
CS 598: Spectral Graph 
Theory. Lecture 3

Extremal Eigenvalues and 
Eigenvectors of the Laplacian and 
the Adjacency Matrix.



Today

 More on Courant-Fischer and Rayleigh 
quotients

 Applications of Courant-Fischer

 Adjacency matrix vs. Laplacian

 Perron-Frobenius



Courant-Fischer Refresher (1)


xx

Axx
T

T

SxknSRS
k n 
 maxmin

1)dim(,


xx

Axx
T

T

SxkSRS
k n 
 minmax

)dim(,




Sylvester’s Law of Inertia
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Courant-Fischer Refresher (2)

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Courant-Fischer for Laplacian

 Applying Courant-Fischer for the Laplacian

we get :

 Useful for getting bounds, if calculating spectra is cumbersome.

 To get upper bound on λ2, just need to produce vector with small 
Rayleigh Quotient.

 Similarly, t o get lower bound on λmax, just need to produce vector 
with large Rayleigh Quotient
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Example 1
 Lemma1: Let G=(V,E) be a graph with some 

vertex w having degree d. Then

 Lemma 2: We can also improve on that. Under 
same assumptions, we can show: 

Proof: see blackboard
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Example 1
 Lemma1: Let G=(V,E) be a graph with some 

vertex w having degree d. Then

 Lemma 2: We can also improve on that. Under 
same assumptions, we can show: 

Lemma 2 is tight, take star graph (ex)

dmax

1max  d



Example 2
 The Path graph Pn on n vertices has

 Already knew that, but this is easier and more 
general. 

Proof: see blackboard
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Example 3
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 Lower bounds are harder, we will see 
some in two lectures (different 
technique)



Adjacency Matrix vs. 
Laplacian
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• Unweighted graphs for simplicity

G = {V,E}

A has n eigenvalues (counting multiplicities)
{a1 a2  … an }

Adjacency Matrix Refresher



Adjacency Matrix vs. Laplacian for 
d-regular graphs







Bounds on the Eigenvalues of 
Adjacency Matrix





Bounds on the Eigenvalues of 
Adjacency Matrix



Courant-Fischer for Adjacency 
Matrix Refresher 

 Will see next how to apply Courant-Fischer for the adjacency 
matrix to get another bound on the first eigenvalue as well as a 
relation to graph coloring
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Bounding Adjacency Matrix 
Eigenvalues

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

Bounding Adjacency Matrix 
Eigenvalues



Chromatic Number





Chromatic Number
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

Adjacency Matrix: The Perron-
Frobenius Theorem



 Proof in 3 parts.

 We next show 

Lemma 1: If all entries of an nxn

matrix A are positive, then it has a positive 
eigenvector v with corresponding positive 
eigenvalue α, that is Av=αv.

Geometric proof on blackboard

Adjacency Matrix: The Perron-
Frobenius Theorem





Adjacency Matrix: The Perron-
Frobenius Theorem





Adjacency Matrix: The Perron-
Frobenius Theorem



 Theory can also be applied to Laplacians and any 
matrix with non-positive off-diagonal entries. It 
involves the eigenvector with smallest eigenvalue.

Perron-Frobenius for Laplacians:Let M be a matrix 
with non-positive off-diagonal entries s.t. the graph 
of the no-zero off-diagonal entries is connected. 
Then the smallest eigenvalue has multiplicity 1 and 
the corresponding eigenvector is strictly positive.

Proof on blackboard. 

Laplacian: The Perron-Frobenius
Theorem


