
CS 598: Spectral Graph 
Theory. Lecture 3

ExtremalEigenvalues and 
Eigenvectors of the Laplacianand 
the Adjacency Matrix.



Today

·More on Courant-Fischer and Rayleigh 
quotients

·Applications of Courant-Fischer

·Adjacency matrix vs. Laplacian

·Perron-Frobenius



Courant-Fischer Refresher (1)
·
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Courant-Fischer Refresher (2)
·
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Courant-Fischer for Laplacian

· Applying Courant-Fischer for the Laplacian

we get :

· Useful for getting bounds, if calculating spectra is cumbersome.

· To get upper bound on ʇ2, just need to produce vector with small 
Rayleigh Quotient.

· Similarly, to get lower bound on ʇmax, just need to produce vector 
with large Rayleigh Quotient
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Example 1
·Lemma1: Let G=(V,E) be a graph with some 

vertex w having degree d. Then

·Lemma 2: We can also improve on that. Under 
same assumptions, we can show: 

Proof: see blackboard
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Example 1
·Lemma1: Let G=(V,E) be a graph with some 

vertex w having degree d. Then

·Lemma 2: We can also improve on that. Under 
same assumptions, we can show: 

Lemma 2 is tight, take star graph (ex)
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Example 2
·The Path graph Pn on n vertices has

·Already knew that, but this is easier and more 
general. 

Proof: see blackboard
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Example 3
·
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Example 3
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·Lower bounds are harder, we will see 
some in two lectures (different 
technique)



Adjacency Matrix vs. 
Laplacian
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Å Unweightedgraphs for simplicity

G = {V,E}

A has n eigenvalues (counting multiplicities)
{a1²a2²ȣ²an }

Adjacency Matrix Refresher



Adjacency Matrix vs. Laplacianfor 
d-regular graphs

·



·

Bounds on the Eigenvalues of 
Adjacency Matrix



·

Bounds on the Eigenvalues of 
Adjacency Matrix



Courant-Fischer for Adjacency 
Matrix Refresher 

· Will see next how to apply Courant-Fischer for the adjacency 
matrix to get another bound on the first eigenvalue as well as a 
relation to graph coloring
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Bounding Adjacency Matrix 
Eigenvalues
·
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·

Bounding Adjacency Matrix 
Eigenvalues



Chromatic Number

·


