- CS 598: Spectral Graph
Theory: Lecture 2

The Laplacian



Today

e More on evectors and evalues
» The Laplacian, revisited

e Properties of Laplacian spectra, PSD
matrices.

 Spectra of common graphs.
e Start bounding Laplacian evalues



A Remark on Notation

For convenience, we will often use the bra-ket
notation for vecotrs:
VU1
» We denote vector v = ( ) with a “bra”: |v)
vn
» We denote the transpose vector vl =
(V1 - Vp) with a “ket”: (v|

» We denote the inner product v7u between two
vectors v and u with a “braket”: (v|u) = (v, u)



Evectors and Evalues

» Vectorvis evector of matrix A with evalue pif Av=pv.

We are interested (almost always) in symmetric matrices, for which
the following special properties hold:

If vi,v2 are evectors of A with evalues p1, p2 and pa# p2, thenvais
orthogonal to va.
Proof: uy v v, = viAv, = vipav, = upviv,. Assuming paz p2

it implies viv, = 0.

If vi,v2 are evectors of A with the same evalue p, then vi+v2 is as well. The
multiplicity of evalue p is the dimension of the space of evectors with
evalue p.

Every n-by-n symmetric matrix has n evalues {y; < -+ < u,} counting
multiplicities, and and orthonormal basis of corresponding evectors
{vq, ..., v}, so that Av; = p;v;

If we let V be the matrix whose i-th column is v;, and M the diagonal matrix
whose i-th diagonal is p;, we can compactly write AV=VM. Multiplying by
VT on the right, we obtain the eigendecomposition of A:

A=AV VT VM VT =3, vv';



The Laplacian: Definition Refresher

. . d1
! )

d2

_ ds

G={V,E} i || 1
(d, if i=]

L., j)=<—1 if (i, j) edge

] dn
O otherwise

(.

Where diis the degree of i-th vertex.
For convenience, we have unweighted graphs

* DG = Diagonal matrix of degrees
* Ac =Adjacency matrix of the graph

¢ Lo =Dg — A



The Laplacian: Properties Refresher

The constant vector 1 is an eigenvector with eigenvalue zero.

—

L.1=0
Has n eigenvalues (spectrum) 0= )\1 < )\2 < < )\n

Second eigenvalue is called “algebraic connectivity”.
G is connected if and only if Ao> 0

We will see the further away from zero,
the more connected G is.



Redefining the Laplacian

e Let Le be the Laplacian of the graph on n vertices consisting
of just one edge e=(u,v).

e = - - u y
1 ifi=j,ieuyv
L.(i,j)=¢-1 if i=u, j=v,orvice versa e = Il ®[zeros]
0 otherwise vi-l1

e For a graph G with edge set E we now define

Ls => L,

eckE

* Many elementary properties of the Laplacian now follow
from this definition as we will see next (prove facts for one
edge and then add).



Laplacian of an edge, contd.

u '
ull [-1
Le = ®[ZeI’OS] eigenvalue
vi-l1]|1 .
/ / eigenvector
— 1/+/2
(—11 11)=(_11) @ -1 =2(_1//\5§)(1/\/§ -1/v2)

» Since evalues are zero and 2, we see that Le is
P.5.D. Moreover,

x"Lox = (x1%) (_11) a -1) (2) = (X1 — x3)*



Review of Positive Semidefiniteness

* Definition: A symmetric matrix M is positive semidefinite
(PSD) if:

X' Mx>0VXeR"

Positive definite (PD) if inequality is strict for all xzo.

« PSD iff all evalues are non-negative (exercise.)

« PSDiff M can be written as M = AT A, where A can
be n-by-k (not necessarily symmetric) and is not unique.
Proof: see blackboard



Review of Positive Semidefiniteness

Definition: A symmetric matrix M is positive semidefinite
(PSD)if: X' MXx=>0VXxeR"

Positive definite (PD) if inequality is strict for all xzo.
PSD iff all evalues are non-negative (exercise.)
PSD iff M can be written as M = AT A, where A can be n-by-k
and not unique.

Proof
(=) If M 1s positive semidefinite, recall that M can be diagonalized as
M =QTAQ,
thus .
M = QTAV2A120 — (ﬂl_.-'z Q.) (‘,.11_.-"2 Q) __
where A'/? has \/A; on the diagonal.

(<) If M = AT A, then
2T Mz = 2T AT Ar = (Ax }T[.-—'Lr}

Letting y = (Az) € R*, we see that:

e TMz=yTy=|y/*=0. A



More Properties of Laplacian

From the definition using edge sums, we get:
» (PSD-ness)The Laplacian of any graph is PSD.

:ITTI,;_';.E.* = ::!.-T(Z L.)r = Z :erL,_,.,ar == Z (2 — :z.-;,]:2

(2,7)€E

* (Connectivity) G is connected iff A2 positive or
alternatively, the null space is 1-d and spanned by the
vector 1.

Proot Let z ¢ null(L), 1e. Loz = 0. This implies

T ( \2
v Lgr = Z \z; —z;)" =0

(ij)eE

Thus, z; = z; for every (i, ) € E. As 18 connected, this means that all z; are equal. Thus every member
of the null space is a multiple of 1. I

e Corollary: The multiplicity of zero as an eigenvalue equals
the number of connected components of the graph.



More Properties of Laplacian

* (Edge union)If G and H are two graphs on the same
vertex set, with disjoint edge set then

L{_’j[_] H= L{_',f + JE H [rLflfhtﬂlﬂ]

 If avertexisisolated, the corresponding row and
column of Laplacian are zero

 (Disjoint union) Together these imply that for the
disjoint union of graphs G and H

Lo 0
Lr_‘;HH =Lr_‘: I LH = ( {; LH )



More Properties of Laplacian

* (Edge union)If G and H are two graphs on the same
vertex set, with disjoint edge set then

L{_’j[_] H= L{_',f + JE H [rLflfhtﬂlﬂ]

 If avertexisisolated, the corresponding row and
column of Laplacian are zero

 (Disjoint union) Together these imply that for the
disjoint union of graphs G and H

Lo 0
Lr_‘;][H =Lr_‘; ' LH = ( (; JEH )

* (Disjoint union spectrum)if Lc has evectors vy, ..., vn
with evalues A4,..., An and LH has evectors wa, ..., wn
with evalues pa,..., pun then“ell# has evectors

0. B0.08 0 08w with evalues At Anbitse -



The Incidence Matrix: Factoring the

Laplacian

3 We can factor L as L = V'V using evectors but also

exists nicer facto

rization

* Define the incidence matrix B to be the m-by-n matrix

B(e,v) =<

(1,ife=(v,w)and v < w
—1,ife=(v,w)andw < v

L 0,otherwise

» Example of incidence matrix

o—0—9©

Bz(tl) _11 —01

» Claim: L =B'B

1 -1 0
) L = (—1 2 —1)
0 -1 1

(exercise)

» Gives another proofthat L is PSD.



O

Spectra of Some
Common Graphs

The complete graph Kn on n vertices with edge set
{(u,v): u # v}

The path graph Pnon n vertices with edge set
{(uu+1):0<u<n}

The ring graph Rnon n vertices with edge set
{(uuu+1):0<u<njuOn-1)

The grid graph Gnxm on nxm vertices with edges from node
(u4,u,) to nodes that differ by one in just one coordinate

Product graphsin general



The Complete Graph

Ks

Kn: {(u,v): u # v}

» The Laplacian of Kn has eigenvalue zero with
multiplicity 1 (since it is connected) and n with
multiplicity n-1.

» Proof: see blackboard



The Complete Graph

Ks

Kn: {(u,v): u # v}

» The Laplacian of Kn has eigenvalue zero with
multiplicity 1 (since it is connected) and n with
multiplicity n-1.

Proof. Let L be the Laplacian of K. Let x be any vector orthogonal to the all 1s vector. Consider
the first coordinate of Lz. It will be n — 1 times z;, minus

Z I-Iu - _I]_1
u>l

as 1 1s orthogonal to 1. Thus, z 1s an eigenvector of eigenvalue 7. ]



The Ring Graph e

R10

Pn{(uy,u+1):0<u<n}ju(0,n-—1)

» The Laplacian of Rn has eigenvectors

2k
u u) and
n

2mku
)
21k

for ksn/2. Both have eigenvalue 2 — 2CDS(T).

Note xo should be ignored and yo is the all ones
vector. If nis even, then xn/2 should be ignored.

xj (1) = sin

yi (1) = cos

Proof: By plotting the graph on the circle using these
vectors as coordinates.



The Ring Graph . e

Spectral embedding for k=3

9

6

[EY

S

10

o

Let z(u) be the point (x_k(u), y_k(u)) on
the plane.

Consider the vector z(u-1) - 2 z(u) + z(u+1).
By the reflection symmetry of the picture,
it is parallel to z(u)

Let z(u-1) - 2 z(u) + z(u+1) = Az(u). By
rotational symmetry, the constant A is
independent of u.

To compute A consider the vertex u=1.

Verify details as excercise



The Path Graph

Bn:{(u,u+1):0 <u<nj r 0—@0—@0—0—©

» The Laplacian of Pn has the same eigenvalues

mku

as Rzn and eigenvectors z,(u) = sin (== + =), for
k<n.

Proof: Treat Pn as a quotient of Rz2n. Use projection
fiRan = Py

R10 et _{ w,ifu<sn
fw) = 2n—1—u,ifu=>n

i o &
Ps @—

€




The Path Graph

Proof: Treat Pn as a quotient of Ran.

Use projection f:R,, = B, |
u,ifu<n P5 1

f(u)z{Zn—l—u,ifuZn

» Letzbe aneigenvector of the ring, with z(u)=z(2n-1-u) for all u.

» Take the first n components of z and call this vector v.

» Tosee thatvis an eigenvector of Pn, verify that it satisfies for some A:
2v(u)-v(u-1)-v(u+1)= Av(u), for o<u<n-1
v(0)-v(1)= Av(1)
v(n-1)-v(n-2)= Av(n-1)

» Takez asclaimed,i.e. z;, (u) = sin (nTku +2£n) which is in the span of

xk and yk.

» (verify details as exercise)



Graph Products

* (Definition): Let G(V,E) and H(W,F). The graph
product GxH is a graph with vertex set VxW and
edge set ((v1,w),(v2,w)) for (v1,v2)€ E

((v,w1),(v,w2)) for (w1,w2)E F
* If G hasevals As,..., An, evecs xa,..., Xn
H has evals pa, ..., um, evecs ys,..., ym
Then GxH has for all i,j in range, an evector
zij(v,w)=xi(v)yj(w) of evalue Ai + ;

» Proof: see blackboard



Graph Products

Proof. To see that this eigenvector has the propper elgenvalue, let L denote the Laplacian of G x H,
d, the degree of node v in G, and e, the degree of node w in H. We can then verify that

L)w) = (b +e )@ - Y @lyw) - ¥ o)y (w)

(v, )€E (w,wa)EF

— (@)@ ) - Y @)+ E)@yw) - Y )

(v,19)€E (w,we)eF

=yiw) | daiv) = Y (milw)) | +2ilv) | ewtjlw) - (i(v)y;)

(v,02)€E (wuwn)€F
= yi(w) Az ) (v) + 23 (v) 5 (w)
= (Ai £ ) (zilv)y; (w)).



Graph Products: Grid Graph

Gnxm = P X By

* Immediately get spectra from path.



D

Start Bounding
Laplacian Eigenvalues



Sum of Eigenvalues, Extremal
_ Eigenvalues

o XA =2;d; < dpaen where diis the degree of vertexi.
Proof: take the trace of L

- d: d:
o Ay S% and A, 2%

Proof: previous inequality + A; = 0.

» Courant-Fisher formula (for extreme evalues): For any nxn
symmetric matrix A (eigenvaluesin increasing order),

T T
. . X AX : . X AX
A, = min x' AX = min A, = min x'Ax= min
IX|=1 X0 XTX 1X]|=1,x Lvy X Lvy,x#0 XTX
T
X' AX
A =Max X' AX = max

Ix|=1 x20 X' X




Courant-Fischer.

e Courant-Fischer Formula: For any nxn symmetric matrix A,

. X' AX
A = MmN maX —
Sofdimk xeS X' X

. X' AX
A= max min—
Sofdimn-k-1 xeS X X

e Proof: see blackboard



T
e Courant-Fischer Formula: ﬂk = max min XTAX
Sofdimn-k-1 xeS X X

Proof Let 4 = QTAQ be the eigendecomposition of 4. We observe that 27 Az = ¢7QTAQr =
Q) A(Qz). and since ) is orthogonal, | Qz] = 2] Thus it suffices to consider the case when A= A s a

diagonal matrix with the eigenvalues Ay,..., A, n the diagonal. Then we can write
M A

)

;ITTA;IT = (;I?l ;Ifn) | = E}tii?;.
Mo\, =l

We note that when A 18 diagonal, the eigenvectors of A are vy, = e, the standard basis vector m R", 1.
(e);=1ifi =k, and (ey); = 0 otherwise. Then the condition 2 € i, mplies 2 L ¢; fori=1,....k -1

0.2, = (1,¢;) = (. Therefore, for 2 € St with [z = 1, we have

n n n
;ITTA;IT = Z }H.f“1 = Z /\ii‘f > /\k ZL“Z = }\kaHQ = }tk.
=1 1=k i=h



%
Courant-Fischer Formula: ;tk max min ——
Sofdimn-k-1 xeS X X

On the other hand, plugging in 2 =¢, € S hl_l vields 27 Az = (e )T Aey, = \y.. This shows that

A = min 2! Az,

|lz]|=1
ﬁESé'_l
Similarly, for ||z =1,
n n
-'?-'Tf’lm — Z }‘i ;?.’f < }‘nm:-: f = }‘111&:-:“ HE max
=1 1=l

On the other hand, taking = = ¢, vields 27 Az = (e,)" Ae,, = \yax. Hence we conclude that

iT ¥
Aoy = Max - Az,
|z[=1



Courant-Fischer.

e Courant-Fischer Formula: For any nxn symmetric matrix A,

. X' AX
A = MmN maX —
Sofdimk xeS X' X

. X' AX
A= max min—
Sofdimn-k-1 xeS X X

e Proof: see blackboard

T

» Definition (Rayleigh Quotient): The ratio is called the

: ; : T
Rayleigh Quotient of x with respecttoA. X X
* Next lecture we will use it to bound evalues of Laplacians.



