CS 598: Spectral Graph
Theory. Lecture 3

Extremal Eigenvalues and
Eigenvectors of the Laplacian and
the Adjacency Matrix.



Today

* More on Courant-Fischer and Rayleigh
quotients

 Applications of Courant-Fischer
» Adjacency matrix vs. Laplacian
» Perron-Frobenius



Courant-Fischer Refresher (1)

[
e Courant-Fischer Min Max Formula: For any nxn

symmetric matrix A with eigenvalues a; = a, > -
a,, (decreasing order)

\Y,

. X' AX
a, = max min—
ScR"dim(S)=k xeS X' X
. X' AX
o, = min max

ScR",dim(S)=n—k+1 xS X' X

» Lasttime we saw proof, now we will see some applications

> Sylvester’s Law of Intertia

> Bounds on Laplacian evalues



Sylvester’s Law of Inertia

. X' AX
= max min—
ScR",dim(S)=k xeS X'X

» Theorem: Let A be any symmetric matrix and B
be any non-singular matrix. Then, the matrix
BABT has the same number of positive,
negative and zero eigenvalues as A.

Proof: see blackboard



Courant-Fischer Refresher (2)

o

» Courant-Fischer Min Max Formula for increasing evalue order
(e.g. Laplacians): For any nxn symmetric matrix L, with
eigenvalues1; <1, < --- < 4, (inincreasing order)

. X' LX
A= MmN max —
Sofdimk xeS X' X

. X' LX
A= max min—
Sofdimn-k-1 xeS X X



Courant-Fischer for Laplacian

. . . = XT LX
« Applying Courant-Fischer for the Laplacian A& = AP LIS T x
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» Useful for getting bounds, if calculating spectra is cumbersome.

» To get upper bound on Az, just need to produce vector with small
Rayleigh Quotient.

» Similarly, t o get lower bound on Amax, just need to produce vector
with large Rayleigh Quotient



Example 1

e Lemmaz: Let G=(V,E) be a graph with some
vertex w having degree d. Then

A

m

>

e Lemma 2: We can also improve on that. Under
same assumptions, we can show:

A, =0 +1

Proof: see blackboard



Example 1

e Lemmaz: Let G=(V,E) be a graph with some
vertex w having degree d. Then

A >d

e Lemma 2: We can also improve on that. Under
same assumptions, we can show:

A, =0 +1

Lemma 2 is tight, take star graph (ex)



Example 2
e The Path graph Pn on n vertices has

12

* Already knew that, but this is easier and more
general.

Proof: see blackboard



Example 3

» The complete binary tree Bhonn=2% — 1
vertices has

2
A, < -
Bn is the graph with edges of the form (u,2u) and

(u,2u+1) for u<n/2.

Proof: See blackboard



Example 3

node 1

node 4



» Lower bounds are harder, we will see
some in two lectures (different
technique)



N

Adjacency Matrix vs.
Laplacian



Adjacency Matrix Refresher

1, 1f (1, ]) edge
0 if no edge between 1, |

G = {V,E} j l

* Unweighted graphs for simplicity
| Ee———) | ]

i i A =

A has n eigenvalues (counting multiplicities)
fa1>a22>...2an}

* Adjacency matrix as operator:

(Agw) (D) = 2.1, j)ee V()



Adjacency Matrix vs. Laplacian for
d-reqular graphs

» Gisd-regularif every vertex has degree
d.Inthiscase: L =D; — A; = dI — Ag

elet0=A; <A, < <A, bethe
evaluesof Landa; = a, = - = a,, be
the evalues of A.

» We haveai=d- Aiand the corresponding
evectors are the same.



Bounds on the Eigenvalues of
Adjacency Matrix

e otz<dmax

Proof: See blackboard.

* Adjacency matrix as operator:

(Acw) (i) = Zj:(i,j)EE v(j)



Bounds on the Eigenvalues of
Adjacency Matrix

* qa<dmax with equality iff graph is
dmax —reqular. In this case, the first
eigenvector is the all-one’s vector. (exercise)



Courant-Fischer for Adjacency
Matrix Refresher

T

o, = max min —
Sofdimk xeS X' X

X' AX
o = Max —
x=0 X X

* Will see next how to apply Courant-Fischer for the adjacency
matrix to get another bound on the first eigenvalue as well as a
relation to graph coloring



Bounding Adjacency Matrix
Eigenvalues

e Lemma 1: aa is at least the average
degree of the verticesin G

Proof: see blackboard

X' AX
o = max —
X0 X X




Bounding Adjacency Matrix

Eigenvalues

¢ Lemma 1: aa is at least the average degree of the
vertices in G

* While we may think of az as being related to the
average degree, it behaves differently. If we remove
the vertex of smallest degree in a graph, the average
degree can increase. However, az only decreases when
We remove a vertex.

*» Lemma2: Let A be a symmetric matrix, let B be
the matrix obtained by removing the last row
and column from A and let b1 be the largest
eigenvalue of B. Then a1 > ba

Proof: see blackboard



Chromatic Number

* The chromaticnumber of a graph G,
denoted x(G), is the least k for which G
has a k-coloring.

» Theorem (Wilf): x(G)<|oa| + 1

Proof: see blackboard



Chromatic Number

» The chromatic number of a graph G,
denoted x(G), is the least k for which G
has a k-coloring.

» Theorem (Wilf): x(G)<|oa| + 1

Improvement over classical bound x(G)<dmax+1, as there are
graphs (e.g. path graph) where a: is much less than dmax



Adjacency Matrix: The Perron-
Frobenius Theorem

[
» We saw what happens for reqular graphs. What
is G is not regular? We know that 0tz<dmax

but what about vi1?

Perron-Frobenius Theorem (for graphs): Let
G=(V,E,w) be a connected graph, and let A be a
non-negative matrix such that A(i,j) > 0 for all
(i,j) edges. Then, there exists a positive vector v
and a positive a such that Av=av. Moreover, the
eigenvalue ais a unique maximal eigenvalue of A.



Adjacency Matrix: The Perron-
Frobenius Theorem

* Proofin 3 parts.

e We next show

Lemma 1: If all entries of an nxn

matrix A are positive, then it has a positive
eigenvector v with corresponding positive
eigenvalue q, that is Av=av.

Geometric proof on blackboard



Adjacency Matrix: The Perron-
Frobenius Theorem

Lemma 1: If all entries of an nxn matrix A are
positive, then it has a positive eigenvector v with
corresponding positive eigenvalue a, that is Av=av.

From lemma 1, we derive the following (exercise)
(hint: consider powers of A)

Lemma 2: Let G=(V,E,w) be a connected graph, and
let A be a non-negative matrix such that A(i,j) > 0
forall (i,j) edges. Then, there exists a positive vector v
and a positive a such that

Av=qv.



Adjacency Matrix: The Perron-
Frobenius Theorem

o We conclude the Perron-Frobenius proof with the following
lemma:

Lemma 3: Let G=(V,E,w) be a connected graph.
Assume that there is a positive vector v such that

Av= av. Then

(a) There is a non-negative, non-singular,
diagonal matrix S such that ™1 AS1 = a1
(b) For every other eigenvalue ai of A, |ai|<a

(©) The eigenvalue a has multiplicity 1.

Point (a) is example of matrix-scaling, useful for
many applications



Laplacian: The Perron-Frobenius

Theorem

e Theory can also be applied to Laplacians and any
matrix with non-positive off-diagonal entries. It
involves the eigenvector with smallest eigenvalue.

Perron-Frobenius for Laplacians:Let M be a matrix
with non-positive off-diagonal entries s.t. the graph
of the no-zero off-diagonal entries is connected.
Then the smallest eigenvalue has multiplicity 1 and
the corresponding eigenvector is strictly positive.

Proof on blackboard.



