, 5}, {5, 6, 1}, {1, 7, 4}, {2, 7, 5}, {3, 7, 6}, {2, 4, 6}}

are the edges.

1
2

3

4

5

6

7

2.2.6 Lemma. m(3) ≤ 7.

Proof. We prove that the Fano plane is not 2-colorable. We give a quick
argument using the fact that H is a projective plane, and thus for any two
points, there is exactly one edge (line) containing both of them.
Suppose that we have a 2-coloring A1 ∪A2 = X, A1 ∩A2 = ∅, where A1

is the larger color class.
If |A1| ≥ 5, then A1 contains at least

(

5

2

)

= 10 pairs of points. Each pair
defines a unique line, but as there are only 7 lines in total, there must be
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two pairs of points defining the same line. So we have three points of the
same color on a line.
If |A1| = 4 then A1 contains

(

4

2

)

= 6 pairs of points. If two pairs among
them define the same line, that line is monochromatic and we are done. So
suppose that these 6 pairs define different lines ℓ1, . . . , ℓ6. Then each point
of A1 is intersected by 3 of the ℓi. But since each point in the Fano plane lies
on exactly 3 lines and there are 7 lines in total, there is a line not intersecting
A1 at all. That line is contained in A2 and thus monochromatic. ✷

Now we will improve the lower bound to establish that m(3) = 7.

2.2.7 Theorem. Any system of 6 triples is 2-colorable; i.e. m(3) ≥ 7.

Proof: Let us consider a 3-uniform hypergraph H = (X, S), |S| ≤ 6. We
want to prove thatH is 2-colorable.We will distinguish two cases, depending
on the size of X .
If |X | ≤ 6, we apply the probabilistic method. We can assume that

|X | = 6, because we can always add vertices that are not contained in any
edge and therefore do not affect the coloring condition. Then we choose a
random subset of 3 vertices which we color red and the remaining vertices
become blue. The total number of such colorings is

(

6

3

)

= 20. For any edge
(which is a triple of vertices), there are two colorings that make it either
completely red or completely blue, so the probability that it is monochro-
matic is 1

10
. We have at most 6 edges, and so the probability that any of

them is monochromatic is at most 6
10

< 1.
For |X | > 6, we proceed by induction. Suppose that |X | > 6 and |S| ≤ 6.

It follows that there exist two vertices x, y ∈ X that are not “connected”
(a pair of vertices is connected if they appear together in some edge). This
is because every edge produces three connected pairs, so the number of
connected pairs is at most 18. On the other hand, the total number of
vertex pairs is at least

(

7

2

)

= 21, so they cannot be all connected.
Now if x, y ∈ X are not connected, we define a new hypergraph by

merging x and y into one vertex:

X ′ = X \ {x, y} ∪ {z},

S′ = {M ∈ S: M ∩{x, y} = ∅}∪{M \ {x, y}∪{z}:M ∈ S, M ∩{x, y} 6= ∅}.

This (X ′, S′) is a 3-uniform hypergraph as well, |S′| = |S| ≤ 6, and
|X ′| = |X |−1, so by the induction hypothesis it is 2-colorable. If we extend
the coloring of X ′ to X so that both x and y get the color of z, we obtain
a proper 2-coloring for (X, S). ✷

2.3 The Erdős–Ko–Rado Theorem 18

2.3 The Erdős–Ko–Rado Theorem

2.3.1 Definition. A family F of sets is intersecting if for all A, B ∈ F ,
A ∩ B 6= ∅.

2.3.2 Theorem (The Erdős–Ko–Rado Theorem). If |X | = n, n ≥ 2k,
and F is an intersecting family of k-element subsets of X , then

|F| ≤

(

n − 1

k − 1

)

.

Clearly, this is tight, because a family of all the k-element subsets con-
taining a particular point is intersecting and the number of such subsets is
(

n−1

k−1

)

. (This configuration is sometimes called a sunflower and the theorem
is referred to as the Sunflower Theorem.)

2.3.3 Lemma. Consider X = {0, 1, . . . , n−1} with addition modulo n and

define As = {s, s+ 1, . . . , s+ k − 1} ⊆ X for 0 ≤ s < n. Then for n ≥ 2k,
any intersecting family F ⊆

(

X

k

)

contains at most k of the sets As.

Proof. If Ai ∈ F , then any other As ∈ F must be one of the sets
Ai−k+1, . . . , Ai−1 or Ai+1, . . . , Ai+k−1. These are 2k − 2 sets, which can be
divided into k − 1 pairs of the form (As, As+k). As n ≥ 2k, As ∩ As+k = ∅,
and only one set from each pair can appear in F . ✷

Proof of the theorem. We can assume that X = {0, 1, . . . , n − 1} and
F ⊆

(

X

k

)

is an intersecting family. For a permutation σ:X → X , we define

σ(As) = {σ(s), σ(s + 1), . . . , σ(s+ k − 1)},

addition again modulo n. The sets σ(As) are just like those in the lemma,
only with the elements relabeled by the permutation σ, so by the lemma at
most k of these n sets are in F . Therefore, if we choose random s and σ

independently and uniformly,

P[σ(As) ∈ F ] ≤
k

n

(the underlying probability space here is the product [n] × Sn with the
uniform measure, where Sn is the set of all permutations on [n]). But this
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choice of σ(As) is equivalent to a random choice of a k-element subset of
X , so

P[σ(As) ∈ F ] =
|F|
(

n
k

)

and

|F| =

(

n

k

)

P[σ(As) ∈ F ] ≤

(

n

k

)

k

n
=

(

n − 1

k − 1

)

.

✷

2.4 Pairs of Sets

Let k and ℓ be fixed natural numbers. We are interested in the maximum
n = n(k, ℓ) such that there exist sets A1, A2, . . . , An and B1, B2, . . . , Bn

satisfying the following conditions

(C0) |Ai| = k, |Bi| = ℓ for all i = 1, 2, . . . , n.

(C1) Ai ∩ Bi = ∅ for all i = 1, 2, . . . , n.

(C2) Ai ∩ Bj 6= ∅ for all i 6= j, i, j = 1, 2, . . . , n.

An example shows that n(k, ℓ) ≥
(

k+ℓ
k

)

: let A1, . . . , An be all the k-element
subsets of {1, 2, . . . , k+ℓ} and let Bi be the complement of Ai. An ingenious
probabilistic argument shows that this is the best possible (note that at first
sight, it is not at all obvious that n(k, ℓ) is finite!).

2.4.1 Theorem. For any k, ℓ ≥ 1, we have n(k, ℓ) =
(

k+ℓ
k

)

.

Before we prove this theorem, we explain a motivation for this (perhaps
strange-looking) problem. It is related to the transversal number of set
systems, one of the central issues in combinatorics. Recall that a set T ⊆ X

is a transversal of a set system F ⊆ 2X if S ∩ T 6= ∅ for all S ∈ F . The
transversal number τ(F) is the size of the smallest transversal of F .
In order to understand a combinatorial parameter, one usually studies

the critical objects. In our case, a set system F is called τ-critical if τ(F \
{S}) < τ(F) for each S ∈ F . A question answered by the above theorem
was the following: what is the maximum possible number of sets in a τ -
critical system F , consisting of k-element sets and with τ(F) = ℓ + 1? To
see the connection, let F = {A1, A2, . . . , An}, and let Bi be an ℓ-element
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transversal of F \{Ai}. Note that by the τ -criticality of F , the Bi exist and
satisfy conditions (C0)–(C2). Thus |F| ≤ n(k, ℓ).

Proof of Theorem 2.4.1. Let X =
⋃n

i=1(Ai ∪ Bi) be the ground set.
Arrange the elements of X in a random linear order (all the |X |! orderings
having the same probability). Let Ui be the event “each element of Ai

precedes each element of Bi”. We have P [Ui] =
(

k+ℓ
k

)−1
.

Crucially, we note that Ui and Uj cannot occur simultaneously for i 6= j.
Indeed, since Ai∩Bj 6= ∅ 6= Aj∩Bi, we have maxAi ≥ minBj and maxAj ≥
minBi. If both Ui and Uj occurred, then maxAi < minBi and maxAj <

minBj , and we get a contradiction: maxAi ≥ minBj > maxAj ≥ minBi >

maxAi. Therefore

1 ≥ P

[ n
⋃

i=1

Ui

]

=

n
∑

i=1

P[Ui] =
n

(

k+ℓ
k

)

and the theorem follows. ✷

The same proof shows that if A1, A2, . . . , An and B1, B2, . . . , Bn are fi-

nite sets satisfying (C1) and (C2) then
∑n

i=1

(|Ai|+|Bi|
|Ai|

)−1
≤ 1. This implies,

among others, the famous Sperner theorem: If F is a family of subsets of [m]
with no two distinct sets A, B ∈ F satisfying A ⊂ B, then |F| ≤

(

m
⌊m/2⌋

)

.

To see this, set F = {A1, A2, . . . , An} and Bi = [m] \ Ai, and use the fact
that

(

m
k

)

≤
(

m
⌊m/2⌋

)

for all k = 0, 1, . . . , m.
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Linearity of Expectation

3.1 Computing Expectation Using Indicators

The proofs in this chapter are based on the following lemma:

3.1.1 Lemma. The expectation is a linear operator; i.e., for any two ran-
dom variables X , Y and constants α, β ∈ R:

E [αX + βY ] = αE [X ] + βE [Y ] .

Proof. E [αX + βY ] =
∫
Ω
(αX + βY ) dP = α

∫
Ω

X dP + β
∫
Ω

Y dP =
αE [X ] + βE [Y ] . ✷

This implies that the expectation of a sum of random variables X =
X1 +X2 + · · ·+Xn is equal to

E [X ] = E [X1] +E [X2] + · · ·+E [Xn] .

This fact is elementary, yet powerful, since there is no restriction what-
soever on the properties of Xi, their dependence or independence.

3.1.2 Definition (Indicator variables). For an event A, we define the
indicator variable IA:

• IA(ω) = 1 if ω ∈ A, and

• IA(ω) = 0 if ω /∈ A.
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3.1.3 Lemma. For any event A, we have E [IA] = P[A].

Proof.

E [IA] =

∫
Ω

IA(ω) dP =

∫
A

dP = P[A] .

✷

In many cases, the expectation of a variable can be calculated by ex-
pressing it as a sum of indicator variables

X = IA1 + IA2 + · · ·+ IAn

of certain events with known probabilities. Then

E [X ] = P[A1] + P[A2] + · · ·+ P[An] .

Example. Let us calculate the expected number of fixed points of a random
permutation σ on {1, . . . , n}. If

X(σ) = |{i: σ(i) = i}|,

we can express this as a sum of indicator variables:

X(σ) =

n∑
i=1

Xi(σ)

where Xi(σ) = 1 if σ(i) = i and 0 otherwise. Then

E [Xi] = P[σ(i) = i] =
1

n

and

E [X ] =
1

n
+
1

n
+ · · ·+

1

n
= 1.

So a random permutation has 1 fixed point (or “loop”) on the average.

3.2 Hamiltonian Paths

We can use the expectation of X to estimate the minimum or maximum
value ofX , because there always exists an elementary event ω ∈ Ω for which
X(ω) ≥ E [X ] and similarly, we have X(ω) ≤ E [X ] for some ω ∈ Ω.
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We recall that a tournament is an orientation of a complete graph (for
any two vertices u, v, exactly one of the directed edges (u, v) and (v, u) is
present). A Hamiltonian path in a tournament is a directed path passing
through all vertices. The following result of Szele (1943) shows the existence
of a tournament with very many Hamiltonian paths.

3.2.1 Theorem. There is a tournament on n vertices that has at least n!

2n−1

Hamiltonian paths.

Proof. Let us calculate the expected number of Hamiltonian paths in a
random tournament T (every edge has a random orientation, chosen in-
dependently with probability 1

2
). For a given permutation σ on {1, . . . , n},

consider the sequence {σ(1), σ(2), . . . , σ(n)} and denote by Xσ the indicator
of the event that all the edges (σ(i), σ(i + 1)) appear in T with this orien-
tation. Because the orientation of different edges is chosen independently,

E [Xσ] = P[(σ(i), σ(i + 1)) ∈ T for i = 1, 2, . . . , n − 1] =
1

2n−1
.

The total number of Hamiltonian paths X equals the sum of these indicator
variables over all potential Hamiltonian paths, i.e. permutations, and so

E [X ] =
∑

σ

E [Xσ] =
n!

2n−1
.

So there is a tournament with at least n!

2n−1 Hamiltonian paths. ✷

3.3 Splitting Graphs

The MAXCUT problem is the following important algorithmic problem:
Given a graph G = (V, E), divide the vertex set into two classes A and
B = V \A so that the number of edges going between A and B is maximized.
This problem is computationally hard (NP-complete). The following simple
result tells us that it is always possible to achieve at least half of the edges
going between A and B.

3.3.1 Theorem. Any graph with m edges contains a bipartite subgraph
with at least m

2
edges.
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Proof. Let G = (V, E), and choose a random subset T ⊆ V by inserting
every vertex into T independently with probability 1

2
. For a given edge

e = {u, v}, let Xe denote the indicator variable of the event that exactly
one of the vertices of e is in T . Then we have

E [Xe] = P[(u ∈ T & v /∈ T ) or (u /∈ T & v ∈ T )] = 1

4
+ 1
4
= 1

2
.

If X denotes the number of edges having exactly one vertex in T , then

E [X ] =
∑

e∈E

E [Xe] =
m

2
.

Thus for some T ⊆ V , there are at least m

2
edges crossing between T and

V \ T , forming a bipartite graph. ✷
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Alterations

Sometimes the first attempt to find a “good” object by random construction
fails, but we prove that there exists an object which almost satisfies our
conditions. Often it is possible to modify it in a deterministic way so that
we get what we need.
Before we begin with examples, let us mention one simple tool which

is useful when we need to estimate the probability that a random variable
exceeds its expectation significantly.

4.0.2 Lemma (Markov’s inequality). If X is a non-negative random
variable and a > 0, then

P[X ≥ a] ≤
E [X ]

a
.

Proof. If X is non-negative, then

E [X ] ≥ a · P[X ≥ a] .

✷

4.1 Independent Sets

4.1.1 Definition (Independence number). For a graph G, α(G) deno-
tes the size of the largest independent set in G (a set of vertices such that
no two of them are joined by an edge).
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The independence number of a graph is one of its basic parameters. We
would like to know how it depends on the number of edges in the graph;
specifically, how small the independence number can be for a given average
degree.

4.1.2 Theorem (A weak Turán theorem). If n is the number of vertices
of G, m is the number of edges, and d = 2m

n
≥ 1 is the average degree, then

α(G) ≥
n

2d
.

Note. By Turán’s theorem, we actually have α(G) ≥ n

d+1
, and this is the

best possible in general. For d integral, the extremal graph is a union of
disjoint cliques of size d+ 1.

Proof. First, let us select a random subset of vertices S ⊆ V in such a way
that we insert every vertex into S independently with probability p (we will
choose a suitable value of p later). If X denotes the size of S and Y denotes
the number of edges in G[S] (the subgraph induced by S), then

E [X ] = np

(this follows immediately by the method of indicators; see Section 3.1) and

E [Y ] = mp2 = 1

2
ndp2

(because the probability that both vertices of a given edge are in S is p2).

We get

E [X − Y ] = np(1− 1

2
dp),

so there exists S ⊆ V where the difference of the number of vertices and
edges is at least A(p) = np(1− 1

2
dp).

Now observe that we can modify S by removing one vertex from each
edge inside S. We obtain an independent set with at least A(p) vertices. It
remains to choose the value of p so as to maximize A(p); the optimal value
is p = 1

d
, which yields

A(p) =
n

2d
.

✷
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4.2 High Girth and High Chromatic Number

Now we turn to a famous problem (solved by Erdős). The question was
whether the non-existence of short cycles in a graph implies that it can be
colored with a small number of colors. The answer is negative: there are
graphs that do not contain any short cycles and yet their chromatic number
is arbitrarily large.
We recall that a (proper) k-coloring of a graphG is a mapping c:V (G)→

[k] such that c(u) 6= c(v) whenever {u, v} ∈ E(G), and the chromatic num-
ber1 of G, denoted by χ(G), is the smallest k such that G has a proper
k-coloring. The girth2 of a graph G, denoted by g(G), is the length of its
shortest cycle.

4.2.1 Theorem. For any k, ℓ > 0, there exists a graph G such that χ(G) >
k and g(G) > ℓ.

Proof. Set ε = 1
2ℓ , p = nε−1, and consider the random graph G(n, p). First,

we estimate the number of cycles of length at most ℓ, which we denote by
X . Since the number of potential cycles of length i is 12 (i− 1)!

(

n
i

)

≤ ni and
each of them is present with probability pi, we get

E [X ] ≤

ℓ
∑

i=3

nipi =

ℓ
∑

i=3

nεi.

Because nεi = o(n) for all i ≤ ℓ, E [X ] = o(n). If we choose n so large that
E [X ] < n

4 , we get by the Markov inequality

P
[

X ≥ n
2

]

< 1
2 .

Now we estimate the chromatic number of G(n, p) by means of its inde-
pendence number. If we set a = ⌈ 3p lnn⌉, we have

P[α(G(n, p)) ≥ a] ≤

(

n

a

)

(1− p)(
a

2
) ≤ nae−p(a

2
) = e(lnn−p(a−1)/2)a,

which tends to zero as n → ∞. Thus again, for n sufficiently large, we have

P[α(G(n, p)) ≥ a] < 1
2 .

1chromatic number=barevnost
2girth=obvod
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Consequently, there exists a graph G with X < n
2 and α(G) < a. If

we remove one vertex from each of the X short cycles, at least n
2 vertices

remain and we get a graph G∗ with g(G∗) > ℓ and α(G∗) < a. Since in any
proper coloring of G∗, the color classes are independent sets of size at most
a − 1,

χ(G∗) ≥
n/2

a − 1
≥

pn

6 lnn
=

nε

6 lnn
.

It remains only to choose n sufficiently large so that χ(G∗) > k. ✷



5

The Second Moment

5.1 Variance and the Chebyshev Inequality

Besides the expectation, the other essential characteristic of a random vari-
able is the variance.1 It describes how much the variable fluctuates around
its expectation. (For a constant random variable, the variance is zero.)

5.1.1 Definition. The variance of a real random variable X is

Var [X ] = E
[

(X −E [X ])2
]

= E
[

X2
]

− (E [X ])2.

(The first equality is a definition, and the second one follows by an easy
computation.) The standard deviation2 of X is σ =

√

Var [X ].

It might seem more natural to measure the deviation of X from the
expectation as E [|X − E [X ] |], but this quantity is much harder to compute
and, because of the absolute value, behaves much less nicely than Var [X ].
Unlike the expectation, the variance is not a linear operator. If we want

to calculate the variance of a sum of random variables, we need to know
something about their pairwise dependence.

5.1.2 Definition. The covariance3 of two random variables is

Cov [X, Y ] = E [(X −E [X ])(Y −E [Y ])] = E [XY ]−E [X ]E [Y ] .

1variance= rozptyl
2standard deviation= směrodatná odchylka
3covariance=kovariance
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5.1.3 Lemma. The variance of a sum of random variables is equal to

Var

[ n
∑

i=1

Xi

]

=

n
∑

i=1

Var [Xi] +
∑

i6=j

Cov [Xi, Xj ].

Proof.

Var

[ n
∑

i=1

Xi

]

= E

[ n
∑

i=1

Xi

n
∑

j=1

Xj

]

−E

[ n
∑

i=1

Xi

]

E

[ n
∑

j=1

Xj

]

=

=

n
∑

i=1

E
[

X2i
]

+
∑

i6=j

E [XiXj]−

n
∑

i=1

(E [Xi])
2 −

∑

i6=j

E [Xi]E [Xj ] =

=
n

∑

i=1

Var [Xi] +
∑

i6=j

Cov [Xi, Xj ].

✷

Note. If X1, . . . , Xn are independent, the covariance of each pair is 0. In
this case, the variance of X can be calculated as the sum of variances of the
Xi. On the other hand, Cov [X, Y ] = 0 does not imply independence of X
and Y !
Once we know the variance, we can apply the Chebyshev inequality4

to estimate the probability that a random variable deviates from its ex-
pectation at least by a given number.

5.1.4 Lemma (Chebyshev inequality). Let X be a random variable
with a finite variance. Then for any t > 0

P[|X −E [X ] | ≥ t] ≤
Var [X ]

t2
.

Proof.

Var [X ] = E
[

(X −E [X ])2
]

≥ t2 P[|X −E [X ] | ≥ t] .

✷

This simple tool gives the best possible result when X is equal to µ with
probability p and equal to µ ± t with probability 1−p

2
. In Chapter 7, we

will examine stronger methods giving better bounds for certain classes of
random variables. In this section, though, the Chebyshev inequality will be
sufficient.
4Chebyshev inequality=Čebyševova nerovnost
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5.2 Estimating the Middle Binomial Coefficient

Among the binomial coefficients
(

2m

k

)

, k = 0, 1, . . . , 2m,
(

2m

m

)

is the lar-
gest and it often appears in various formulas (e.g. in the Catalan numbers,
which count binary trees and many other things). The second moment me-
thod provides a simple way of bounding

(

2m

m

)

from below. There are several
other approaches, some of them yielding much more precise estimates, but
the simple trick with the Chebyshev inequality gives the correct order of
magnitude.

5.2.1 Proposition. For all m ≥ 1, we have
(

2m

m

)

≥ 22m/(4
√

m+2).

Proof. Consider the random variable X = X1+X2+ · · ·+X2m, where the
Xi are independent and each of them attains values 0 and 1 with probability
1

2
. We have E [X ] = m and Var [X ] = m

2
. The Chebyshev inequality with

t =
√

m gives

P
[

|X − m| <
√

m
]

≥ 1
2
.

The probability of X attaining a specific value m+ k, where |k| <
√

m, is
(

2m

m+k

)

2−2m ≤
(

2m

m

)

2−2m (because
(

2m

m

)

is the largest binomial coefficient).
So we have

1

2
≤

∑

|k|<√
m

P[X = m+ k] ≤ (2
√

m+ 1)

(

2m

m

)

2−2m

and the proposition follows. ✷

5.3 Threshold Functions

Now we return to random graphs and we consider the following question:
What is the probability that G(n, p) contains a triangle? Note that this is
a monotone property; that means, if it holds for a graph G and G ⊂ H , it
holds for H as well. It is natural to expect that for very small p, G(n, p) is
almost surely triangle-free, whereas for large p, the appearance of a triangle
is very likely.

Let T denote the number of triangles in G(n, p). For a given triple of
vertices, the probability that they form a triangle is p3. By linearity of
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expectation, the expected number of triangles is

E [T ] =

(

n

3

)

p3

which approaches zero if p(n) << 1

n
(the notation f(n) << g(n) is equi-

valent to f(n) = o(g(n)) and f(n) >> g(n) means g(n) = o(f(n))). The-
refore, the probability that G(n, p(n)) contains a triangle tends to zero for
p(n) = o( 1

n
).

On the other hand, let us suppose that p(n) >> 1

n
. Then the expected

number of triangles goes to infinity with increasing n, yet this does not
imply that G(n, p) contains a triangle almost surely! It might be the case
that there are a few graphs abounding with triangles (and boosting the
expected value) while with a large probability the number of triangles is
zero. This can also be illustrated with the following real-life scenario.

Example: fire insurance. The annual cost of insurance against fire, per
household, is increasing. This reflects the growing damage inflicted by fire
every year to an average household. But does this mean that the probability
of a fire accident is rising, or even that in the limit, almost every household
will be stricken by fire every year? Hardly. The rise in the expected damage
costs is due to a few fire accidents every year which, however, are getting
more and more expensive.
Fortunately, our triangles do not behave as erratically as fire accidents.

Most random graphs have a “typical” number of triangles which is relati-
vely close to the expectation. It is exactly the second moment method that
allows us to capture this property and prove that if the expected number
of triangles is sufficiently large, the random graph contains some triangle
almost surely.

5.3.1 Lemma. Consider a sequenceX1, X2, . . . of non-negative random va-
riables such that

lim
n→∞

Var [Xn]

(E [Xn])2
= 0.

Then

lim
n→∞

P[Xn > 0] = 1.

Proof. We choose t = E [Xn] in the Chebyshev inequality:

P[|Xn −E [Xn] | ≥ E [Xn]] ≤
Var [Xn]

(E [Xn])2
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and we get

lim
n→∞

P[Xn ≤ 0] ≤ lim
n→∞

Var [Xn]

(E [Xn])2
= 0.

✷

Thus we need to estimate the variance of the number of triangles in
G(n, p). We have T =

∑

Ti where T1, T2, . . . are indicator variables for
all the

(

n
3

)

possible triangles in G(n, p). The variance of a sum of random
variables is

Var [T ] =
∑

i

Var [Ti] +
∑

i6=j

Cov [Ti, Tj].

For every triangle
Var [Ti] ≤ E

[

T 2i
]

= p3,

and for a pair of triangles sharing an edge

Cov [Ti, Tj ] ≤ E [TiTj ] = p5,

since TiTj is the indicator variable of the appearance of 5 fixed edges.
The indicator variables corresponding to edge-disjoint triangles are in-

dependent and then the covariance is zero. So we only sum up over the pairs
of triangles sharing an edge; the number of such (ordered) pairs is 12

(

n
4

)

. In
total, we get

Var [T ] ≤

(

n

3

)

p3 + 12

(

n

4

)

p5 ≤ n3p3 + n4p5

Var [T ]

(E [T ])2
≤

n3p3 + n4p5

(
(

n
3

)

p3)2
= O

(

1

n3p3
+
1

n2p

)

,

which tends to zero if p(n) >> 1

n . Lemma 5.3.1 implies that the probability
that G(n, p) contains a triangle approaches 1 as n → ∞.
As the reader can observe, the transition between random graphs that

contain a triangle almost never or almost always is quite sharp. In order to
describe this phenomenon more generally, Erdős and Rényi introduced the
notion of a threshold function.

5.3.2 Definition. A function r: N → R is a threshold function for a
monotone graph property A, if for any p: N→ [0, 1]

• p(n) = o(r(n))⇒ limn→∞ P[A holds for G(n, p(n))] = 0
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• r(n) = o(p(n))⇒ limn→∞ P[A holds for G(n, p(n))] = 1

(a property A is monotone if for any two graphs G and H with V (H) =
V (G), E(H) ⊆ E(G), and H having property A, G has property A as well).

Note that a threshold function may not exist, and if it exists, it is
not unique. For our property “G(n, p) contains a triangle”, the threshold
function is r(n) = 1

n , but r(n) = c
n (for any c > 0) could serve as well.

More generally, we can study the threshold functions for the appearance
of other subgraphs (not necessarily induced; the question of induced subgra-
phs is much more difficult). It turns out that our approach can be extended
to any subgraph H that is balanced.

5.3.3 Definition. Let H be a graph with v vertices and e edges. We define
the density of H as

ρ(H) =
e

v
.

We call H balanced if no subgraph of H has strictly greater density than
H itself.

5.3.4 Theorem. Let H be a balanced graph with density ρ. Then

r(n) = n−1/ρ

is a threshold function for the event that H is a subgraph of G(n, p).

Proof. Let H have v vertices and e edges, ρ = e
v . Denote the vertices

of H by {a1, a2, . . . , av}. For any ordered v-tuple β = (b1, b2, . . . , bv) of
distinct vertices b1, . . . , bv ∈ V (G(n, p)), let Aβ denote the event thatG(n, p)
contains an appropriately ordered copy of H on (b1, . . . , bv). That is, Aβ

occurs if {bi, bj} ∈ E(G(n, p)) whenever {ai, aj} ∈ E(H); in other words,
whenever the mapping ai 7→ bi is a graph homomorphism.
Let Xβ denote the indicator variable corresponding to Aβ and let X =

∑

β Xβ be the sum over all the ordered v-tuples β. Note that due to the
possible symmetries of H , some copies of H may be counted repeatedly,
and so X is not exactly the number of copies of H in G(n, p). However, the
conditions X = 0 and X > 0 are equivalent to the absence and appearance
of H in G(n, p).
The probability of Aβ is pe. By linearity of expectation,

E [X ] =
∑

β

P[Aβ ] = Θ(n
vpe)
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(note that v and e are constants, while p is a function of n).
If p(n) << n−v/e, then

lim
n→∞

E [X ] = 0,

which completes the first part of the proof.
Now assume p(n) >> n−v/e and apply the second moment method:

Var [X ] =
∑

β

Var [Xβ ] +
∑

β 6=γ

Cov [Xβ , Xγ ].

Note that Var [Xβ] = Cov [Xβ , Xβ], so we can also write

Var [X ] =
∑

β,γ

Cov [Xβ , Xγ ].

The covariances are non-zero only for the pairs of copies that share some
edges. Let β and γ share t ≥ 2 vertices; then the two copies of H have at
most tρ edges in common (because H is balanced), and their union contains
at least 2e − tρ edges. Thus

Cov [Xβ , Xγ ] ≤ E [XβXγ ] ≤ p2e−tρ.

The number of pairs β, γ sharing t vertices is O(n2v−t), because we can
choose a set of 2v − t vertices in

(

n
2v−t

)

ways and there are only constantly
many ways to choose β and γ from this set (since H is fixed and so its size
of H is a constant). For a fixed t, we get

∑

|β∩γ|=t

Cov [Xβ, Xγ ] = O(n2v−t p2e−tρ) = O((nvpe)2−t/v).

For the variance of X , we get

Var [X ] = O

( v
∑

t=2

(nvpe)2−t/v

)

and

lim
n→∞

Var [X ]

(E [X ])2
= lim

n→∞
O

( v
∑

t=2

(nvpe)−t/v

)

= 0
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since limn→∞ nvpe = ∞. This completes the second part of the proof be-
cause by Lemma 5.3.1,

lim
n→∞

P[X > 0] = 1

and there is almost always a copy of H in G(n, p). ✷

For a general subgraph H , it turns out that the threshold function is
determined by the subgraph H ′ ⊂ H with the maximum density. We give
here only the result without a proof.

5.3.5 Theorem. Let H be a graph and H ′ ⊂ H a subgraph of H with the
maximum density. Then

r(n) = n−1/ρ(H′)

is a threshold function for the event that H is a subgraph of G(n, p).

5.4 The Clique Number

Now we consider the clique number of a random graph. For simplicity, sup-
pose that the probability of each edge is p = 1

2 . Let us choose a number
k and count the number of cliques of size k. For each set S of k vertices,
let XS denote the indicator variable of the event “S is a clique”. Then
X =

∑

|S|=k XS is the number of k-cliques in the graph. The expected
number of k-cliques is

E [X ] =
∑

|S|=k

E [XS ] =

(

n

k

)

2−(
k

2
).

This function drops below 1 approximately at k = 2 log2 n and, indeed, this
is the typical size of the largest clique in G(n, 1/2).

5.4.1 Lemma.

lim
n→∞

P[ω(G(n, 1/2)) > 2 log2 n] = 0.

Proof.We set k(n) = ⌈2 log2 n⌉ and calculate the average number of cliques
of this size:

E [X ] =

(

n

k

)

2−(
k

2
) ≤
(2k/2)k

k!
2−k(k−1)/2 =

2k/2

k!
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which tends to 0 as n → ∞. Therefore

lim
n→∞

P[ω(G(n, 1/2)) > 2 log2 n] = 0.

✷

However, it is more challenging to argue that there will almost always be
a clique of size near the threshold of 2 log2 n. We prove the following result.

5.4.2 Theorem. Let k(n) be a function such that

lim
n→∞

(

n

k(n)

)

2−(
k(n)
2 ) =∞.

Then

lim
n→∞

P[ω(G(n, 1/2)) ≥ k(n)] = 1.

Proof. Here the calculations are somewhat more demanding than usual.

For brevity, let us write E(n, k) =
(

n
k

)

2−(
k

2). First we note that we may
assume n to be sufficiently large and

3
2 log2 n ≤ k < 2 log2 n

(where 32 can be replaced by any constant smaller than 2). As for the second
inequality, we already know that E(n, 2 log2 n)→ 0. For the first inequality,

we have log2E(n, k) ≥ log2

[

(nk )
k2−k2/2

]

= k log2 n − k log2 k − k2

2 , and so

log2E(n, 32 log2 n) ≥ 3
2 log

2
2 n − o(log2 n)− 9

8 log
2
2 n → ∞ as n → ∞.

For convenience, we also suppose that k = k(n) is even.
Let X =

∑

|S|=k(n)XS denote the number of cliques of size k(n) in

G(n, 1/2). The condition on k(n) guarantees that limn→∞E [X ] = ∞. It
remains to estimate the variance of X :

Var [X ] =
∑

|S|=|T |=k

Cov [XS , XT ]

(note that this includes the terms where S = T , which are equal to Var [XT ]).
The variables XS , XT are independent whenever S and T share at most

one vertex (and therefore the corresponding cliques have no edges in com-
mon). So we are interested only in those pairs S, T with |S ∩ T | ≥ 2, and
we can write

Var [X ] =

k
∑

t=2

C(t),
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where
C(t) =

∑

|S∩T |=t

Cov [XS , XT ].

For a fixed t = |S ∩ T |, the cliques on S and T have 2
(

k
2

)

−
(

t
2

)

edges in
total, so we have

Cov [XS , XT ] ≤ E [XSXT ] = 2
(t2)−2(

k

2)

and since a pair of subsets (S, T ) with |S| = |T | = k and |S ∩ T | = t can be
chosen in

(

n
k

)(

k
t

)(

n−k
k−t

)

ways,

C(t) ≤

(

n

k

)(

k

t

)(

n − k

k − t

)

2(
t

2)−2(
k

2).

We need to prove that

Var [X ]

(E [X ])2
=

k
∑

t=2

C(t)

(E [X ])2
→ 0

(see Lemma 5.3.1). We split the sum over t into two ranges.
In the first range, 2 ≤ t ≤ k

2 , we show that the sum goes to 0 for
k < 2 log2 n. When dealing with a product of several binomial coefficients,
it is often a good idea to expand them, as many terms usually cancel out
or can be matched conveniently. We have

C(t)

(E [X ])2
≤

(

k
t

)(

n−k
k−t

)

(

n
k

) 2(
t

2)

≤ kt

t! ·
(n−k)(n−k−1)···(n−2k+t+1)

(k−t)! · k!
n(n−1)···(n−k+1) · 2

(t2)

≤ k2t · 1
n(n−1)···(n−t+1)·t! · 2

t2/2 ≤ k2tn−t2t
2/2

≤ k2t(2−k/2)t2t
2/2 ≤ (k22−k/22t/2)t.

Since t ≤ k
2 , the expression in parentheses is at most k22−k/4 = o(1). We

can thus bound
∑k/2

t=2 C(t)/(E [X ])2 by the sum of the geometric series,
∑∞

t=2 qt, with q = k22−k/4 = o(1) and so the sum tends to 0.

For the second range, k
2 < t ≤ k, we show that

∑k
t=k/2 C(t)/E [X ] = o(1)

for k ≥ 3
2 log2 n. Consequently, since E [X ] → ∞ by the condition in the
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theorem, we have
∑k

t=k/2 C(t)/(E [X ])2 → 0 as well. This time we can
afford to bound the binomial coefficients quite roughly:

C(t)

E [X ]
≤

(

k

t

)(

n − k

k − t

)

2(
t

2)−(
k

2
) ≤

(

k

k − t

)(

n

k − t

)

2(
t

2)−(
k

2
)

≤ kk−tnk−t 2(t
2
−k2−t+k)/2

= (kn)k−t 2−(k−t)(k+t−1)/2 = (kn2−(k+t−1)/2)k−t

≤ (2log2 k+(2/3)k−(k+t−1)/2)k−t

≤ (2log2 k+(2/3)k−(3/4)k)k−t

as t > k
2 . The expression in parentheses is o(1). Bounding by a geometric

series again, it follows that
∑k

t=k/2 C(t)/E [X ] → 0 as claimed. Altogether

we have proved limn→∞Var [X ] /(E [X ])
2 = 0. ✷

Remark. If we choose k(n) = (2− ε) log2 n, the condition of the theorem
holds for any ε > 0. This means that the clique number ω(G(n, 1/2)) almost
always lies between (2 − ε) log2 n and 2 log2 n. However, the concentration
of the clique number is even stronger. In 1976, Bollobás, Erdős and Matula
proved that there exists a function k(n) such that

lim
n→∞

P[k(n) ≤ ω(G(n, 1/2)) ≤ k(n) + 1] = 1.
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The Lovász Local Lemma

6.1 Statement and Proof

The typical goal of the probabilistic method is to prove that the probabi-
lity that nothing “bad” happens is greater than zero. Usually, we have a
collection of bad events A1, A2, . . . , An that we are trying to avoid. (These
may be, for example, the occurrences of a monochromatic edge in a hyper-
graph, as in Theorem 2.2.4.) If the sum of their probabilities

∑

P[Ai] is
strictly less than 1, then clearly there is a positive probability that none of
them occurs. However, in many cases this approach is not powerful enough,
because the sum of probabilities of the bad events

∑

P[Ai] may be substan-
tially larger than the probability of their union P[

⋃

Ai].

One case where we can do better is when the events A1, . . . , An are
independent (and non-trivial). Then their complements are independent as
well, and we have

P
[

A1 ∩ A2 ∩ . . . ∩ An

]

= P
[

A1
]

P
[

A2
]

· · ·P
[

An

]

> 0

even though the probabilities P[Ai] can be very close to 1 and their sum
can be arbitrarily large.

It is natural to expect that something similar holds even if the events
are not entirely independent. The following definitions conveniently express
“limited dependence” of events using a directed graph.

6.1.1 Definition. An event A is independent of events B1, . . . , Bk if
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for any nonempty J ⊆ [k],

P

[

A ∩
⋂

j∈J

Bj

]

= P[A] P

[

⋂

j∈J

Bj

]

.

6.1.2 Definition. Let A1, A2, . . . , An be events in a probability space. A
directed graph D = (V, E) with V = [n] is a dependency digraph for
A1, . . . , An if each event Ai is independent of all the events Aj with (i, j) 6∈
E.

Note that a dependency digraph need not be determined uniquely.
The local lemma, discovered by Lovász, is a powerful tool which allows

us to exclude all bad events, provided that their probabilities are relatively
small and their dependency digraph does not have too many edges. We
begin with a simple symmetric form of the local lemma, the one used most
often.

6.1.3 Lemma (Symmetric Lovász Local Lemma). Let A1, . . . , An be
events such that P[Ai] ≤ p for all i and all outdegrees in a dependency
digraph of the Ai are at most d; that is, each Ai is independent of all but at
most d of the other Aj . If ep(d+ 1) ≤ 1 (where e = 2.71828 . . . is the basis
of natural logarithms), then

P

[ n
⋂

i=1

Ai

]

> 0.

If some of the events Ai have probability considerably larger than the
others, then the following general version can be useful:

6.1.4 Lemma (Lovász Local Lemma). Let A1, A2, . . . , An be events,
D = (V, E) their dependency digraph, and xi ∈ [0, 1) real numbers assigned
to the events, in such a way that

P[Ai] ≤ xi

∏

(i,j)∈E

(1− xj).

Then

P

[ n
⋂

i=1

Ai

]

≥

n
∏

i=1

(1− xi) > 0.
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If all the P[Ai] are below
1
6 , say, then a good choice in applications is

usually xi = 3P[Ai] (the exact value 3 is not important). Then it is easy
to show that if

∑

j: (i,j)∈E P[Aj ] ≤
1
6 for all i, then the assumptions of the

Lovász Local Lemma hold.

In the rest of the section, we prove both versions of the local lemma. It
seems that at first reading, the proof does not give much insight why the
lemma holds. The reader not particularly interested in the proof may safely
continue with the examples in the next sections and perhaps return to the
proof later.

Proof of Lemma 6.1.4. The complementary events Ai have positive
probabilities but we want them all to occur simultaneously. This would be
impossible if the occurrence of a combination of Aj forced some other Ai to
hold. Therefore, we need to bound the probability of Ai on the condition of
the other events not occurring, and this is where the parameters xi come
into play. First we prove that for any subset S ⊂ {1, . . . , n} and i /∈ S

P

[

Ai

∣

∣

∣

∣

⋂

j∈S

Aj

]

≤ xi.

We proceed by induction on the size of S. For S = ∅, the statement
follows directly from the assumption of the lemma:

P[Ai] ≤ xi

∏

(i,j)∈E

(1 − xj) ≤ xi.

Now suppose it holds for any S′, |S′| < |S| and set S1 = {j ∈ S: (i, j) ∈
E}, S2 = S \S1. We can assume S1 6= ∅, for otherwise, Ai is independent of
⋂

j∈S Aj and the statement follows trivially. We have

P

[

Ai

∣

∣

∣

∣

⋂

j∈S

Aj

]

=
P

[

Ai ∩
⋂

j∈S1
Aj

∣

∣

∣

⋂

l∈S2
Al

]

P
[

⋂

j∈S1
Aj

∣

∣

∣

⋂

l∈S2
Al

]

Since Ai is independent of the events {Al: l ∈ S2}, we can bound the nu-
merator as follows:

P

[

Ai ∩
⋂

j∈S1

Aj

∣

∣

∣

∣

⋂

l∈S2

Al

]

≤ P

[

Ai

∣

∣

∣

∣

⋂

l∈S2

Al

]

= P[Ai] ≤ xi

∏

(i,j)∈E

(1− xj).
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To bound the denominator, suppose S1 = {j1, . . . , jr} and use the induction
hypothesis:

P

[

Aj1 ∩ · · · ∩ Ajr

∣

∣

∣

∣

⋂

l∈S2

Al

]

= P

[

Aj1

∣

∣

∣

∣

⋂

l∈S2

Al

]

P

[

Aj2

∣

∣

∣

∣

Aj1 ∩
⋂

l∈S2

Al

]

· · · × P

[

Ajr

∣

∣

∣

∣

Aj1 ∩ · · · ∩ Ajr−1
∩

⋂

l∈S2

Al

]

≥ (1 − xj1)(1 − xj2) · · · (1− xjr
)

≥
∏

(i,j)∈E

(1− xj).

We conclude that P
[

Ai|
⋂

j∈S Aj

]

≤ xi and now the lemma follows easily,

because

P

[ n
⋂

i=1

Ai

]

= P
[

A1
]

P
[

A2

∣

∣

∣
A1

]

· · ·P
[

An

∣

∣

∣
A1 ∩ · · · ∩ An−1

]

≥
n

∏

i=1

(1− xi).

✷

Proof of the symmetric version (Lemma 6.1.3). For d = 0 the events
are mutually independent and the result follows easily. Otherwise set xi =
1

d+1 < 1. In the dependency digraph, the outdegree of any vertex is at most
d, so

xi

∏

(i,j)∈E

(1− xj) ≥
1

d+ 1

(

1−
1

d+ 1

)d

≥
1

e(d+ 1)
≥ p

and we can apply the general local lemma. ✷

Algorithmic remark. In the basic probabilistic method, we usually prove
that almost all of the considered objects are good. So if we want to find a
good object, we can select an object at random, and we have a very good
chance of selecting a good one (of course, verifying that an object is good can
still be difficult, but this is another matter). In contrast, the Lovász Local
Lemma guarantees that the probability of avoiding all bad events is positive,
but this probability is typically very small! For example, if A1, . . . , An are
independent events, with probability 13 each, say, in which case the Local
Lemma applies, then the probability of none Ai occurring is only (

2
3 )

n.
So good objects guaranteed by the Local Lemma can be extremely rare.
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Nevertheless, algorithmic versions of the Local Lemma, where a good object
can be found efficiently, are known; the first one, for a particular application,
was discovered by Beck, and for quite general recent results the reader may
consult

M. Molloy, B. Reed: Further algorithmic aspects of the Local
Lemma, Proc. of the 30th ACM Symposium of Theory of Com-
puting, 1998, pages 524–530.

Now we present several combinatorial results which can be obtained with
the help of the Local Lemma.

6.2 Hypergraph Coloring Again

In section 2.2, we proved that any k-uniform hypergraph with less than
2k−1 edges is 2-colorable. By applying the Local Lemma, we prove a similar
result which holds for a hypergraph with arbitrarily many edges provided
that they do not intersect too much.

6.2.1 Theorem. Let H be a hypergraph in which every edge has at least
k vertices and intersects at most d other edges. If e(d + 1) ≤ 2k−1, then H
is 2-colorable.

Proof. Let us color the vertices of H independently red or blue, with pro-
bability 1

2
. For every edge f , let Af denote the event that f is monochro-

matic. As any edge has at least k elements, the probability of Af is at most
p = 21−k. Clearly, the event Af is independent of all Ag but those (at most
d) events where f intersects g. Since ep(d + 1) ≤ 1, we can use the Local
Lemma, which implies that there is a non-zero probability that no edge is
monochromatic. ✷

6.3 Directed Cycles

6.3.1 Theorem. Let D = (V, E) be a directed graph with minimum out-
degree δ and maximum indegree ∆. Then for any k ∈ N such that

k ≤
δ

1 + ln(1 + δ∆)
,

D contains a directed cycle of length divisible by k.
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Proof. First we construct a subgraph D′ = (V, E′) of D where every out-
degree is exactly δ. It suffices to consider vertices one by one and for each
of them delete all but δ outgoing edges. Obviously, it suffices to find the
desired cycle in D′.
Let f :V → {0, 1, . . . , k − 1} be a random coloring obtained by choosing

f(v) for each v ∈ V independently and uniformly. Let N+(v) denote the
set of vertices {w: (v, w) ∈ E′} and Av the event that no vertex in N+(v)
is colored by f(v) + 1 (mod k).
The probability of Av is p = (1 − 1

k )
δ. We claim that each Av is inde-

pendent of all the events Aw with N+(v) ∩ (N+(w) ∪ {w}) = ∅. That is, w
is not a successor of v and w and v have no common successor:

v

6= w 6= w 6= w

6= w

. . .

could be w

Note that v may be a successor of w (as indicated by the dashed arrow). In
this case, the independence is not so obvious, but it still holds: Even if the
color is fixed for all vertices except for N+(v) and it is chosen randomly on
N+(v), the probability of Av is still (1−

1

k )
δ.

The number d of vertices w not satisfying the above conditions is at
most δ + δ(∆− 1) = δ∆. Hence

ep(d+ 1) ≤ e(1−
1

k
)δ(δ∆+ 1) ≤ e1−δ/k(δ∆+ 1) ≤ 1,

and by the Local Lemma, there is a coloring such that for every v ∈ V ,
there is a w ∈ N+(v) such that f(w) = f(v) + 1 (mod k). Now starting at
any vertex v0, we can generate a sequence of vertices v0, v1, v2, . . . such that
(vi, vi+1) ∈ E′ and f(vi+1) = f(vi) + 1 (mod k), until we find a directed
cycle in D′. The coloring scheme guarantees that the length of the cycle is
divisible by k. ✷

6.4 Ridiculous Injections

This is a silly example which, nonetheless, shows how strong the Local
Lemma is, compared to an elementary probabilistic argument. Let us consi-
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der two finite setsM and N ; |M | = m, |N | = n. We will attempt to prove by
the probabilistic method that under favorable circumstances, there exists an
injective mapping fromM to N . The first result is based only on elementary
probabilistic reasoning, and it is also relatively weak. :–)

6.4.1 Theorem. If n >
(

m
2

)

, then an injective mapping f :M → N exists.

Proof. Consider a random mapping f :M → N , where the image of each
element of M is chosen from N at random, uniformly and independently.
Let Axy denote the event that, for x, y ∈ M , f(x) = f(y). The probability
of Axy is p = 1

n
. Since there are

(

m

2

)

such events Axy that must be avoided
in order for f to be injective, we have

P

[

⋂

x,y∈M

Axy

]

≥ 1−

(

m

2

)

1

n
> 0

and therefore an injective mapping exists. ✷

Now, with the Local Lemma at hand, we are ready for a substantial
improvement. Instead of n >

(

m

2

)

, we will need only a linear number of
elements!

6.4.2 Theorem. If n > 6m, then an injective mapping f :M → N exists.

Proof. Again, we define the events Axy for x 6= y as f(x) = f(y) and we
observe that p = P[Axy] <

1

6m
and Axy is independent of all but the d < 2m

events Ax′y′ with {x, y} ∩ {x′, y′} 6= ∅. So we have ep(d + 1) < 1 and the
Local Lemma says that

P

[

⋂

x,y∈M

Axy

]

> 0.

✷

6.5 Coloring of Real Numbers

This is a problem which appeared in the original paper containing the Local
Lemma by Erdős and Lovász. They asked whether it is possible, for a given
finite set S ⊂ R, to color the real numbers with k colors in such a way that
every translation (shifted copy) of S contains all the k colors.
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6.5.1 Definition. Let c:R → [k] be a coloring of the real numbers. A set
T ⊂ R is called colorful if c(T ) = [k].

6.5.2 Theorem. For any k there ism such that for anym-point set S ⊂ R,
the real numbers can be colored with k colors so that any translation of S

is colorful.

Proof. First, we prove a result about finite sets of translates.

Statement F: For any k, there exists m = m(k) such that
for any m-point S ⊂ R and finite X ⊂ R, there is a coloring
c of the set T =

⋃

x∈X(S + x) with k colors under which each

translation S + x with x ∈ X is colorful.

Let c:T → [k] be a random coloring obtained by choosing c(y) for each
y ∈ T independently and uniformly at random. For each x ∈ X , let Ax

denote the event that c(S+x) does not contain all the k colors. The proba-
bility of Ax is at most p = k(1− 1

k
)m. Moreover, each Ax is independent of

all the other events but those Ax′ with (S + x) ∩ (S + x′) 6= ∅. The number
of such events is at most d = m(m− 1). If we choose m sufficiently large so
that

ep(d+ 1) = ek
(

1− 1

k

)m
(m(m − 1) + 1) ≤ 1,

then the Local Lemma implies that there is a coloring such that all the sets
S + x, x ∈ X , are colorful. Statement F is proved.
Here it should be noted that the Local Lemma itself cannot take us any

further, because it requires that the number of events in question is finite.
The proper coloring of all real numbers can be obtained by a compactness
argument (which requires the axiom of choice).
First, we will show a weaker result by an elementary argument. (This

weaker result is included just for illustration and it is not needed in the proof
of Theorem 6.5.2 that will be presented later.) Let Q = {q1, q2, q3, . . .} ⊂ R
be a countable set, for example the rationals. We are going to color the set
T =

⋃

q∈Q(S + q). Let Ti =
⋃i

j=1 (S + qj). For every Ti, using Statement F
above, we fix a coloring ci:Ti → [k] such that all the sets S + qj , j ≤ i,
are colorful. We are going to define a coloring c:T → [k] by a diagonal
argument.
There are finitely many ways of coloring the set S+ q1, and we have the

infinite sequence (c1, c2, . . .) of colorings, so there is an infinite subsequence
(ci1 , ci2 , . . .) all of whose colorings coincide on S+ q1 (and S+ q1 is colorful
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under them). For simpler notation, let us write c
(1)
j = cij

, so we have the

infinite sequence (c
(1)
1 , c

(1)
2 , c

(1)
3 , . . .). All of these colorings, except possibly

for c
(1)
1 , are defined on S + q2, and can have only finitely many patterns

there, so we can select an infinite subsequence (c
(2)
1 , c

(2)
2 , c

(2)
3 , . . .), all of

whose colorings coincide on S+q2. Continuing in this manner, after ℓ steps,

we get an infinite sequence (c
(ℓ)
1 , c

(ℓ)
2 , . . .) whose colorings coincide on Tℓ =⋃ℓ

i=1(S + qi) and such that each S + qi, i = 1, 2, . . . , ℓ is colorful. Note that

the coloring of Tℓ remains fixed after the ℓth step, and each c
(r)
j , r ≥ ℓ,

coincides with c
(ℓ)
1 on Tℓ.

Now we define a “diagonal” coloring c:T → [k] by letting c(x) = c
(ℓ)
1 (x),

where ℓ is the smallest index such that x ∈ Tℓ. Note that we also have
c(x) = c

(r)
1 (x) for all r such that x ∈ Tr. Since each S + qr is colorful under

c
(r)
1 by the construction, it follows that it is colorful under c as well.

Finally, we prove the existence of the desired coloring of the real num-
bers. We need to recall two facts about compact topological spaces. First, if
C is a system of closed subsets in a compact space such that

⋂
C∈F

C 6= ∅ for
any finite subsystem F ⊆ C, then

⋂
C∈C

C 6= ∅. And second, an arbitrary
Cartesian product of compact topological spaces is compact (Tychonoff’s
theorem),1 and in particular, the space M of all mappings f :R → [k] is
compact. The topology on this space is that of the Cartesian power [k]R;
explicitly, any set of mappings of the form

{f ∈ M : f(i) = g(i) for all i ∈ I}, (6.1)

where I ⊂ R is finite and g: I → [k] is arbitrary, is closed in M .
Coming back to our coloring problem, let Cx ⊂ M denote the set of all

colorings for which S + x is colorful. Each Cx is a finite union of sets of
the form (6.1) and so it is closed in M . Statement F implies that for any
finite set X ⊂ R,

⋂
x∈X Cx 6= ∅. From the compactness ofM , we obtain the

existence of a c ∈
⋂

x∈RCx, and such a coloring c makes all the sets S + x

(x ∈ R) colorful. ✷

1Tychonoff’s theorem=Tichonovova věta (čte se s Ť)
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Strong Concentration Around the

Expectation

What is typically the maximum degree of the random graph G(n, 1
2
)? This

maximum degree is a quite complicated random variable, and it is not even
clear how to compute its expectation. For each vertex, the expected degree
is d = 1

2
(n − 1), but this alone does not tell us much about the maximum

over all vertices. But suppose that we can show, for some suitable number t

much smaller than n, that the degree of any given vertex exceeds d+ t with
probability smaller than n−2, say (as we will see later, the appropriate value
of t is about const · √n logn ). Then we can conclude that the maximum
degree is below d+ t with probability at least 1− 1

n , i.e. almost always.
In this case, and in many other applications of the probabilistic method,

we need to bound probabilities of the form P[X ≥ E [X ] + t] for some ran-
dom variable X (and usually also probabilities of negative deviations from
the expectation, i.e. P[X ≤ E [X ]− t]). Bounds for these probabilities are
called tail estimates .1 In other words, we want to show thatX almost always
lives in the interval (E [X ] − t,E [X ] + t); we say that X is concentrated

around its expectation.
The Chebyshev inequality is a very general result of this type, but usually

it is too weak, especially if we need to deal with many random variables
simultaneously. It tells us that

P[|X −E [X ] | ≥ λσ] ≤ λ−2,

1tail estimate= odhad pravděpodobnosti velkých odchylek
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where σ =
√

Var [X ] and λ ≥ 0 is a real parameter. If X is the degree of a
fixed vertex in G(n, 1

2
), we have σ = 1

2

√
n − 1. Since the largest deviations

we may ever want to consider in this case are smaller than 1
2
(n − 1), λ−2

is never below 1

n , and the Chebyshev inequality is useless for the above
consideration of the maximum degree. But as we will see below, for our
particular X , a much better inequality holds, with λ−2 replaced by the
exponentially small bound 2e−λ2/2. This is already sufficient to conclude
that, for example, the maximum degree of G(n, 1

2
) almost never exceeds

n
2
+O(

√
n logn ).

7.1 Sum of Independent Uniform ±1 Variables

We will start with the simplest result about strong concentration, which
was mentioned in the above discussion of the maximum degree of G(n, 1

2
).

We note that the degree of a given vertex v in G(n, 1
2
) is the sum of the

indicators of the n−1 potential edges incident to v. Each of these indicators
attains values 0 and 1, both with probability 1

2
, and they are all mutually

independent.
For a more convenient notation in the proof, we will deal with sums of

variables attaining values −1 and +1 instead of 0 and 1. One advantage
is that the expectation is now 0. Results for the original setting can be
recovered by a simple re-scaling.

7.1.1 Theorem. Let X1, X2, . . . , Xn be independent random variables,

each attaining the values +1 and −1, both with probability 1
2
. Let X =

X1 +X2 + · · ·+Xn. Then we have, for any real t ≥ 0,

P[X ≥ t] < e−t2/2σ2 and P[X ≤ −t] < e−t2/2σ2 ,

where σ =
√

Var [X ] =
√

n.

This estimate is often called Chernoff’s2 inequality in the literature (al-
though Chernoff proved a more general and less handy inequality in 1958,
and the above theorem goes back to Bernstein’s paper from 1924).
Note that in this case, we can write down a formula for P[X ≥ t], which

will involve a sum of binomial coefficients. We could try to prove the inequa-
lity by estimating the binomial coefficients suitably. But we will use an in-
genious trick from probability theory (due to Bernstein) which also works

2Chernoff=Černov
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for sums of more general random variables, where explicit formulas are not
available.

Proof. We prove only the first inequality; the second one follows by sym-
metry. The key steps are to consider the auxiliary random variable Y = euX ,
where u > 0 is a (yet undetermined) real parameter, and to apply Markov’s
inequality to Y .
We have P[X ≥ t] = P[Y ≥ eut]. By Markov’s inequality, we obtain

P[Y ≥ q] ≤ E [Y ] /q. We calculate

E [Y ] = E
[

eu(
∑

n

i=1
Xi)

]

= E

[

n
∏

i=1

euXi

]

=

n
∏

i=1

E
[

euXi

]

(by independence of the Xi)

=

(

eu + e−u

2

)n

≤ enu2/2.

The last estimate follows from the inequality (ex+ e−x)/2 = coshx ≤ ex2/2

valid for all real x (this can be established by comparing the Taylor series
of both sides). We obtain

P
[

Y ≥ eut
]

≤ E [Y ]
eut

≤ enu2/2−ut.

The last expression is minimized by setting u = t/n, which yields the value

e−t2/2n = e−t2/2σ2 . Theorem 7.1.1 is proved. ✷

Combinatorial discrepancy. We show a nice application. Let X be an
n-point set, and let F be a system of subsets of X . We would like to color
the points of X red and blue, in such a way that each set of F contains ap-
proximately the same number of red and blue points (we want a “balanced”
coloring). The discrepancy of the set system F measures how well this can
be done. We assign the value +1 to the red color and value −1 to the blue
color, so that a coloring can be regarded as a mapping χ:X → {−1,+1}.
Then the imbalance of a set S ∈ F is just χ(S) =

∑

x∈S χ(x). The dis-
crepancy disc(F , χ) of F under the coloring χ is maxS∈F |χ(S)|, and the
discrepancy of F is the minimum of disc(F , χ) over all χ.
If we take F = 2X (all sets), then disc(F) = n

2 . Using the Chernoff
inequality, we show that the discrepancy is much smaller; namely, if the
number of sets in F is not too large, then the discrepancy is not much
larger than

√
n,
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7.1.2 Proposition. Let |X | = n and |F| = m. Then disc(F) ≤
√

2n ln(2m).

If the maximum size of a set in F is at most s, then disc(F) ≤
√

2s ln(2m).

Proof. Let χ:X → {−1,+1} be a random coloring, the colors of points
being chosen uniformly and independently. For any fixed set S ⊆ X , the
quantity χ(S) =

∑

x∈S χ(x) is a sum of |S| independent random ±1 varia-
bles. Theorem 7.1.1 tells us that

P[|χ(S)| > t] < 2e−t2/2|S| ≤ 2e−t2/2s.

For t =
√

2s ln(2m), 2e−t2/2s becomes 1m . Thus, with a positive probability,
a random coloring satisfies |χ(S)| ≤ t for all S ∈ F simultaneously. ✷

7.2 Sums of Bounded Independent Random Varia-

bles

Estimates like that in Theorem 7.1.1 hold in much greater generality. For
understanding such results, it is useful to keep in mind a marvelous re-
sult of probability theory: the Central Limit Theorem. We remark that the
following discussion, up until Theorem 7.2.1, is not necessary for understan-
ding the subsequent results, and so a reader who does not feel at ease with
continuous distributions, say, can skip this part.
First we recall that a real random variable Z has the standard normal

distribution N(0, 1) if its density is given by the function 1√
2π

e−x2/2:

-4 -2 2 4

0.1

0.2

0.3

0.4
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(so P[Z ≤ t] =
∫ t

−∞
1√
2π

e−x2/2 dx). We have E [Z] = 0 and Var [Z] = 1,

and Z is concentrated around its expectation: the probability of deviating
from 0 by more than λ is roughly proportional to e−λ2/2 for large λ.
The Central Limit Theorem asserts that if S is the sum of many inde-

pendent random variables, none of them with unreasonably large variance
compared to the others, then the normalized random variable

S −E [S]
√

Var [S]

has approximately the standard normal distribution N(0, 1). This looks like
magic, since the distributions of the summands can be rather arbitrary and
have nothing to do with the normal distribution. One simple formulation of
the Central Limit Theorem is as follows. Let X1, X2, . . . be a sequence of
independent random variables with E [Xi] = 0, let Sn =

∑n
i=1Xi, and sup-

pose that for all i, Var [Xi] /Var [Sn]→ 0 as n → ∞. Then the distribution
function of the normalized random variable Zn = Sn/

√

Var [Sn] conver-
ges to the distribution function of N(0, 1), i.e. for any real t, P[Zn ≤ t] →
P[Z ≤ t] as n → ∞. (The condition on the Var [Xi], called Feller’s condition,
can be considerably weakened—see a probability theory textbook.)
This theorem as stated doesn’t tell us anything about the speed of the

convergence to the normal distribution, and so it cannot be used for obtai-
ning concrete tail estimates for sums of finitely many random variables. But
it is a useful heuristic guide, suggesting what behavior of a sum of indepen-
dent random variables we should expect. Here we state a useful and quite
general concentration result.

7.2.1 Theorem. Let X1, X2, . . . , Xn be independent random variables,
each of them attaining values in [0, 1], let X = X1+X2 + · · ·+Xn, and let
σ2 = Var [X ] =

∑n
i=1 Var [Xi]. (In particular, if Xi = 1 with probability p

and Xi = 0 with probability 1− p, then Var [X ] = np(1− p), and so we can
use σ ≤ √

np.) Then, for any t ≥ 0,

P[X ≥ E [X ] + t] < e−t2/2(σ2+t/3) and P[X ≤ E [X ]− t] < e−t2/2(σ2+t/3).

This theorem can be proved along the same lines as Theorem 7.1.1, only
the estimates become more complicated. Note that in a wide range of t,
say up to t = σ2, the estimate is close to e−t2/2σ2 , and this is approxi-
mately the value predicted by the approximation of the distribution of X
by the appropriately scaled normal distribution. For larger t, though, the
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correction factor t/3 gradually makes the estimate weaker than e−t2/2σ2 .
Some correction like this is actually necessary in general for these very large
deviations.
Let us remark that many other estimates of this kind can be found in

the literature (associated with the names of Bernstein, Hoeffding, and some
others), and sometimes they are slightly sharper.

Randomized rounding. This is a general technique in combinatorial op-
timization, which in many cases allows us to compute approximate solutions
for NP-hard problems. The analysis is based on Theorem 7.2.1. Here we pre-
sent one specific example: randomized rounding applied to the k-matching
problem. Let V = {v1, v2, . . . , vn} be a set and let F = {S1, S2, . . . , Sm} be
a system of subsets of V . A subsystemM ⊆ F is called a k-matching3 (or
sometimes a k-packing4) if no point of V is contained in more than k sets
of M. Given V , F , and k, we would like to find a k-matching M with as
many sets as possible.
Let A denote the n × m incidence matrix of the system F , with rows

corresponding to points and columns to sets; that is, aij = 1 if vi ∈ Sj and
aij = 0 otherwise. Let 1 denote the (column) vector of 1’s (of appropri-
ate length). Then the k-matching problem for F can be expressed as the
following integer program:

max{1T x: x ∈ {0, 1}m, Ax ≤ k1}.

The correspondence to the original problem is simple: the set Sj is put into
the k-matchingM exactly when xj = 1.
With the restriction x ∈ {0, 1}m, this is an NP-hard problem (since the

k-matching problems is known to be NP-hard). But efficient algorithms for
linear programming allow us to solve the linear relaxation in polynomial
time: compute an optimal solution x∗ of the linear program

max{1T x: x ∈ [0, 1]m, Ax ≤ k1}.

Let OPT ∗ = 1T x∗ denote the optimal value. We note that OPT ∗ ≥ OPT ,
where OPT is the optimal value of the integer program, i.e. the number of
sets in a largest k-matching.
In order to get an approximate solution to the k-matching problem, we

want to round each component of x∗ to 0 or 1. The idea of randomized

3matching=párování
4packing=pakování
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rounding is to use the real number x∗

j as the probability of rounding the jth
component to 1. We begin with a preliminary consideration, which does not
yet quite work.
Let us define a random vector y ∈ {0, 1}m by choosing yj = 1 with

probability x∗

j and yj = 0 with probability 1− x∗

j , the choices for various j

being mutually independent. By linearity of expectation, we have E
[

1T y
]

=
1T x∗ = OPT ∗ and E [(Ay)i] = (Ax∗)i ≤ k for all i. Moreover, the quantity
1T y =

∑m
j=1 yj is the sum of 0/1 independent random variables, and the

tail estimates in Theorem 7.2.1 show that with high probability, its value is
close to OPT ∗. Similarly, for each i, (Ay)i is likely to be near (Ax∗)i and
thus not much larger than k.
In this way, we would get a solution which is “nearly” a k-matching but

some points are typically contained in somewhat more than k sets. In order
to get an actual k-matching by the rounding procedure, we slightly lower
the probabilities of 1’s. Namely, now we set yj to 1 with probability only
(1− ε

2 )x
∗

j . This works if k is sufficiently large:

7.2.2 Proposition. Let ε ∈ (0, 1] be a parameter, and let us suppose that
k ≥ 10

ε2 ln(2n+ 2). Then with probability at least
1
2 , the vector y obtained

by the just described randomized rounding procedure defines a k-matching

with at least (1− ε)OPT sets.

Proof. Let us write X =
∑m

j=1 yj = 1
T y. First we estimate the probability

P[X < (1− ε)OPT ∗]. We note that OPT ∗ ≥ k, since any 0/1 vector x with
k ones satisfiesAx ≤ k1. We haveE [X ] = (1− ε

2 )OPT ∗ and Var [X ] ≤ E [X ]
(this is always true for a sum of independent random 0/1 variables). So we
use the second inequality in Theorem 7.2.1 with t = ε

2 OPT ∗ and σ2 ≤

OPT ∗. This yields P[X < (1− ε)OPT ∗] ≤ e−(ε
2/10)OPT∗

≤ e−(ε
2/10)k ≤

1
2n+2 .
Next, we write Yi = (Ay)i and we estimate P[Yi > k] in a very similar

way. This time E [Yi] = (1 −
ε
2 )(Ax∗)i ≤ (1 −

ε
2 )k, and we can set t = ε

2 k

and σ2 = k in the first inequality in Theorem 7.2.1. We obtain P[Yi > k] ≤
1

2n+2 . Therefore, with probability at least
1
2 , we have Ay ≤ k1 as well as

1T y ≥ (1 − ε)OPT ∗ ≥ (1− ε)OPT . ✷

The same approach can be used for many other problems expressible as
integer programs with 0/1 variables. These include problems in VLSI design
(routing), multicommodity flows, and independent sets in hypergraphs, to
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name just a few. Some recent results in this direction can be found, for
example, in

A. Srinivasan: Improved approximation guarantees for packing
and covering integer programs, SIAM J. Computing 29(1999)
648–670.

7.3 A Lower Bound For the Binomial Distribution

Sometimes we need a lower bound for probabilities like P[X ≥ E [X ] + t];
we need to know that the probability of deviation t is not too small. The
Central Limit Theorem suggests that the distribution of the sum of many
independent random variables is approximately normal, and so the bounds
as in Theorems 7.1.1 and 7.2.1 should not be far from the truth. It turns
out that this is actually the case, under quite general circumstances. Such
general and precise bounds can be found in

W. Feller: Generalization of a probability limit theorem of Cra-
mér, Trans. Am. Math. Soc, 54:361–372, 1943.

For example, the following is an easy consequence of Feller’s results:

7.3.1 Theorem. Let X be a sum of independent random variables, each

attaining values in [0, 1], and let σ =
√

Var [X ] ≥ 200. Then for all t ∈

[0, σ2

100 ], we have

P[[]X ≥ E [X ] + t] ≥ ce−t2/3σ2

for a suitable constant c > 0.

Here we will prove just a counterpart of Theorem 7.1.1:

7.3.2 Proposition. For n even, let X1, X2, . . . , Xn be independent random

variables, each attaining the values 0 and 1, both with probability 12 . Let
X = X1 +X2 + · · ·+Xn. Then we have, for any integer t ∈ [0, n

8 ],

P
[

X ≥ n
2 + t

]

≥ 1
15 e−16t

2/n.

Proof. A good exercise in elementary estimates. Write n = 2m. We have

P[X ≥ m+ t] = 2−2m
m

∑

j=t

(

2m

m+ j

)
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≥ 2−2m
2t−1
∑

j=t

(

2m

m+ j

)

= 2−2m
2t−1
∑

j=t

(

2m

m

)

m

m+ j
· m − 1
m+ j − 1 · · ·

m − j + 1

m+ 1

≥ 1

2
√

m

2t−1
∑

j=t

j
∏

i=1

(

1− j

m+ i

)

(using
(

2m
m

)

≥ 22m/2
√

m)

≥ t

2
√

m

(

1− 2t
m

)2t

≥ t

2
√

m
· e−8t2/m (since 1− x ≥ e−2x for 0 ≤ x ≤ 1

2
).

For t ≥ 1

4

√
m, the last expression is at least 1

8
e−16t

2/n. For 0 ≤ t < 1

4

√
m,

we have P[X ≥ m+ t] ≥ P
[

X ≥ m+ 1
4

√
m

]

≥ 1

8
e−1/2 ≥ 1

15
. Thus, the

claimed bound holds for all t ≤ m
4
. The constants in the estimate could be

improved, of course. ✷

A lower bound for discrepancy. We show that the upper bound of
O(

√

n log(2m) ) for the discrepancy ofm sets on n points (Proposition 7.1.2)
is nearly the best possible in a wide range of values of m.

7.3.3 Proposition. For all m with 15n ≤ m ≤ 2n/8, there are systems of

m sets on n points with discrepancy at least Ω(
√

n ln(m/15n) ).

For m ≥ n2, say, the lower and upper bounds in Propositions 7.1.2 and
7.3.3 are the same up to a constant. For m close to n, there is a gap. It
turns out that it is the upper bound which can be improved (by a very
sophisticated probabilistic argument). The correct bound for the maximum
discrepancy of m sets on n points, m ≥ n, is of order

√

n ln(2m/n).

Proof. Consider a random set system F = {S1, S2, . . . , Sm} on the ground
set [n], n even, where the Si are independent random subsets of [n]; that is,
each x ∈ [n] is included in Si independently with probability

1

2
.

Let χ: [n] → {−1,+1} be an arbitrary fixed coloring, and suppose that
the number of −1’s is a and the number of +1’s is n−a. A point x ∈ [n] with
χ(x) = 1 contributes 1 to χ(Si) if x ∈ Si and 0 if x 6∈ Si. Since x ∈ Si has
probability 1

2
, the contribution of x to χ(Si) is a random variable attaining

values 0 and 1 with probability 1
2
. Similarly, the contribution of an x with
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χ(x) = −1 attains values 0 and −1 with probability 1
2
. Therefore, χ(Si) is

a sum of n independent random variables, a of them attaining values −1
and 0 with probability 1

2
and n − a of them attaining values 0 and 1 with

probability 1
2
. Then χ(Si)+a is the sum of n independent random variables,

each with values 0 and 1. For a ≤ n
2
, we have

P[|χ(Si)| ≥ t] ≥ P[χ(Si) + a ≥ t+ a] ≥ P
[

χ(Si) + a ≥ n
2
+ t

]

.

By Proposition 7.3.2, the last probability is at least 1
15

e−16t
2/n, provided

that t ≤ n
8
. For a > n

2
, we get the same bound by symmetry (consider the

coloring −χ). Therefore, for any of the possible 2n colorings χ, we have

P[disc(F , χ) ≤ t] ≤
(

1− 1

15
e−16t

2/n
)m

≤ e−me−16t2/n/15.

For t =
√

(n/16) ln(m/15n) (which is below n
8
for m ≤ 2n/8), the last

expression becomes e−n < 2−n, and we can conclude that with a positive
probability, the discrepancy of our random F is at least

√

(n/16) ln(m/15n)
under any coloring χ. ✷

A deterministic bound using Hadamard matrices. Proposition 7.3.3
allows us to conclude the existence of n sets on n points with discrepancy
at least c

√
n for some constant c > 0 (can you see how?). Here we show a

beautiful deterministic argument proving this result.

We first recall the notion of an Hadamard matrix . This is an n × n
matrix H with entries +1 and −1 such that any two distinct columns are
orthogonal; in other words, we have HT H = nI, where I stands for the
n× n identity matrix. Moreover, we assume that the first row and the first
column consist of all 1’s.

Hadamard matrices do not exist for every n. For example, it is clear that
for n ≥ 2, n has to be even, and with a little more effort one can see that
n must be divisible by 4 for n ≥ 4. The existence problem for Hadamard
matrices is not yet fully solved, but various constructions are known. We
recall only one simple recursive construction, providing a 2k×2k Hadamard
matrix for all natural numbers k. Begin with the 1 × 1 matrix H0 = (1),
and, having defined a 2k−1 × 2k−1 matrix Hk−1, construct Hk from four
blocks as follows:

(

Hk−1 Hk−1

Hk−1 −Hk−1

)

.



61 7. Strong Concentration Around the Expectation

Thus, we have

H1 =

(

1 1
1 −1

)

, H2 =









1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1









.

The orthogonality is easy to verify by induction.

Let H be a 4n× 4n Hadamard matrix. Each column except for the first
one is orthogonal to the column of all 1’s, and so the number of 1’s in it is 2n,
as well as the number of −1’s. Moreover, the ith and jth columns, 1 < i < j,
are orthogonal too, and it follows that they have exactly n common 1’s, n
common −1’s, and 2n positions where one of them has 1 and the other has
−1 (check).
Let A be the (4n− 1)× (4n− 1) matrix arising from H by deleting the

first row and first column and changing the −1’s to 0’s. By the above, we
find that AT A = nI + (n− 1)J , where I is the (4n− 1)× (4n− 1) identity
matrix and J is the (4n − 1)× (4n − 1) matrix of all 1’s.
Consider the system of sets S1, S2, . . . , S4n−1 on [4n − 1], where Si has

the ith row of A as the characteristic vector. Let χ: [4n− 1]→ {−1,+1} be
any coloring of the ground set, and let x ∈ {−1,+1}n be χ interpreted as
the column vector, i.e. xi = χ(i). By the definition of matrix multiplication,
we have

Ax =
(

χ(S1), χ(S2), . . . , χ(S4n−1)
)T

.

Therefore,

4n−1
∑

i=1

χ(Si)
2 = ‖Ax‖2 = (Ax)T (Ax) = xT (AT A)x

= xT (nI + (n − 1)J)x = nxT Ix+ (n − 1)xT Jx

= n‖x‖2 + (n − 1)
( 4n−1

∑

i=1

xi

)2

≥ n(4n − 1).

So for any χ, the average χ(Si)
2 is at least n, and there exists an i with

|χ(Si)| ≥ √
n. We have proved that the discrepancy of the set system

{S1, . . . , S4n−1} is at least
√

n. ✷
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7.4 Sums of Moderately Dependent Indicator Va-

riables

Here we present, without a proof, a powerful tail estimate for a sum X =
X1 + · · ·+Xn, where Xi attains values 0 and 1 and where some of the Xi

may be dependent, but the amount of dependence is suitably bounded.
We will need the notion of a dependency graph for a family of random

variables. Note that it is slightly different from the one used in Section 6.1
where we considered only random events and the dependency graph was
directed!

7.4.1 Definition. Families of real random variables {Xi: i ∈ A} and {Xi: i ∈
B} are mutually independent if for any choice of ai ∈ R, i ∈ A ∪ B,

P[∀i ∈ A ∪ B: Xi ≤ ai] = P[∀i ∈ A: Xi ≤ ai] P[∀i ∈ B: Xi ≤ ai] .

7.4.2 Definition. A graph G is a dependency graph for a family of
random variables {Xi: i ∈ I} if V (G) = I, and for any two disjoint sets

A, B ⊂ V with no edges between A and B, the families {Xi: i ∈ A} and
{Xi: i ∈ B} are mutually independent.

7.4.3 Theorem (Janson–Suen inequality). Let X = X1 + · · · + Xn,

where the Xi are random variables with P[Xi = 1] = pi and P[Xi = 0] =
1− pi. Let E be the edge set of a dependency graph of the Xi, and define

∆ = E [X ] +
∑

{i,j}∈E

E [XiXj ] , δ = max
i∈[n]

∑

j: {j,i}∈E

pj.

Then for any t ≥ 0, we have

P[X ≤ E [X ]− t] ≤ e−min(t
2/4∆,t/6δ).

Remarks. Note that the tail estimate is only one-sided; an exponenti-
ally small upper bound for P[X ≥ E [X ] + t] need not hold in general. The
theorem is mostly used for showing that P[X = 0] is very small, i.e. with
t = E [X ].
The quantity ∆ is an upper bound for Var [X ]: We have

Var [X ] =
n

∑

i=1

Var [Xi] +
∑

{i,j}∈E

Cov [Xi, Xj] ,
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and Var [Xi] ≤ E [Xi] and Cov [Xi, Xj ] ≤ E [XiXj ] since Xi ∈ {0, 1}. Such
estimates for Var [X ] were calculated in Section 5.3 in showing that G(n, p)
almost surely contains a copy of a given graph H . Theorem 7.4.3, too, has
been developed with this application in mind.

Example. Let H = K3 be the triangle. We know from Section 5.3 that

if p = ϕ(n)
n
with ϕ(n) → ∞, then P[K3 6⊆ G(n, p)] → 0 as n → ∞. Theo-

rem 7.4.3 shows that this probability is even exponentially small in ϕ(n). To

see this, let
(

XT : T ∈
(

[n]
3

)

)

be the indicators of all possible triangles that

can appear in G(n, p), and let X =
∑

T XT . We have pT = P[XT = 1] = p3.
The edges of a dependency digraph connect triangles T and T ′ sharing at
least two vertices. The same calculations as in Section 5.3 gives E [X ] ∼
n3p3 = ϕ(n)3 and ∆ << n3p3 + n4p5 ∼ ϕ(n)3. A simple calculation also
shows that δ ∼ np3 ∼ ϕ(n)3/n2, which is very small. For t = E [X ] ∼ ϕ(n)3,
we have min(t2/4∆, t/6δ) ∼ min(ϕ(n)3, n2), and so

P[X = 0] ≤ e−Ω(min(ϕ(n)
3,n2)).

A similar bound can be derived for the containment of any fixed balanced
graph H in G(n, p). Such results have been obtained earlier with the aid
of less powerful tools (Janson’s inequality dealing with the probabilities of
monotone events). But Theorem 7.4.3 yields similar bounds for containment
of balanced graphs H in G(n, p) in the induced sense, with calculation very
similar to the non-induced case. Such a result appears considerably harder
than the non-induced case, because of non-monotonicity, and illustrates the
strength of Theorem 7.4.3.

Balls in urns: hypergeometric distribution. In conclusion, we mention
another useful concentration result without a proof. We haveN urns, labeled
1 through N , and we put m balls into m different urns at random (draws
without replacement). Some n of the urns are “distinguished”, and we let
X denote the number of balls in the distinguished urns (n, m ≤ N).

We have E [X ] = nm
N
and σ2 = Var [X ] = nm(N−n)(N−m)

N2(N−1) ≤ nm
N
=

E [X ]. This X can obviously be written as the sum of n indicator varia-
bles (Xi = 1 if the ith distinguished urn receives a ball), but these are not
independent. Nevertheless, it is known that the tail estimates as in Theo-
rems 7.2.1 and 7.3.1 hold for this particular X (with σ and n as above).
Knowing this can save many desperate calculations.
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Concentration of Lipschitz

Functions

8.1 Concentration on Product Spaces

We have seen that if X is a sum of many “small” independent random
variables X1, X2, . . . , Xn, then X is strongly concentrated around its ex-
pectation. In this chapter we present more general results, of the following
type: If (Ω,Σ,P) is a “suitable” probability space and f : Ω→ R is a “nice”
random variable on it, then f is tightly concentrated around E [f ].
For example, the basic Chernoff inequality for sums of independent uni-

form ±1 variables (Theorem 7.1.1) can be recast as follows in this setting:
We consider the probability space {−1, 1}n with the uniform probability
measure, and f is given by f(ω) = ω1 + · · ·+ωn, where ω = (ω1, . . . , ωn) ∈

{−1, 1}n. Then P[f ≥ E [f ] + t] < e−t2/2n and P[f ≤ E [f ]− t] < e−t2/2n.
Two essential features of this example will appear in the main theorem

of this section.

• First, our probability space is a product of many (n) probability spa-
ces; in our case, the factors are the spaces {−1, 1} with the uniform
measure. (Having n independent random variables always implicitly
entails a product space with n factors.)

• And second, the effect of each component ωi on the value of f is
relatively small: by changing the value of ωi (and keeping the values
of all the other ωj), the value of f changes by at most 2.
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What is the product of probability spaces (Ω1,Σ1,P1),. . . , (Ωn,Σn,Pn)?
The elementary events of the product have the form ω = (ω1, ω2, . . . , ωn),
where ωi ∈ Ωi, and so the ground set of the product is Ω = Ω1×Ω2× · · · ×Ωn.
Intuitively, a random ω ∈ Ω is selected by choosing each ωi at random from
Ωi, all these choices being mutually independent. If all the Ωi are finite,
we can define the product measure P on Ω simply by P[{(ω1, . . . , ωn)}] =∏n

i=1 Pi[{ωi}]. For infinite Ωi, the formal construction of the product mea-
sure is more sophisticated, and it is usually considered in courses on measure
and integration. In our applications, we will mostly consider finite Ωi.
Now we formulate a condition on the function f . Let Ω = Ω1× · · ·×Ωn

and let f : Ω→ R be a (measurable) function, i.e. a real random variable on
Ω.We say that the ith coordinate has effect at most ci on f if |f(ω)−f(ω′)| ≤
ci for all ω, ω′ ∈ Ω that differ only in the ith coordinate. Here is the promised
concentration result:

8.1.1 Theorem (Concentration on product spaces). Let (Ω,Σ,P) be
the product of probability spaces (Ωi,Σi,Pi), i = 1, 2, . . . , n, and let f : Ω→
R be a function such that the ith coordinate has effect at most ci. Then

P[f ≥ E [f ] + t] ≤ e−t2/2σ2 and P[f ≤ E [f ]− t] ≤ e−t2/2σ2 ,

where σ2 =
∑n

i=1 c2i . In particular, if each coordinate has effect at most 1,
then

P[f ≥ E [f ] + t] ≤ e−t2/2n and P[f ≤ E [f ]− t] ≤ e−t2/2n.

Thus, if no coordinate has effect more than 1, then f is concentrated at
least as much as the sum of n independent random ±1 variables.
Before we consider a more general version with Lipschitz functions and

a proof, let us see a few applications of this powerful result.

The size of the image of a random function. Let g: [n] → [n] be a
random function, all the nn possible functions being equally likely, and let
X be the number of elements in the image, X = |g([n])|. By the method of
indicators, one can calculate that E [X ] = n−n(1− 1

n )
n ≈ n(1− 1

e ), but we
do not need to know E [X ] in order to derive a strong concentration result
for X .
Our X is a function on the product space [n]n (the ith coordinate is the

value g(i)). By changing g(i) and keeping all other g(j) fixed, the size of the
image changes by at most 1. Theorem 8.1.1 thus implies that X is strongly
concentrated around E [X ]: P[|X −E [X ] | ≥ t] ≤ 2e−t2/2n.
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Concentration of the chromatic number. Let us consider the pro-
bability space G(n, p) of n-vertex random graphs, for some given n and p.
Let χ be the function on this probability space assigning to each graph its
chromatic number. It is not at all easy to determine E [χ] (it is known quite
precisely for a wide range of p, but the proofs are fairly sophisticated). But
we do not need to know the expectation in order to apply Theorem 8.1.1!

To use Theorem 8.1.1, we need to consider G(n, p) as a product space.
There is a natural product structure corresponding to the potential edges;
there are

(

n
2

)

factors Ωe, where each Ωe has two elements corresponding
to the absence and presence of the edge e in the graph. Clearly, adding or
deleting an edge influences the chromatic number by at most 1, and so each
of the

(

n
2

)

coordinates has effect at most 1 on χ. Theorem 8.1.1 applies, but

it doesn’t yield anything interesting: the n in it would be
(

n
2

)

here, and since
χ is in the range [1, n], the concentration result is rather useless (the bound

is e−t2/2(n
2
) ≥ e−n2/n(n−1) ≥ e−2, so it never tends to 0).

The trick is to group the edges into larger chunks. Let v1, v2, . . . , vn be
the vertices enumerated in a fixed order, and let Ωi be the probability space
corresponding to the independent random choice of the edges going forward
from vi, i.e. {vi, vi+1}, {vi, vi+2}, . . . , {vi, vn}. Then G(n, p) is the product
of these Ωi, i = 1, 2, . . . , n− 1. Since changing the edges incident to a single
vertex changes the chromatic number of a graph by at most 1, the effect of
each coordinate on χ is at most 1. Theorem 8.1.1 now gives:

8.1.2 Theorem (Shamir–Spencer). Let n ≥ 2 and p ∈ (0, 1) be arbit-
rary, and let c = c(n, p) = E [χ(G(n, p))]. Then

P[|χ(G(n, p))− c| ≥ t] ≤ 2e−t2/2(n−1).

So the chromatic number is almost always concentrated on about
√

n
values. By an ingenious argument (due to Bollobás), it can even be shown
that for sparse random graphs, one of at most 4 values is attained most of
the time:

8.1.3 Theorem (Four-value concentration). Let α > 5
6 be fixed, and

let p = n−α. Then for any n, there is an integer u = uα(n) such that
χ(G(n, p)) ∈ {u, u+1, u+2, u+3} almost surely; i.e.

lim
n→∞

P[u(n) ≤ χ(G(n, p)) ≤ u(n)+3] = 1.
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The key additional idea is that, typically, each subgraph of G(n, p) on
about

√
n vertices can be 3-colored, and so deviations with about

√
n harm-

ful vertices can be fixed using 3 extra colors.

8.1.4 Lemma. Let α > 5
6 be fixed, and let p = n−α. Then, almost surely,

G(n, p) has no subgraph H on at most
√
8n lnn vertices with χ(H) > 3.

Proof. What we really calculate is: almost surely, there is no subgraph
on t ≤

√
8n lnn vertices with average degree at least 3. This suffices: We

consider an inclusion-minimal subset of vertices such that the subgraph
induced by it has chromatic number 4; as is easy to check, this subgraph
must have all degrees at least 3.
First, let t ≥ 4 be even. The probability that at least 32 t edges live on

some fixed set T of t vertices of G(n, p) is at most (using
(

n
k

)

≤ (en/k)k)

(
(

t
2

)

3t/2

)

p3t/2 ≤
(

et2/2

3t/2

)3t/2

p3t/2 =

(

te

3

)3t/2

n−3αt/2.

There are
(

n
t

)

≤ (ne/t)t choices of T , and so the probability of existence of
at least one T with at least 32 t edges is at most

[

ne

t
· t3/2e3/2

33/2
n−3α/2

]t

.

The expression in brackets is at most

O(t1/2n1−3α/2) = O(n5/4−3α/2(lnn)1/4),

which goes to 0 as n → ∞ since α > 5
6 . For t odd, the calculation is

technically a little more complicated since we need to deal with the integer
part, as we have ⌈ 32 t⌉ edges, but the resulting probability is also bounded
by o(1)t. The proof is finished by summing over all t ∈ [4,

√
8n lnn ]. ✷

Proof of Theorem 8.1.3. Let u be the smallest integer such that

P[χ(G(n, p)) ≤ u] >
1

n
.

Let X be the minimum number of vertices whose deletion makes G(n, p) u-

colorable. When X is viewed as a function on the product space
∏n−1

i=1 Ωi as
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in the proof of the Shamir–Spencer theorem 8.1.2, each of the n coordinates
has effect at most 1 on it (right?). We thus have the tail estimates from
Theorem 8.1.1:

P[X ≥ E [X ] + t] ≤ e−t2/2(n−1), P[X ≤ E [X ]− t] ≤ e−t2/2(n−1).

Let us set t =
√

2(n − 1) lnn, so that the right-hand sides become 1n . By the
definition of u, G(n, p) is u-colorable with probability greater than 1n , and
so 1n < P[X = 0] = P[X ≤ E [X ]−E [X ]]. Combined with the second tail
estimate, this shows that E [X ] < t, and the first tail estimate then gives
P[X ≥ 2t] ≤ P[X ≥ E [X ] + t] ≤ 1

n . So with probability at least 1 −
1
n ,

G(n, p) with some 2t vertices removed can be u-colored. By Lemma 8.1.4,
the subgraph on the removed 2t vertices is 3-colorable almost surely, and so
all of G(n, p) can be colored with at most u+3 colors almost surely. On the
other hand, by the definition of u, χ(G(n, p)) ≥ u almost surely as well. ✷

8.2 Concentration of Lipschitz Functions, With a

Proof

There are several ways of proving Theorem 8.1.1 (concentration in product
spaces). Here we present one of the conceptually simplest proofs. A natural
formulation needs a somewhat more general setting, with Lipschitz functi-
ons.
Let M1 be a metric space with a metric ρ1, M2 a metric space with a

metric ρ2, and K > 0 a real number. We recall that a mapping ϕ:M1 → M2

is called K-Lipschitz if it expands no distance in ratio larger than K; that
is, if ρ2(ϕ(x), ϕ(y)) ≤ Kρ1(x, y) for all x, y ∈ M1.
We consider spaces equipped with both a probability measure and a

metric. Ametric probability space is a four-tuple (Ω,Σ,P, ρ), where (Ω,Σ,P)
is a probability space and ρ is a metric on Ω.
Let us consider the situation as in Theorem 8.1.1 with c1 = c2 = · · · =

cn = 1 (each coordinate has effect at most 1). Let us view each factor
(Ωi,Σi,Pi) as a metric probability space with the “discrete” metric ρi given
by ρi(ωi, ω

′

i) = 1 for every two distinct elements ωi, ω
′

i ∈ Ωi. A metric
ρ on the product space (Ω,Σ,P) is defined by ρ(ω, ω′) =

∑n
i=1 ρi(ωi, ω

′

i),
where ω = (ω1, . . . , ωn), ω

′ = (ω′

1, . . . , ω
′

n) ∈ Ω. For our specific choice of
the metrics ρi, the resulting ρ is the Hamming metric; the distance of two
vectors ω, ω′ is the number of coordinates where they differ. If f : Ω→ R is
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a function, then, as is easy to check, each coordinate has effect at most 1 if
and only if f is 1-Lipschitz, where Ω is considered with the just introduced
metric ρ, and R with the usual metric.

The definition of ρ on the product space makes sense for arbitrary me-
trics ρi on the factors. We write ρ = ρ1 + ρ2 + · · · + ρn and we call ρ the
ℓ1-sum of the ρi. We prove the following generalization of Theorem 8.1.1:

8.2.1 Theorem. For i = 1, 2, . . . , n, let (Ωi,Σi,Pi, ρi) be a metric proba-
bility space, and suppose that the diameter (maximum distance) of (Ωi, ρi)
is at most ci. Let M = (Ω,Σ,P, ρ) be the product space with ρ = ρ1+ ρ2+
· · ·+ρn. Then for any 1-Lipschitz (and measurable) function f : Ω→ R and
for all t ≥ 0, we have

P[f ≥ E [f ] + t] ≤ e−t2/2σ2 and P[f ≤ E [f ]− t] ≤ e−t2/2σ2 ,

where σ2 =
∑n

i=1 c2i .

The proof resembles the proof of the basic Chernoff inequality (Theo-
rem 7.1.1) in many features. In that proof, we estimated the expectation
E

[

euX
]

, where X was the considered random variable. Here we define a
similar quantity for a general metric probability spaceM = (Ω,Σ,P, ρ): the
Laplace functional of M is a function EM : (0,∞)→ R given by

EM (u) = sup
{

E
[

euf
]

: f : Ω→ R is 1-Lipschitz and E [f ] = 0
}

.

First we show that a bound on EM implies concentration of Lipschitz
functions; this is exactly as in the proof of Chernoff’s inequality. Assume
that EM (u) ≤ eau2/2 for some a > 0 and all u > 0, and let f : Ω→ R be 1-
Lipschitz. We may suppose that E [f ] = 0. Using Markov’s inequality for the
random variable Y = euf , we have P[f ≥ t] = P[Y ≥ etu] ≤ E [Y ] /etu ≤

EM (u)/etu ≤ eau2/2−ut, and setting u = t
a yields P[f ≥ t] ≤ e−t2/2a. So

it suffices to show that under the assumptions of Theorem 8.2.1, EM (u) ≤

eσ2u2/2.

Next, crucially, we prove that the Laplace functional is submultiplicative.

8.2.2 Lemma. Let M1 = (Ω1,Σ1,P1, ρ1) and M2 = (Ω2,Σ2,P2, ρ2) be
metric probability spaces, and let M = (Ω,Σ,P, ρ) be their product with
ρ = ρ1 + ρ2. Then EM (u) ≤ EM1

(u) · EM2
(u) for all u > 0.
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Proof. Let f : Ω → R be 1-Lipschitz with E [f ] = 0. We set g(y) =
Ex [f(x, y)] =

∫

Ω1
f(x, y) dP1(x) (the expectation of f(x, y) with y fixed

and x random). We rewrite

E
[

euf
]

=

∫

Ω2

∫

Ω1

euf(x,y) dP1(x) dP2(y)

=

∫

Ω2

eug(y)

(
∫

Ω1

eu(f(x,y)−g(y)) dP1(x)

)

dP2(y).

For every y, the function x 7→ f(x, y) − g(y) has zero expectation and it is
clearly 1-Lipschitz, and so the inner integral is at most EM1

(u). Next, we
have E [g] = 0 and we claim that g is also 1-Lipschitz. Indeed,

|g(y) − g(y′)| =

∣

∣

∣

∣

∫

Ω1

f(x, y) − f(x, y′) dP1(x)

∣

∣

∣

∣

≤

∫

Ω1

|f(x, y) − f(x, y′)| dP1(x)

≤

∫

Ω1

ρ2(y, y′) dP1(x) = ρ2(y, y′).

So
∫

Ω2
eug(y) dP2(y) ≤ EM2

(u) and we are done. ✷

Finally, to prove Theorem 8.2.1, it remains to bound the Laplace functi-
onal of the factors.

8.2.3 Lemma. Let M = (Ω, Σ, P, ρ) be a metric probability space of dia-

meter at most c. Then EM (u) ≤ ec2u2/2 for all u > 0.

Proof. For simplicity, we give the proof with c = 1. If f : Ω → R is 1-
Lipschitz with E [f ] = 0, then its range is contained in [−1, 1]. Let h be the
linear function given by h(x) = x sinh u+coshu, where cosh u = 1

2 (e
u+e−u)

and sinh u = 1
2 (e

u − e−u). Elementary calculus shows that h(x) ≥ eux holds
for all x ∈ [−1, 1] (use Taylor series). So

E
[

euf
]

≤ E [h ◦ f ] = E [f ] sinh u + cosh u = cosh u ≤ eu2/2.

This proves the lemma, and Theorem 8.2.1 follows. ✷

Variations. If we can prove better bounds for the Laplace functionals of
the factors than the general Lemma 8.2.3, the above proof method yields an
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improvement over Theorem 8.2.1. One such possible improvement is similar
to the passage from the basic Chernoff inequality for sums of independent
uniform ±1 random variables to the more general form, Theorem 7.2.1, de-
aling with sums of arbitrary independent bounded random variables. Here,
for simplicity, we consider only an illustrative special case.

We suppose that each factor Mi = (Ωi, Σi, Pi, ρi) consists of two points,
say Ωi = {0, 1}, with probabilities 1−p and p, and with ρi(0, 1) = 1 (so
that the product space models n tosses of a biased coin). Let f : Ωi → R

be a 1-Lipschitz function on Mi with E [f ] = 0. That is, |f(0) − f(1)| ≤ 1
and (1−p)f(0) + pf(1) = 0. Then E

[

euf
]

= (1−p)euf(0) + peuf(1), and
elementary calculus shows that this expression is maximized, under the
above two conditions on f(0) and f(1), for f(0) = −p and f(1) = 1−p.
Therefore, EMi

(u) ≤ pe(1−p)u + (1−p)e−pu = e−pu(1− p + peu), and for the
product space M , we have EM (u) ≤ e−npu(1 − p + peu)n. Using Markov’s
inequality as usual and performing some heroic calculations (for which we
refer to the book of Janson,  Luczak, and Ruciński, Theorem 2.1), one can
arrive at the following counterpart of Theorem 7.2.1:

8.2.4 Proposition. Let Mi be the two-point probability spaces as above,

let M = (Ω, Σ, P, ρ) be their product, and let f : Ω → R be a 1-Lipschitz

function. Then, for all t > 0,

P[f ≥ E [f ] + t] < e−t2/2(σ2+t/3) and P[f ≤ E [f ] − t] < e−t2/2(σ2+t/3),

where σ2 = np.

More results of this type can be found in

D. A. Grable: A large deviation inequality for functions of in-
dependent, multi-way choices, Combinatorics, Probability and
Computing 7,1(1998) 57–63.

The proofs in that paper use martingales; this notion will be briefly discussed
later.

Another strengthening of Theorem 8.1.1 is based on the observation
that the Lipschitz condition for f need not be used in full in the proof.
The idea, introduced by Alon, Kim, and Spencer, is to imagine that we
are trying to find the value of f by making queries about the values of
the ωi to a truthful oracle (such as “what is the value of ω7?”). Sometimes
we can perhaps infer the value of f by querying the values of only some
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of the variables. Or sometimes, having learned the values of some of the
variables, we know that some other variable cannot influence the value of f
by much (although that variable may have much greater influence in other
situations). By devising a clever querying strategy, the bound for σ2 can
again be reduced in some applications; see Grable’s paper cited above.

8.3 Martingales, Azuma’s Inequality, and Concen-

tration on Permutations

Theorem 8.2.1 has been generalized in many ways; we will indicate some of
them. One direction of generalizations replaces the assumption that we deal
with a product space with many factors by weaker assumptions. The essen-
tial fact about the considered metric probability space is not the product
structure, but some kind of “high dimensionality”.
In this section, we consider the (rather sophisticated) probabilistic notion

of a martingale, which leads to quite general concentration results. Currently
it seems that in practically all applications of this kind, martingales can be
replaced by other, even more powerful, tools. But martingales are often
encountered in proofs in the literature, and so we introduce them at least
briefly.
Let (Ω,Σ, P ) be a probability space, and let Ξ0 = {∅,Ω} ⊂ Ξ1 ⊂ Ξ2 ⊂

· · · ⊆ Σ be a sequence of σ-algebras1 on Ω. In the case of a finite Ω, one
can think of the Ξi as successively finer and finer partitions of Ω. (Formally,
in this case, Ξi is the σ-algebra generated by some partition Πi of Ω; i.e.
Ξi = {C1 ∪ C2 ∪ · · · ∪ Ck: k = 0, 1, . . . , |Πi|, C1, . . . , Ck ∈ Πi}.)
For example, if Ω = {0, 1}n, we can let Ξi be the σ-algebra generated by

the partition Πi of Ω induced by the first i coordinates. Each class of Πi has
the form {ω ∈ Ω: ωj = xj for j = 1, 2, . . . , i} for some x1, x2, . . . , xi ∈ {0, 1}.
Next, we need the notion of conditional expectation. In the discrete case,

if Ξ is a σ-algebra generated by a partition Π, the conditional expectation of
a random variable X with respect to Ξ is a random variable that is constant
on each class C of Π, and whose value on C equals the average of X over C.
For a general, possibly infinite, Ξ, the definition is more complicated.

8.3.1 Definition. Let (Ω,Σ, P ) be a probability space, Ξ ⊂ Σ a σ-algebra
and X a random variable on Ω. The conditional expectation of X with

1We recall that a σ-algebra is a set system closed under complements, countable

unions, and countable intersections. Every measure is defined on some σ-algebra.
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respect to Ξ is a random variable Y (usually denoted by E [X |Ξ]) that
satisfies

1. Y is Ξ-measurable.

2. For every B ∈ Ξ with P[B] 6= 0, we have E [Y |B] = E [X |B]. Here,
for any random variable Z and any event B with P[B] > 0, we write
E [Z |B] for 1

P[B]

∫

B
Z(ω) dP(ω).

In general it is not obvious that Y exists and that it is unique. In our dis-
crete case, though, it is exactly the random variable obtained by averaging
over the classes as described above.
Finally, we define a martingale. Let Z0, Z1, . . . be a sequence of random

variables on Ω, where Zi is Ξi-measurable. In our example with {0, 1}n,
this means that Zi does not depend on the coordinates i+1 through n. The
(finite or infinite) sequence Z0, Z1, Z2, . . . is called a martingale if we have

E
[

Zi

∣

∣Ξi−1

]

= Zi−1, i = 1, 2, 3, . . . . (8.1)

If Ξi−1 and Ξi are given by partitions Πi−1 and Πi, respectively, where Πi

refines Πi−1, then Zi is constant on each class of Πi and Zi−1 is constant on
each class of Πi−1. The martingale condition (8.1) means that on each class
C of the coarser partition Πi−1, Zi−1 is the average of Zi over all the classes
of Πi that are contained in C. The martingale condition is schematically
illustrated below:

Π0

Z0

Π1

Z1

Π2

Z2

The space Ω is indicated as an interval, and the partitions Π0,Π1, . . . are
drawn as partitions into subintervals. The values of Zi are indicated by the
thick lines, and the martingale condition means that the area of each dashed
rectangle should equal the total area of the corresponding gray rectangles.
Here is the basic result about concentration of martingales:

8.3.2 Theorem (Azuma’s inequality). Let Z0, Z1, . . . , Zn = f be a mar-
tingale on some probability space, and suppose that |Zi − Zi−1| ≤ ci for
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i = 1, 2, . . . , n. Then

P[f ≥ E [f ] + t] ≤ e−t2/2σ2 and P[f ≤ E [f ]− t] ≤ e−t2/2σ2 ,

where σ2 =
∑n

i=1 c2i .

That is, if one can “interpolate” between f and the constant function
E [f ] by a martingale with bounded differences, then f is strongly concent-
rated.
The proof of Azuma’s inequality is conceptually similar to that of Theo-

rem 8.2.1, and we omit it (it can be found in the book of Alon and Spencer,
for example).
Random variables on product spaces give rise to examples (somewhat

trivial) of martingales, as follows. Let (Ωi,Σi,Pi) be probability spaces,
i = 1, 2, . . . , n, let (Ω,Σ,P) be their product, and let f : Ω→ R be a random
variable on the product. Let us define a random variable Zi on Ω: it depends
only on the first i coordinates, and for every choice of x1 ∈ Ω1, . . . , xi ∈ Ωi,
we have Zi(x1, . . . , xi) = Eωi+1,...,ωn

[f(x1, . . . , xi, ωi+1, . . . , ωn)]. In words,
Zi(x1, . . . , xi) is the expectation of f(ω) when the first i coordinates are
fixed to x1, . . . , xi and the others are chosen at random. So Z0 is simply the
number E [f ], while Zn = f .
Since Zi depends only on the first i variables, the appropriate σ-algebra

Ξi is the one generated by the product of Σ1 through Σi. In order to get
used to the notion of a martingale, the reader may want to verify that
the Zi thus defined satisfy the martingale condition E [Zi |Ξi−1] = Zi−1

and that, moreover, if the effect of the ith variable on f is at most ci,
then |Zi − Zi−1| ≤ ci. Once this is checked, it becomes clear that Azuma’s
inequality generalizes Theorem 8.1.1.
A more general example of a martingale, and practically the only type

of martingales encountered in combinatorial applications, is obtained as
follows. We have some probability space (Ω,Σ,P) (not necessarily a product
space), a random variable f : Ω → R, and a sequence Ξ0 = {∅,Ω} ⊂ Ξ1 ⊂
Ξ2 · · · ⊆ Σ of σ-algebras, and we set Zi = E [f |Ξi]. Such a martingale is
used in the next example.

Concentration of Lipschitz functions of a random permutation.

Here we illustrate on an important and concrete example how Azuma’s
inequality allows us to deal with Lipschitz functions on a metric probabi-
lity space that does not “quite” have a product structure but it is “high-
dimensional” in a suitable sense. In other words, we consider Lipschitz
functions of many moderately dependent random variables.
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Let Sn denote the set of all permutations of [n] (i.e. bijections [n]→ [n]).
We consider the uniform probability measure on Sn, and we define the
distance of two permutations π1, π2 ∈ Sn as ρ(π1, π2) = |{i ∈ [n]: π1(i) 6=
π2(i)}|.

8.3.3 Theorem. Let f :Sn → R be a 1-Lipschitz function. For π ∈ Sn

chosen at random and for all t ≥ 0, we have

P[f(π) ≥ E [f ] + t] ≤ e−t2/8n and P[f(π) ≤ E [f ]− t] ≤ e−t2/8n.

Example. Let I(π) be the number of inversions of a permutation π ∈ Sn;
i.e. I(π) = |{(i, j) ∈ [n]2: i < j, π(i) > π(j)}|. The number of inversions
determines the complexity of some sorting algorithms (such as insert-sort),
for example. It is easy to check that I is n-Lipschitz. By applying Theo-
rem 8.3.3 on f(π) = 1

n I(π), we get that I(π) is concentrated in an interval

of length O(n3/2) around E [I] = 1

2

(

n
2

)

≈ n2

4
.

Proof of Theorem 8.3.3. We define a sequence Π0,Π1, . . . ,Πn−1 of par-
titions of Sn, where Πi is the partition according to the values at 1, 2, . . . , i.
That is, each class C of Πi has the form C = C(a1, . . . , ai) = {π ∈
Sn: π(1) = a1, . . . , π(i) = ai} for some (distinct) a1, . . . , ai ∈ [n]. In par-
ticular, Π0 has the single class Sn, and Πn−1 is the partition into singletons.
Let Ξi be the σ-algebra generated by Πi, and let Zi be the random

variable given by
Zi = E

[

f(π)
∣

∣Ξi

]

.

More explicitly, if π lies in a class C of Πi, then

Zi(π) = aveσ∈C f(σ) :=
1

|C|

∑

σ∈C

f(σ).

The sequence Z0, Z1, . . . , Zn satisfies the martingale condition (8.1). We
want to apply Azuma’s inequality 8.3.2, and so we need to bound the diffe-
rences: we will prove that

|Zi − Zi−1| ≤ 2. (8.2)

We consider a permutation π in some class C = C(a1, . . . , ai−1) of Πi−1.
The value Zi−1(π) is the average of f over C. In the partition Πi, the class
C is further partitioned into several classes C1, . . . , Ck (in fact, we have
k = n− i+ 1), π lies in one of them, say in C1, and Zi(π) is the average of
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f over C1. We thus ask, by how much the average over C1 can differ from
the average over C.
The average over C is the average of the averages over the Cj , j =

1, 2, . . . , k. Thus, it suffices to show that the average overCj1 and the average
over Cj2 cannot differ by more than 2 (for all j1, j2). The reason is that there
is a bijection ϕ:Cj1 → Cj2 such that ρ(π, ϕ(π)) ≤ 2 for all π ∈ Cj1 . Indeed,
let Cj1 = C(a1, . . . , ai−1, b1) and Cj2 = C(a1, . . . , ai−1, b2), where b1 and
b2 are distinct and also different from all of a1, . . . , ai−1. The bijection ϕ
is defined by the transposition of the values b1 and b2: For π ∈ Cj1 , we
set ϕ(π) = π′, where π′(i) = b2, π′(π−1(b2)) = b1, and π′(j) = π(j) for
π(j) 6∈ {b1, b2}. We have

| aveCj1
f − aveCj2

f | =
∣

∣aveπ∈Cj1

[

f(π)− f(ϕ(π))
]∣

∣

≤ aveπ∈Cj1
|f(π)− f(ϕ(π))|

≤ 2,

because ρ(π, ϕ(π)) ≤ 2 and f is 1-Lipschitz.
We have established the bound (8.2) for the martingale differences, and

Azuma’s inequality 8.3.2 yields Theorem 8.3.3. ✷

The proof of Theorem 8.3.3 can be generalized to yield concentration
results for more general discrete metric probability spaces. The key condition
is that such spaces have a suitable sequence of partitions. Some such results
can be found, for instance, in

B. Bollobás: Martingales, isoperimetric inequalities and random
graphs, in: 52. Combinatorics, Eger (Hungary), Colloq. Math.
Soc. J. Bolyai, 1987, pages 113–139.

8.4 Isoperimetric Inequalities and Concentration on

the Sphere

The method of proof of Theorem 8.2.1 (concentration of Lipschitz functions
on product spaces) is suitable for dealing with Hamming-type metrics (or ℓ1-
sums of metrics). To some extent, this is also true for Azuma’s inequality and
other martingale-based results. Sometimes we need to deal with other “high-
dimensional” metric spaces, where the metric is not of a Hamming type; a
notable example is various subspaces of Rn with the Euclidean metric. Here
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concentration of measure can sometimes be proved by geometric methods.
We will consider just one example: measure concentration on the Euclidean
sphere.

The Euclidean sphere. Let Sn−1 = {x ∈ Rn: ‖x‖ = 1} denote the unit
sphere in Rn. We consider it with the Euclidean metric inherited from Rn,
and the probability measure P on Sn−1 is the usual surface measure scaled
so that the whole Sn−1 has measure 1. More formally, for a set A ⊆ Sn−1,
we let Ã = {αx: x ∈ A, α ∈ [0, 1]} be the union of all segments connecting
points of A to the center of Sn−1, and we set P[A] = λn(Ã)/λn(Bn), where
λn is the Lebesgue measure in Rn and Bn denotes the unit ball.
A result about concentration of Lipschitz functions on Sn−1, called

Lévy’s lemma, is usually proved via a geometric result, an isoperimetric
inequality.

Isoperimetric inequalities. The mother of all isoperimetric inequalities
states that among all planar geometric figures with a given perimeter, the
circular disc has the largest possible area. (This is well-known but not easy
to prove rigorously.) In the sense considered here, isoperimetric inequali-
ties claim that among all sets of a given volume in some metric space un-
der consideration, a ball of that volume has the smallest volume of the
t-neighborhood (where the t-neighborhood of a set A is the set of all points
whose distance from A is at most t) :

(In the picture, assuming that the dark areas are the same, then the light
gray area is the smallest for the disc.) Letting t → 0, one can get a sta-
tement involving the perimeter or surface area. But the formulation with
t-neighborhood makes sense even in spaces where “surface area” is not de-
fined.
We note that a ball in the Euclidean metric on Sn−1 is a spherical

cap, that is, an intersection of Sn−1 with a halfspace. The isoperimetric
inequality for the sphere states that for all measurable sets A ⊆ Sn−1 and
all t ≥ 0, we have P[At] ≥ P[Ct], where At denotes the set of all points
of Sn−1 of distance at most t from A, and where C is a spherical cap with
P[C] = P[A]. This is a rather difficult geometric result; a proof can be
found, for example, in
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T. Figiel, J. Lindenstrauss, and V.D. Milman: The dimension of
almost spherical sections of convex bodies, Acta Math., 139:53–
94, 1977.

Let C be a cap of measure 1
2
, that is, a hemisphere. Then Ct is the com-

plement of a cap of height 1−t, and some calculation (which we omit here)

shows that 1−P[Ct] ≤ 2e
−t2n/2. Consequently, by the isoperimetric inequa-

lity, we obtain:

8.4.1 Theorem (Measure concentration for the sphere). Let A ⊆
Sn−1 be a measurable set with P[A] ≥ 1

2
, and let At denote the t-neighbor-

hood of A (in the Euclidean metric). Then

1− P[At] ≤ 2e
−t2n/2.

Thus, if A occupies half of the sphere, almost all points of the sphere lie
at distance at most O(n−1/2) from A.
We should stress that measure concentration is an exclusively high-

dimensional phenomenon; the inequality is practically meaningless for S2

or S3, and it becomes interesting only when the dimension is large.
Theorem 8.4.1 speaks about the neighborhoods of sets, while in probabi-

listic applications, one often needs concentration of Lipschitz functions. The
passage to Lipschitz functions is not too difficult. First we need to introduce
the median of a function.
Let f be a real random variable (on any probability space; in the discus-

sion below, f is a 1-Lipschitz function Sn−1 → R). We define the number
med(f), called the median of f , by

med(f) = sup{t ∈ R: P[f ≤ t] ≤ 1

2
}

We have P[f < med(f)] ≤ 1

2
and P[f > med(f)] ≤ 1

2
. This is perhaps less

obvious than it might seem at first sight. The first inequality can be derived
from the σ-additivity of the measure P:

P[f < med(f)] =

∞
∑

k=1

P
[

med(f)− 1

k−1 < f ≤ med(f)− 1

k

]

= sup
k≥1
P

[

f ≤ med(f)− 1

k

]

≤ 1

2
.

The second inequality follows similarly.
Here is the promised result about concentration of Lipschitz functions

on the sphere:
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8.4.2 Theorem (Lévy’s Lemma). Let f :Sn−1 → R be 1-Lipschitz. Then
for all t ≥ 0,

P[f ≥ med(f) + t] ≤ 2e−t2n/2 and P[f ≤ med(f)− t] ≤ 2e−t2n/2.

Proof. We prove only the first inequality. Let A = {x ∈ Sn−1: f(x) ≤
med(f)}. By the properties of the median, P[A] ≥ 1

2
. Since f is 1-Lipschitz,

we have f(x) ≤ med(f) + t for all x ∈ At. Therefore, by Theorem 8.4.1, we

get P[f(x) ≥ med(f) + t] ≤ P
[

Sn−1 \ At

]

≤ 2e−t2n/2. ✷

The median is generally difficult to compute. But for a 1-Lipschitz
function, it cannot be too far from the expectation:

8.4.3 Proposition. Let f :Sn−1 → R be 1-Lipschitz. Then

|med(f)−E [f ] | ≤ 12n−1/2.

Proof.

|med(f)−E [f ] | ≤ E [|f −med(f)|]

≤

∞
∑

k=0

k+1√
n
P

[

|f −med(f)| ≥ k√
n

]

≤ n−1/2
∞
∑

k=0

(k + 1) · 4e−k2/2

≤ 12n−1/2.

✷

Other important spaces with concentration similar to Theorem 8.4.2
include the n-dimensional torus (the n-fold Cartesian product S1×· · ·×S1 ⊂
R2n) and the group SO(n) of all rotations around the origin in Rn. Let us
remark that results similar to Theorem 8.1.1 (concentration on product
spaces) can also be derived from suitable isoperimetric inequalities. For
example, if our space is the product {0, 1}n with the uniform probability
measure, the Hamming cube, then an isoperimetric inequality holds (Har-
per’s inequality, again stating that the ball has the smallest t-neighborhood
among all sets of a given measure), and the special case of Theorem 8.1.1
can be derived from it, with a little worse estimate.
Much information about these results and their applications can be

found in
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J. Lindenstrauss and V. D. Milman: The local theory of normed

spaces and its applications to convexity, in Handbook of Convex
Geometry (P.M. Gruber and J. M. Wills eds), North-Holland,
Amsterdam, 1993, pages 1149–1220.

Let us remark that “functional-theoretic” methods, as opposed to geometric

ones, have recently been prominent in new developments in this direction.

A thorough treatment of concentration phenomena is the recent book

M. Ledoux: The Concentration of Measure Phenomenon, vo-
lume 89 ofMathematical Surveys and Monographs, Amer. Math.
Soc., Providence, RI, 2001.
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Concentration: Beyond the

Lipschitz Condition

9.1 Talagrand’s Inequality

Here we enrich our collection of results about concentration by a remarkable
result of Talagrand. We begin with a special case, which is easier to state.
The setting is similar to that in Theorem 8.1.1: f is a function on a product
space (Ω,Σ,P) such that the ith coordinate has effect at most 1.

We say that f has certificates of size s for exceeding value r if the
following holds. For any ω = (ω1, . . . , ωn) ∈ Ω with f(ω) ≥ r, there is a
subset I ⊆ [n] of at most s indices such that these coordinates alone force
the value of f to be at least r: whenever ω′ ∈ Ω satisfies ω′

i = ωi for all
i ∈ I, we have f(ω′) ≥ r as well.

Example: nondecreasing subsequences. Let (Ω,Σ,P) be the product
of n intervals [0, 1] with the uniform probability measure. For ω ∈ Ω, let
f(ω) be the length of a longest nondecreasing subsequence of the sequence
(ω1, ω2, . . . , ωn), i.e. the maximum k such that there are indices i1 < i2 <

· · · < ik with ωi1 ≤ ωi2 ≤ · · · ≤ ωik
. Clearly, each coordinate has effect at

most 1. Moreover, for each r ≥ 0, f has certificates of size at most r for
exceeding the value r (just fix the nondecreasing subsequence).

The following theorem asserts that if f possesses small certificates for
exceeding certain values, then it is even more concentrated than an arbitrary
1-Lipschitz function.
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9.1.1 Theorem (Talagrand’s inequality, special case). Let (Ωi,Σi,Pi)
be probability spaces, i = 1, 2, . . . , n, let (Ω,Σ,P) be their product, and let
f : Ω → R be a (measurable) function such that each coordinate has effect
at most 1. Let m = med(f) and let t ≥ 0. Supposing that f has certificates
of size at most s1 for exceeding the value m, we have

P[f ≤ m − t] ≤ 2e−t2/4s1 .

If f has certificates of size at most s2 for exceeding the value m+ t, we have

P[f ≥ m+ t] ≤ 2e−t2/4s2

(note the asymmetry in the lower and upper tail estimates!).

The theorem speaks about deviations from the median, rather than from
the expectation. But under suitable conditions, one can show that the me-
dian is close to the expectation, by a calculation similar to the proof of Pro-
position 8.4.3. For example, if m ≥ 1 and f has certificates of size O(r) for
exceeding the value r, for all r ≥ 1, we get |med(f)−E [f ] | = O(

√

E [f ] ).

Nondecreasing subsequences continued. The length of a longest non-
decreasing subsequence satisfies the assumption of Theorem 9.1.1, and we
get that it is concentrated around the median m in an interval of length
about

√
m. As we will show next, m is about

√
n, and so f is typically con-

centrated on about n1/4 values. Note the power of Talagrand’s inequality:
for example, Theorem 8.1.1 would give only about

√
n !

For a k-tuple of indices i1 < · · · < ik, we have P[ωi1 ≤ · · · ≤ ωik
] =

1

k! (by symmetry, all the k! permutations are equally probable). Thus,

P[f ≥ k] ≤
(

n
k

)

1

k! ≤
(

en
k

)k (

e
k

)k
=

(

e
√

n
k

)2k

. So m ≤ 3√n, say.

To derive a lower bound for m, let g(ω) be the length of a longest
nonincreasing subsequence in ω. By symmetry, med(g) = med(f). By the
Erdős–Szekeres lemma, we always have f(ω)g(ω) ≥ n. Since we know that
P[f ≤ 3√n] ≥ 1

2
, we get P

[

g ≥ 1

3

√
n
]

≥ 1

2
, and so m ≥ 1

3

√
n.

A more general form of Talagrand’s inequality. Let (Ω,Σ,P) be
a product probability space as in Theorem 9.1.1 above. The form of Ta-
lagrand’s inequality we are going to state next looks like a kind of isoperi-
metric inequality for this space, but with a little unusual notion of distance
d(ω, A) of a point ω ∈ Ω from a set A ⊆ Ω. We say that a unit vector
α = (α1, . . . , αn) ∈ Rn, ‖α‖ = 1, with αi ≥ 0 for all i, is a witness for
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d(ω, A) ≥ τ if we have
∑

i:ωi 6=ω′

i

αi ≥ τ for all ω′ ∈ A. We define d(ω, A) as

the supremum of τ ≥ 0 possessing a witness for d(ω, A) ≥ τ .
This definition apparently needs some time to be digested. A helpful

example is with Ω = {0, 1}n, the cube: here d(ω, A) turns out to be the
distance of ω to the convex hull of A ({0, 1}n is interpreted as a subset of
Rn).

9.1.2 Theorem (Talagrand’s inequality). Let A, B ⊆ Ω be two (mea-
surable) sets such that d(ω, A) ≥ τ for all ω ∈ B. Then

P[A] P[B] ≤ e−τ2/4.

The proof is (clever but) not impossibly complicated, but we choose to
omit it. It can be found, e.g., in the second edition of the book of Alon and
Spencer.
In order to get used to this result, let us derive Theorem 9.1.1 from it.

Proof of Theorem 9.1.1. Let f be as in Theorem 9.1.1, and let r ≥ 0 be
such that f has certificates of size at most s for exceeding the value r. For
all t ≥ 0, we prove

P[f ≤ r − t] P[f ≥ r] ≤ e−t2/4s; (9.1)

this will give both the inequalities in Theorem 9.1.1. Indeed, using it with
r = m, we obtain P[f ≤ m − t] P[f ≥ m] ≤ e−t2/4s1 , and the first inequality
in the theorem follows using P[f ≥ m] ≥ 1

2
. Similarly, the second inequality

follows by substituting r = m+ t.
In order to prove (9.1), we set, not surprisingly, A = {ω ∈ Ω: f(ω) ≤

r− t} and B = {ω ∈ Ω: f(ω) ≥ r}, and we want to show that for all ω ∈ B,
d(ω, A) ≥ τ = t√

s
. Once we succeed in this, we are done.

Fix ω ∈ B, and let I ⊆ [n], |I| ≤ s, be the set of indices of a certi-
ficate for f(ω) ≥ r: any ω′ sharing with ω the coordinates indexed by I
satisfies f(ω′) ≥ r. We may assume I 6= ∅, for otherwise, f ≥ r always and
P[f ≤ r − t] = 0. Let α ∈ Rn be the unit vector with αi = |I|−1/2 for i ∈ I
and αi = 0 for i 6∈ I. For ω′ ∈ A, define ω′′ ∈ Ω by

ω′′
i =

{

ωi for i ∈ I
ω′

i for i 6∈ I.

Then f(ω′′) ≥ r, while f(ω′) ≤ r−t since ω′ ∈ A, and so |f(ω′′)−f(ω′)| ≥ t.
Since the effect of each coordinate is at most 1, ω′′ and ω′ differ in at least
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t positions (all of which are indexed by I), and ω and ω′ also differ in at
least t positions indexed by I. So

∑

i:ωi 6=ω′

i

αi ≥ t|I|−1/2 ≥ t/
√

s. Therefore

α witnesses that d(A, ω) ≥ t√
s
, and (9.1) follows from Theorem 9.1.2. ✷

Concentration of the largest eigenvalue. This is a neat application
of the more general version of Talagrand’s inequality (Theorem 9.1.2). Let
M denote the probability space of all symmetric matrices M = (mij)

n
i,j=1,

where mii = 0 for all i, the entries mij for 1 ≤ i < j ≤ n are chosen in-
dependently and uniformly at random in the interval [0, 1], and those with
i > j are defined by symmetry. Formally,M can be identified with the pro-
duct space [0, 1]m, where m =

(

n
2

)

is the number of entries of M above the
diagonal. (The argument below works, with small changes, for many other
distributions of the mij ; the selected example gives particularly simple cal-
culations.) As linear algebra teaches us, eachM ∈ M has n real eigenvalues
λ1 ≤ λ2 ≤ . . . ≤ λn. We derive a very strong concentration result for
λn. (Eigenvalues of random matrices, significant in many applications, are
usually quite difficult to handle.)
We use the following well-known characterization of λn:

λn = max{xT Mx: x ∈ Rn, ‖x‖ = 1}.

First we determine the order of magnitude of E [λn]. On the one hand,
setting u = ( 1√

n
, 1√

n
, . . . , 1√

n
), we have

E [λn] ≥ E
[

uT Mu
]

= 1

n

n
∑

i,j=1

E [mij ] =
1

2n (n
2 − n) = 1

2
(n − 1).

On the other hand, for any M and any unit vector x, we have, by the
Cauchy–Schwarz inequality,

xT Mx =
∑

i,j

xixjmij

≤
(

∑

i,j

x2i x
2

j

)1/2(
∑

i,j

m2ij

)1/2

=

(

∑

i,j

m2ij

)1/2

= ‖M‖2.
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We estimate E [‖M‖2]
2
≤ E

[

‖M‖22
]

=
∑

ij E
[

m2ij
]

= 1
3 (n

2 − n), and so

1
2 (n − 1) ≤ E [λn] ≤

1√
3

n.

Now we start with the concentration result. For numbers r and t ≥ 0,
let A ⊆ M be the set of all matrices with λn ≤ r, and let B ⊆ M consist
of those matrices with λn ≥ r + t. We want to show that for all M ∈ B,
we have d(M, A) ≥ t

2 , where d(ω, A) is as in Talagrand’s inequality. Since
M ∈ B, there is a unit vector x = x(M) with xT Mx ≥ r + t. On the other
hand, for any N ∈ A, we have xT Nx ≤ r. We calculate

t ≤ xT Mx − xT Nx =
∑

1≤i<j≤n

2xixj(mij − nij) ≤
∑

1≤i<j≤n

mij 6=nij

2|xixj |.

This suggests an appropriate choice for a vector α = (αij)1≤i<j≤n wit-
nessing d(M, A) ≥ t

2 . Namely, letting βij = 2|xixj |, we find

‖β‖2 = 4
∑

i<j

x2i x
2
j ≤ 2

( n
∑

i=1

x2i

)2

= 2,

and so for α = β
‖β‖ , we have

∑

i<j:mij 6=nij

αij ≥ 1√
2

∑

i<j:mij 6=nij

2|xixj | ≥
t√
2
.

The assumptions of Talagrand’s inequality 9.1.2 are satisfied for A and B
with τ = t√

2
, and we obtain

P[A] P[B] ≤ e−t2/8.

Setting r to the median m = med(λn), we have P[A] =
1
2 , and so

P[λn ≥ m+ t] ≤ 2e−t2/8.

Letting r = m − t, we get P[B] = 1
2 and so

P[λn ≤ m − t] ≤ 2e−t2/8.

Thus, λn is concentrated in an interval of length only O(1) around the
median! Further calculation, similar to the proof of Proposition 8.4.3, shows
that |m −E [λn] | = O(1).
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Even sophisticated concentration inequalities for Lipschitz functions are use-
less if the investigated function is not Lipschitz enough. Of course, often this
may be simply because the function is not concentrated, and this possibility
should not be overlooked. But sometimes there still is a concentration re-
sult, and the rather complicated-looking inequality presented in this section
may help.
As a running example, let T be the number of triangles in the random

graph G(v, p). (We use v instead of the usual n, since n will be reserved
for the number of variables in the considered function). We already studied
this random variable in Section 5.3, where we showed that for p >> 1

v (we
recall that this notation means pv → ∞), G(v, p) almost surely contains a

triangle. Here we let p = ϕ(v)
v , where ϕ(v)→ ∞ as v → ∞ but not very fast

(say, ϕ(v) = v1/9).
Formally, T is a real function on the space {0, 1}n with n =

(

v
2

)

and with
the appropriate product measure. By adding a single edge we can create as
many as v−2 new triangles, and so the effect of each variable on T is at
least v−2 (in fact, it equals v−2). We have E [T ] =

(

v
3

)

p3 = Θ(ϕ(v)3), while

σ =
(
∑n

i=1 c2i
)1/2

in Theorem 8.1.1 is Θ(v2). If we want the bound e−t2/2σ2

in that theorem to be meaningful for deviations t comparable to E [T ] or
smaller, we would need ϕ(v) as large as v2/3! Neither Talagrand’s inequality
seems to be helpful in this situation.
Yet T is much more concentrated than these results indicate. The intu-

itive reason is that the situation where one edge is contained in very many
triangles is extremely rare. For instance, the expected number of triangles
containing a given edge is only (v−2)p2 = Θ(ϕ(v)2/v), which is quite small.
Formalizing this intuition is not so easy. The expected effect of each variable
being small is generally not sufficient for concentration. This is illustrated
by the next example, which also introduces us to the realm of multivariate
polynomials, where we will stay for the rest of this section.

9.2.1 Example. Let n = 4k, and for t = (t1, . . . , tn) ∈ {0, 1}n, let us define

f(t) = (t1t2 + t3t4 + · · ·+ t2k−1t2k)(t2k+1 + t2k+2 + · · ·+ t4k).

Suppose that each ti independently attains value 1 with probability p =
n−1/2 and value 0 with probability 1−p (in other words, f is considered on
{0, 1}n with a suitable product probability measure). By multiplying the
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parentheses as polynomials and using the linearity of expectation, we find
E [f ] = 2k2p3 = n1/2/8. What is the expected effect of ti? If, for example,
t2 through tn are chosen at random, then the expected effect of changing
t1 from 0 to 1 or back is E [t2(t2k+1 + · · ·+ t4k)] = 2kp2 = 1

2 , and similarly
for t2, . . . , t2k. The expected effect of t2k+1 through t4k is

1
4 .

Yet f is not concentrated at all! Indeed, using a Chernoff-type inequality
(such as Theorem 7.2.1), we see that the sum t2k+1+ · · ·+ t4k in the second
parenthesis is close to n1/2/2 with high probability. The first parenthesis,
(t1t2+t3t4+· · ·+t2k−1t2k), is always an integer, and so with high probability,
f is either 0 or at least about 4E [f ].

Vu and Kim have developed a machinery for proving concentration of
functions f that are “mostly” Lipschitz but not quite, such as T in our run-
ning example. We briefly describe the setting and state one of their concen-
tration inequalities, reasonably general but not the most general available.
To apply the result, we need to suppose that f is defined on the pro-

duct of some probability spaces (Ωi,Σi,Pi), i = 1, 2, . . . , n, where each
Ωi is a subset of the interval [0, 1]. A typical example is Ωi = {0, 1}. We
also need f to be expressible (or approximable) by a suitable polynomial.
More precisely, we assume that there is a polynomial f̄ = f̄(t1, t2, . . . , tn) ∈
R[t1, . . . , tn] with all coefficients lying in [0, 1] such that f(t) = f̄(t) for all
t = (t1, . . . , tn) ∈ Ω.
Exotic as this condition might sound, it is often naturally fulfilled in

combinatorial applications. In our running example with the number of
triangles in G(v, p), we have one indicator variable tij ∈ {0, 1} for each pair

{i, j} ∈
(

[v]
2

)

of vertices, and

T =
∑

{i,j,k}∈([v]3 )

tijtjktik. (9.2)

If f cannot be written as a suitable polynomial, it is sometimes possible
to choose another function f̃ that can be so expressed and approximates f .
Then one can apply the result below to show concentration for f̃ , and infer
that f , being close to f̃ , is concentrated as well. (Let us remark that some
of the results below can also be directly extended to some functions other
than polynomials; see the reference given below.)
In the sequel, we will not formally distinguish between f (which is defined

on Ω) and the polynomial f̄ that extends f to the whole [0, 1]n. We thus
assume that f is a real polynomial defined on [0, 1]n. However, all random
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choices of the variables ti are according to the distribution given by Ω. In
particular, values of ti not lying in Ωi have zero probability.
The Vu–Kim inequality asserts that an f as above is concentrated pro-

vided that the expectation of each partial derivative of f up to some fixed
order ℓ−1 is sufficiently small, and the maximum of all partial derivatives
of order ℓ or larger is small as well.
Namely, for the polynomial f as above and an j-term sequence I =

(i1, i2, . . . , ij) of indices, let

∂If =
∂jf

∂ti1∂ti2 · · ·∂tij

(this is again a real function on [0, 1]n). Further we let

Mℓ =Mℓ(f) = sup
t∈Ω, |I|≥ℓ

∂If(t),

where |I| is the length of the sequence I, and

Ej = Ej(f) = max
|I|=j

E [∂If ]

The expectation is with respect to a random t ∈ Ω; in particular, E0 = E [f ].
Heuristically, Ej(f) can be interpreted as the maximum average effect on f
of any group of j variables, and Mℓ(f) corresponds to the maximum effect
of any group of ℓ variables.
In our running example, with the polynomial T given by (9.2), the de-

gree of T in each variable is 1, and so it suffices to consider sequences I
with at most 3 terms, all distinct. We have ∂T/∂t12 =

∑

i>2 t1it2i, and
so E1(T ) = (v−2)p

2 = Θ(ϕ(v)2/v) (exactly what we calculated before!).
Further, ∂T/∂t12∂t23 = t13, and similarly for all other pairs of edges sha-
ring a vertex, while all the other partial derivatives of order 2 are 0. The-
refore, E2(T ) = p and M2(T ) = 1. Finally, E3(T ) = M3(T ) = 1; note that
Mℓ(f) ≤ 1 for any polynomial f of degree at most ℓ with all coefficients in
[0, 1].
Here is the promised inequality.

9.2.2 Theorem (Vu–Kim inequality). Let P1,P2, . . . ,Pn be probabi-

lity measures on [0, 1], and let P be the product measure on [0, 1]n. Let
f : [0, 1]n → R be a function given by an n-variate real polynomial with
all coefficients lying in [0, 1]. Let ℓ ≥ 1 be a fixed integer, suppose that
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Mℓ(f) ≤ 1, and for j = 1, 2, . . . , ℓ−1, let Ej = Ej(f) be as above. Let
τ ≥

√
log n be a parameter, and set

E1 = max
(

E1, τ
2E2, τ

4E3, . . . , τ
2(ℓ−2)Eℓ−1, τ

2(ℓ−1)
)

,

E0 = max
(

E0, τ
2E1

)

.

Then

P
[∣

∣

∣
f −E [f ]

∣

∣

∣
≥ aτ

√

E0E1
]

≤ be−τ2,

where a and b are suitable positive constants depending only on ℓ.

If the quantities Ej decrease sufficiently fast, namely, if Ej/Ej+1 ≥ τ2

for all j = 0, 1, . . . , ℓ−1, then E0 = E0, E1 = E1, and
√
E0E1 is independent of

τ (in the appropriate range of τ). In such a case, the concentration is of the
usual Gaussian type (as in most of the inequalities mentioned earlier). But
often we get only weaker bounds; this is the case for our running example.
In that example, we haveM2(T ) ≤ 1, and so we can choose ℓ = 2. As was

noted above, E0(T ) = Θ(ϕ(v)
3) and E1(T ) = Θ(ϕ(v)

2/v). Since we assume
ϕ(v) << v1/2, we obtain E1 = max(E1, τ2) = τ2 and E0 = max(E0, τ2E1) =
max(ϕ(v)3, τ4). If we use the concrete value ϕ(v) = v1/9 and consider only
the τ with τ4 ≤ ϕ(v)3, the resulting inequality is

P
[
∣

∣

∣
T −E [T ]

∣

∣

∣
≥ aτ2v1/6

]

≤ be−τ2,
√

2 log v ≤ τ ≤ v1/12.

Rewritten in the parameterization by the deviation t used in the inequalities
in the preceding sections, this becomes

P
[∣

∣

∣
T −E [T ]

∣

∣

∣
≥ t

]

≤ e−αt/v1/6

, c1v
1/6 log v ≤ t ≤ c2v

1/3

for suitable positive constants α, c1, c2. Such kind of result is typical for
applications of the Vu–Kim inequality; in some range of deviations, from
logarithmically small to a small power of n, we obtain an exponentially
decreasing bound. The exact values of the exponents seldom matter much.
Let us remark that the “obvious” first choice of ℓ in this example is 3,

the degree of T . Then M3 ≤ 1 is automatic, but the resulting bound is
quantitatively worse, as the reader may want to check.
There are other techniques that yield concentration results for the quan-

tity T and in some similar situations (for example, the Janson–Suen inequal-
ity—Theorem 7.4.3). But the Vu–Kim inequality currently appears as the
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most general and flexible tool, and in several applications it provides the
only known path to the goal.
Theorem 9.2.2 does not cover deviations of logarithmic order, and so it

typically does not work very well for functions with logarithmic or smaller
expectations (for ϕ(v) much smaller than log v in our running example, say).
There are more precise versions covering such situations as well. These and
other variations, as well as a proof of Theorem 9.2.2 and further applications
of it, can be found in the survey paper

V. H. Vu: Concentration of non-Lipschitz functions and appli-
cations, Random Structures & Algorithms, 2002, in press.


