
On the Hardness of Network Design

for Bottleneck Routing Games�

Dimitris Fotakis1, Alexis C. Kaporis2, Thanasis Lianeas1,
and Paul G. Spirakis3,4

1 School of Electrical and Computer Engineering
National Technical University of Athens, 15780 Athens, Greece

2 Department of Information and Communication Systems Engineering
University of the Aegean, 83200 Samos, Greece

3 Department of Computer Engineering and Informatics
University of Patras, 26500 Patras, Greece

4 Computer Technology Institute and Press - Diophantus
N. Kazantzaki Str., University Campus, 26500 Patras, Greece

fotakis@cs.ntua.gr, kaporisa@gmail.com,

tlianeas@mail.ntua.gr, spirakis@cti.gr

Abstract. In routing games, the network performance at equilibrium
can be significantly improved if we remove some edges from the network.
This counterintuitive fact, a.k.a. Braess’s paradox, gives rise to the net-
work design problem, where we seek to recognize routing games suffering
from the paradox, and to improve the equilibrium performance by edge
removal. In this work, we investigate the computational complexity and
the approximability of network design for non-atomic bottleneck routing
games, where the individual cost of each player is the bottleneck cost
of her path, and the social cost is the bottleneck cost of the network.
We first show that bottleneck routing games do not suffer from Braess’s
paradox either if the network is series-parallel, or if we consider only
subpath-optimal Nash flows. On the negative side, we prove that even
for games with strictly increasing linear latencies, it is NP-hard not only
to recognize instances suffering from the paradox, but also to distinguish
between instances for which the Price of Anarchy (PoA) can decrease
to 1 and instances for which the PoA is Ω(n0.121) and cannot improve
by edge removal. Thus, the network design problem for such games is
NP-hard to approximate within a factor of O(n0.121−ε), for any constant
ε > 0. On the positive side, we show how to compute an almost optimal
subnetwork w.r.t. the bottleneck cost of its worst Nash flow, when the
worst Nash flow in the best subnetwork routes a non-negligible amount of
flow on all edges. The running time is determined by the total number of
paths, and is quasipolynomial if the number of paths is quasipolynomial.
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1 Introduction

An typical instance of a non-atomic bottleneck routing game consists of a directed
network, with origin s and destination t, where each edge has a non-decreasing
function determining the edge’s latency as a function of traffic. A traffic rate is
controlled by an infinite population of players, each willing to route a negligible
amount of traffic through an s− t path. The players seek to minimize the maxi-
mum edge latency, a.k.a. the bottleneck cost of their path. Thus, the players reach
a Nash equilibrium flow, or simply a Nash flow, where they all use paths with a
common locally minimum bottleneck cost. Bottleneck routing games and their
variants have received considerable attention due to their practical applications
to communication networks (see e.g., [6,3] and the references therein).

Previous Work. Bottleneck routing games admit a Nash flow that is optimal
for the network, in the sense that it minimizes the maximum latency on any
used edge, a.k.a. the bottleneck cost of the network (see e.g., [3, Corollary 2]).
However, bottleneck routing games usually admit many other Nash flows, some
with a bottleneck cost quite far from the optimum. Hence, there has been a
considerable interest in quantifying the performance degradation, due to the
players’ selfish behavior, in (several variants of) bottleneck routing games. This
is measured by the Price of Anarchy (PoA) [13], that is the ratio of the bottleneck
cost of the worst Nash flow to the optimal bottleneck cost of the network.

Simple examples (see e.g., [7, Fig. 2]) demonstrate that the PoA of bottleneck
routing games with linear latencies can be Ω(n), where n is the number of nodes.
For atomic splittable bottleneck routing games, where the population of players
is finite, and each player has a non-negligible amount of traffic which can be
split among different paths, Banner and Orda [3] observed that the PoA can be
unbounded, even for very simple networks, if the players have different origins
and destinations and the latency functions are exponential. On the other hand,
Banner and Orda proved that if the players use paths that, as a secondary
objective, minimize the number of bottleneck edges, then all Nash flows are
optimal. For a variant of non-atomic bottleneck routing games, where the social
cost is the average (instead of the maximum) bottleneck cost of the players, Cole,
Dodis, and Roughgarden [7] proved that the PoA is 4/3, if the latency functions
are affine and a subclass of Nash flows, called subpath-optimal Nash flows, is only
considered. Subsequently, Mazalov et al. [16] studied the inefficiency of the best
Nash flow under this notion of social cost.

For atomic unsplittable bottleneck routing games, where each player routes a
unit of traffic through a single s− t path, Banner and Orda [3] proved that for
polynomial latencies of degree d, the PoA is O(md), where m is the number of
edges. On the other hand, Epstein, Feldman, and Mansour [8] proved that for
series-parallel networks, all Nash flows are optimal. Busch and Magdon-Ismail
[5] proved that the PoA of atomic unsplittable bottleneck routing games with
identity latency functions can be bounded in terms of natural topological prop-
erties of the network. In particular, they proved that the PoA of such games is
O(l+ logn), where l is the length of the longest s− t path, and O(k2 + log2 n),
where k is length of the longest circuit.
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Fig. 1. Braess’s paradox for bottleneck routing games. We consider identity latency
functions and a unit of traffic to be routed from s to t. The worst Nash flow, in (a), has
a bottleneck cost of 1. The optimal flow is the same as the flow in (b), and achieves a
bottleneck cost of 1/2. Hence, PoA = 2. In the subnetwork (b), the Nash flow is unique
and coincides with the optimal flow. Thus the PoA improves to 1. Hence the network
on the left is paradox-ridden, and the network on the right is the best subnetwork of it.

With the PoA of bottleneck routing games so large and crucially depending
on topological properties of the network, a natural approach to improving the
equilibrium performance is to exploit Braess’s paradox [4], namely that removing
some edges may change the network topology (e.g., it may decrease the length
of the longest path or cycle), and significantly improve the bottleneck cost of
the worst Nash flow (see e.g., Fig. 1). This approach gives rise to the (selfish)
network design problem, where we seek to recognize bottleneck routing games
suffering from the paradox, and to improve the bottleneck cost of the worst Nash
flow by edge removal. In particular, given a bottleneck routing game, we seek
for the best subnetwork, namely, the subnetwork for which the bottleneck cost
of the worst Nash flow is best possible. In this setting, one may distinguish two
extreme cases: paradox-free instances, where edge removal cannot improve the
bottleneck cost of the worst Nash flow, and paradox-ridden instances, where the
bottleneck cost of the worst Nash flow in the best subnetwork is equal to the
optimal bottleneck cost of the original network (see also [18,11]).

The approximability of selective network design, a generalization of network
design where we cannot remove certain edges, was considered by Hou and Zhang
[12]. For atomic unsplittable bottleneck routing games with a different traffic rate
and a different origin and destination for each player, they proved that if the
latency functions are polynomials of degree d, it is NP-hard to approximate se-
lective network design within a factor of O(md−ε), for any ε > 0. Moreover, for
atomic k-splittable bottleneck routing games with multiple origin-destination
pairs, they proved that selective network design is NP-hard to approximate
within any constant factor.

However, a careful look at the reduction of [12] reveals that their strong in-
approximability results crucially depend on both (i) that we can only remove
certain edges from the network, so that the subnetwork actually causing a large
PoA cannot be destroyed, and (ii) that the players have different origins and
destinations (and also are atomic and have different traffic rates). As for the
importance of (ii), in a different setting, where the players’ individual cost is
the sum of edge latencies on their path and the social cost is the bottleneck
cost of the network, it is known that Braess’s paradox can be dramatically more
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severe for instances with multiple origin-destination pairs than for instances with
a single origin-destination pair. More precisely, Lin et al. [14] proved that if the
players have a common origin and destination, the removal of at most k edges
from the network cannot improve the equilibrium bottleneck cost by a factor
greater than k+1. On the other hand, Lin et al. [15] presented an instance with
two origin-destination pairs where the removal of a single edge improves the
equilibrium bottleneck cost by a factor of 2Ω(n). Therefore, both at the technical
and at the conceptual level, the inapproximability results of [12] do not really
shed light on the approximability of the (simple, non-selective) network design
problem in the simplest, and most interesting, setting of non-atomic bottleneck
routing games with a common origin and destination for all players.

Contribution. In this work, we investigate the approximability of the network
design problem for the simplest, and seemingly easier to approximate, variant of
non-atomic bottleneck routing games with a single origin-destination pair. Our
main result is that network design is hard to approximate within reasonable
factors, and holds even for strictly increasing linear latencies. To the best of
our knowledge, this is the first work that investigates the approximability of the
network design problem for the basic variant of bottleneck routing games.

In Section 3, we use techniques similar to those in [8,7], and show that bot-
tleneck routing games do not suffer from Braess’s paradox either if the network
is series-parallel, or if we consider only subpath-optimal Nash flows.

On the negative side, we employ, in Section 4, a reduction from the 2-Directed
Disjoint Paths problem, and show that for linear bottleneck routing games, it is
NP-hard to recognize paradox-ridden instances (Lemma 1). In fact, the reduction
shows that it is NP-hard to distinguish between paradox-ridden instances and
paradox-free instances, even if their PoA is equal to 4/3, and thus, it is NP-hard
to approximate the network design problem within a factor less than 4/3.

In Section 5, we apply essentially the same reduction, but in a recursive way,
and obtain a much stronger inapproximability result. We assume the existence
of a γ-gap instance, which establishes that network design is inapproximable
within a factor less than γ, and show that the construction of Lemma 1, but
with some edges replaced by copies of the gap instance, amplifies the inapprox-
imability threshold by a factor of 4/3, while it increases the size of the network
by roughly a factor of 8 (Lemma 2). Therefore, starting from the 4/3-gap in-
stance of Lemma 1, and recursively applying this construction a logarithmic
number times, we show that it is NP-hard to approximate the network design
problem for linear bottleneck routing games within a factor of O(n0.121−ε), for
any constant ε > 0. An interesting technical point is that we manage to show
this inapproximability result, even though we do not know how to efficiently
compute the worst equilibrium bottleneck cost of a given subnetwork. Hence,
our reduction uses a certain subnetwork structure to identify good approxima-
tions to the best subnetwork. To the best of our knowledge, this is the first rime
that a similar recursive construction is used to amplify the inapproximability
threshold of the network design problem, and of any other optimization problem
related to selfish routing.
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In Section 6, we consider general latency functions, and present an algorithm
for finding a subnetwork that is almost optimal w.r.t. the bottleneck cost of its
worst Nash flow, when the worst Nash flow in the best subnetwork routes a
non-negligible amount of flow on all edges. The algorithm is based on Althöfer’s
Sparcification Lemma [1], and is motivated by its recent application to network
design for additive routing games [11]. For any constant ε > 0, the algorithm
computes a subnetwork and an ε/2-Nash flow whose bottleneck cost is within an
additive term of O(ε) from the worst equilibrium bottleneck cost in the best sub-

network. The running time is roughly |P|poly(logm)/ε2 , and is quasipolynomial,
when the number |P| of paths is quasipolynomial.

Next, we present our results with as much technical justification as the space
constraints permit. The interested reader may find the omitted proofs in [10].

Other Related Work. Considerable attention has been paid to the approx-
imability of network design for additive routing games, where the players seek to
minimize the sum of edge latencies on their path, and the social cost is the total
latency incurred by the players. Roughgarden [18] introduced the selfish net-
work design problem in this setting, and proved that it is NP-hard to recognize
paradox-ridden instances. He also proved that it is NP-hard to approximate the
network design problem for such games within a factor less than 4/3 for affine
latencies, and less than �n/2� for general latencies. For atomic unsplittable ad-
ditive routing games with weighted players, Azar and Epstein [2] proved that
network design is NP-hard to approximate within a factor less than 2.618, for
affine latencies, and less than dΘ(d), for polynomial latencies of degree d.

On the positive side, Milchtaich [17] proved that non-atomic additive routing
games on series-parallel networks do not suffer from Braess’s paradox. Fotakis,
Kaporis, and Spirakis [11] proved that we can efficiently recognize paradox-
ridden instances when the latency functions are affine, and all, but possibly a
constant number of them, are strictly increasing. Moreover, applying Althöfer’s
Sparsification Lemma [1], they gave an algorithm that approximates network
design for affine additive routing games within an additive term of ε, for any
constant ε > 0, in time that is subexponential if the total number of s− t paths
is polynomial and all paths are of polylogarithmic length.

2 Model, Definitions, and Preliminaries

Routing Instances. A routing instance is a tuple G = (G(V,E), (ce)e∈E , r),
where G(V,E) is a directed network with origin s and destination t, ce : [0, r] �→
IR≥0 is a continuous non-decreasing latency function associated with edge e, and
r > 0 is the traffic rate entering at s and leaving at t. We consider a non-atomic
model of selfish routing, where r is divided among an infinite population of
players, each routing a negligible amount of traffic from s to t. We let n ≡ |V | and
m ≡ |E|, and let P denote the set of simple s− t paths in G. A latency function
ce(x) is linear if ce(x) = aex, for some ae > 0, and affine if ce(x) = aex + be,
for some ae, be ≥ 0. We say that a latency function ce(x) satisfies the Lipschitz
condition with constant ξ > 0, if for all x, y ∈ [0, r], |ce(x)− ce(y)| ≤ ξ|x− y|.
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Subnetworks and Subinstances.Given an instance G = (G(V,E), (ce)e∈E , r),
any subgraph H(V,E′), E′ ⊆ E, obtained from G by edge deletions, is a subnet-
work of G. H has the same origin s and destination t as G, and its edges have
the same latency functions as in G. Each instance H = (H(V,E′), (ce)e∈E′ , r),
where H(V,E′) is a subnetwork of G(V,E), is a subinstance of G.
Flows. A (G-feasible) flow f is a non-negative vector indexed by P so that∑

p∈P fp = r. For a flow f and every edge e, we let fe =
∑

p:e∈p fp denote the
amount of flow that f routes through e. A path p (resp. edge e) is used by flow
f if fp > 0 (resp. fe > 0). Given a flow f , the latency of each edge e is ce(fe),
and the bottleneck cost of each path p is bp(f) = maxe∈p ce(fe). The bottleneck
cost of a flow f , denoted B(f), is B(f) = maxp:fp>0 bp(f). An optimal flow of
G, denoted o, minimizes the bottleneck cost among all G-feasible flows. We let
B∗(G) = B(o). We note that for every subinstance H of G, B∗(H) ≥ B∗(G).
Nash Flows and their Properties. A flow f is at Nash equilibrium, or simply,
is a Nash flow, if f routes all traffic on paths of a locally minimum bottleneck
cost. Formally, f is a Nash flow if for all p, p′ ∈ P , if fp > 0, then bp(f) ≤ bp′(f).
Therefore, in a Nash flow f , all players incur a common bottleneck cost B(f) =
minp bp(f), and for every s− t path p′, B(f) ≤ b′p(f).

We observe that if a flow f is a Nash flow for an s− t network G(V,E), then
the set of edges e with ce(fe) ≥ B(f) comprises an s − t cut in G. For the
converse, if for some flow f , there is an s− t cut consisting of edges e either with
fe > 0 and ce(fe) = B(f), or with fe = 0 and ce(fe) ≥ B(f), then f is a Nash
flow. Moreover, for all bottleneck routing games with linear latencies aex, a flow
f is a Nash flow iff the set of edges e with ce(fe) = B(f) comprises an s− t cut.

It can be shown that every bottleneck routing game admits at least one Nash
flow (see e.g., [7, Proposition 2]), and that there is an optimal flow that is also
a Nash flow (see e.g., [3, Corollary 2]). In general, a bottleneck routing game
admits many different Nash flows, each with a possibly different bottleneck cost.
Given an instance G, we let B(G) denote the bottleneck cost of the players in
the worst Nash flow of G, i.e. the Nash flow f that maximizes B(f) among all
Nash flows. We refer to B(G) as the worst equilibrium bottleneck cost of G. For
convenience, for an instance G = (G, c, r), we sometimes write B(G, r), instead
of B(G), to denote the worst equilibrium bottleneck cost of G. We note that for
every subinstance H of G, B∗(G) ≤ B(H), and that there may be subinstances
H with B(H) < B(G), which is the essence of Braess’s paradox (see e.g., Fig. 1).

Subpath-Optimal Nash Flows. For a flow f and any vertex u, let bf (u)
denote the minimum bottleneck cost of f among all s − u paths. The flow f is
a subpath-optimal Nash flow [7] if for any vertex u and any s − t path p with
fp > 0 that includes u, the bottleneck cost of the s − u part of p is bf(u). For
example, the Nash flow f in Fig. 1.a is not subpath-optimal, because bf (v) = 0,
through the edge (s, v), while the bottleneck cost of the path (s, u, v) is 1. For
this instance, the only subpath-optimal Nash flow is the optimal flow.

ε-Nash Flows. The definition of a Nash flow can be generalized to that of an
“almost Nash” flow: For some constant ε > 0, a flow f is an ε-Nash flow if for
all s− t paths p, p′, if fp > 0, bp(f) ≤ bp′(f) + ε.
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Price of Anarchy. The Price of Anarchy (PoA) of an instance G, denoted
ρ(G), is the ratio of the worst equilibrium bottleneck cost of G to the optimal
bottleneck cost. Formally, ρ(G) = B(G)/B∗(G).
Paradox-Free and Paradox-Ridden Instances. A routing instance G is
paradox-free if for every subinstance H of G, B(H) ≥ B(G). Paradox-free in-
stances do not suffer from Braess’s paradox and their PoA cannot be improved
by edge removal. An instance G is paradox-ridden if there is a subinstance H of
G such that B(H) = B∗(G) = B(G)/ρ(G). Namely, the PoA of paradox-ridden
instances can decrease to 1 by edge removal.

Best Subnetwork. Given an instance G = (G, c, r), the best subnetwork H∗ of
G minimizes the worst equilibrium bottleneck cost, i.e., for all subnetworks H
of G, B(H∗, r) ≤ B(H, r).

Problem Definitions. Next, we study the complexity and the approximability
of two basic selfish network design problems for bottleneck routing games:

– Paradox-Ridden Recognition (ParRidBC) : Given an instance G, decide
if G is paradox-ridden.

– Best Subnetwork (BSubNBC) : Given an instance G, find the best subnet-
work H∗ of G.

The objective function of BSubNBC is the worst equilibrium bottleneck cost
B(H, r) of a subnetwork H . Thus, a (polynomial-time) algorithm A achieves an
α-approximation for BSubNBC if for all instances G, A returns a subnetwork
H with B(H, r) ≤ αB(H∗, r). A subtle point is that given a subnetwork H , we
do not know how to efficiently compute the worst equilibrium bottleneck cost
B(H, r) (see also [2,12]). To deal with this delicate issue, our hardness results use
a certain subnetwork structure to identify a good approximation to BSubNBC.

3 Paradox-Free Topologies and Paradox-Free Nash Flows

We start by discussing two interesting cases where Braess’s paradox does not
occur. We first observe that for any bottleneck routing game G defined on a
series-parallel network, ρ(G) = 1, and thus Braess’s paradox does not occur. We
recall that a directed s− t network is series-parallel iff it does not contain a θ-
graph with degree-2 terminals as a topological minor. Therefore, the example in
Fig. 1 shows that series-parallel networks is the largest class of networks for which
Braess’s paradox does not occur (see also [17] for a similar result for additive
routing games). The proof is conceptually similar to that of [8, Lemma 4.1].

Proposition 1. Let G be a bottleneck routing game on an s − t series-parallel
network. Then, ρ(G) = 1.

Next, we observe that any subpath-optimal Nash flow achieves an optimal bot-
tleneck cost. Thus, Braess’s paradox does not occur if we only consider subpath-
optimal Nash flows.

Proposition 2. Let G be any bottleneck routing game, and let f be any subpath-
optimal Nash flow of G. Then, B(f) = B∗(G).
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4 Recognizing Paradox-Ridden Instances Is Hard

Next, we show that given a linear bottleneck routing game G, it is NP-hard not
only to decide whether G is paradox-ridden, but also to approximate the best
subnetwork within a factor less than 4/3. To this end, we employ a reduction
from the 2-Directed Disjoint Paths problem (2-DDP), where we are given a
directed network D and distinguished vertices s1, s2, t1, t2, and ask whether D
contains a pair of vertex-disjoint paths connecting s1 to t1 and s2 to t2. 2-DDP is
NP-complete, even if the network D is known to contain two edge-disjoint paths
connecting s1 to t2 and s2 to t1 [9, Theorem 3]. In the following, we say that a
subnetwork D′ of D is good if D′ contains (i) at least one path outgoing from
each of s1 and s2 to either t1 or t2, (ii) at least one path incoming to each of t1
and t2 from either s1 or s2, and (iii) either no s1 − t2 paths or no s2 − t1 paths.
We say that D′ is bad if any of these conditions is violated by D′. We note that
we can efficiently check whether a subnetwork D′ of D is good, and that a good
subnetwork D′ serves as a certificate that D is a yes-instance of 2-DDP. The
following lemma directly implies the hardness result of this section.

Lemma 1. Let I = (D, s1, s2, t1, t2) be any 2-DDP instance. Then, we can
construct, in polynomial time, an s − t network G(V,E) with a linear latency
function ce(x) = aex, ae > 0, on each edge e, so that for any traffic rate r > 0,
the bottleneck routing game G = (G, c, r) has B∗(G) = r/4, and:

1. If I is a yes-instance of 2-DDP, there exists a subnetwork H of G with
B(H, r) = r/4.

2. If I is a no-instance of 2-DDP, for all subnetworks H ′ of G, B(H ′, r) ≥ r/3.
3. For all subnetworks H ′ of G, either H ′ contains a good subnetwork of D, or

B(H ′, r) ≥ r/3.

Proof sketch. We construct the network G by adding 4 vertices, s, t, v, u, to
D and 9 “external” edges e1 = (s, u), e2 = (u, v), e3 = (v, t), e4 = (s, v),
e5 = (v, s1), e6 = (s, s2), e7 = (t1, u), e8 = (u, t), e9 = (t2, t) (see also Fig. 2.a).
The external edges e1 and e3 have latency ce1(x) = ce3(x) = x/2. The external
edges e4, . . . , e9 have latency cei = x. The external edge e2 and each edge e of
D have latency ce2(x) = ce(x) = εx, for some ε ∈ (0, 1/4).

We first observe that B∗(G) = r/4. As for (1), by hypothesis, there are vertex-
disjoint paths in D, p and q, connecting s1 to t1, and s2 to t2. Let H be the
subnetwork of G that includes all external edges and only the edges of p and q
from D (see also Fig. 2.b). We let H = (H, c, r) be the corresponding subinstance
of G. The flow routing r/4 units through each of the paths (e4, e5, p, e7, e8) and
(e6, q, e9), and r/2 units through (e1, e2, e3), is an H-feasible Nash flow with a
bottleneck cost of r/4.

We proceed to show that any Nash flow of H achieves a bottleneck cost of
r/4. For sake of contradiction, let f be a Nash flow of H with B(f) > r/4. Since
f is a Nash flow, the edges e with ce(fe) ≥ B(f) form an s− t cut in H . Since
the bottleneck cost of e2 and of any edge in p and q is at most r/4, this cut
includes either e6 or e9 (or both), either e1 or e3 (or both), and either e4 or e8
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Fig. 2. (a) The network G constructed in the proof of Lemma 1. (b) The best subnet-
work of G, with PoA = 1, for the case where D contains a pair of vertex-disjoint paths
connecting s1 to t1 and s2 to t2.

(or e5 or e6, in certain combinations with other edges). Let us consider the case
where this cut includes e1, e4, and e6. Since the bottleneck cost of these edges
is greater than r/4, we have more than r/2 units of flow through e1 and more
than r/4 units of flow through each of e4 and e6. Hence, we obtain that more
than r units of flow leave s, a contradiction. All other cases are similar.

To conclude the proof, we first observe that (3) implies (2), because if I is a
no-instance, any two paths, p and q, connecting s1 to t1 and s2 to t2, have some
vertex in common, and thus, D does not include any good subnetworks.

To sketch the proof of (3), we let H ′ be any subnetwork of G, and let H′ be
the corresponding subinstance of G. We can show that either H ′ contains (i) all
external edges, (ii) at least one path outgoing from each of s1 and s2 to either t1
or t2, and (iii) at least one path incoming to each of t1 and t2 from either s1 or
s2, or H

′ includes a “small” s−t cut, and any H′-feasible flow f has B(f) ≥ r/3.
Let us now consider a subnetwork H ′ of G that does not contain a good

subnetwork of D, but it satisfies (i), (ii), and (iii) above. By (ii) and (iii), and
the hypothesis that the subnetwork of D included in H ′ is bad, H ′ contains an
s1 − t2 path p and an s2 − t1 path q. At the intuitive level, this corresponds to
the case where no edges are removed from G. Then, routing r/3 units of flow
on each of the s − t paths (e1, e2, e3), (e1, e2, e5, p, e9), and (e6, q, e7, e2, e3) has
a bottleneck cost of r/3 and is a Nash flow, because the edges with bottleneck
cost r/3 comprise an s− t cut. ��
The bottleneck routing game G, in Lemma 1, has ρ(G) = 4/3, and is paradox-
ridden, if I is a yes instance of 2-DDP, and paradox-free, otherwise. Hence:

Theorem 1. Deciding whether a bottleneck routing game with strictly increasing
linear latencies is paradox-ridden is NP-hard.

Moreover, Lemma 1 implies that it is NP-hard to approximate BSubNBC within
a factor less than 4/3. A subtle point here is that given a subnetworkH , we do not
know how to efficiently compute the worst equilibrium bottleneck cost B(H, r).
However, we can use the notion of a good subnetwork of D, and deal with this
issue (see also the discussion before Theorem 2).



On the Hardness of Network Design for Bottleneck Routing Games 165

5 Approximating the Best Subnetwork Is Hard

Next, we recursively apply the construction of Lemma 1, and show that it is
NP-hard to approximate BSubNBC within a factor of O(n.121−ε), for any ε > 0.

We consider an s − t network G that can be constructed in polynomial time
from a 2-DDP instance I, and includes (possibly many copies of) D. G has a
linear latency ce(x) = aex on each edge e, and for any rate r > 0, the bottleneck
routing game G = (G, c, r) has B∗(G) = r/γ1, for some γ1 > 0. Moreover,

1. If I is a yes-instance, there exists a subnetworkH of G with B(H, r) = r/γ1.
2. If I is a no-instance, for all subnetworks H ′ of G, B(H ′, r) ≥ r/γ2, for some

γ2 ∈ (0, γ1).
3. For all subnetworks H ′ of G, either H ′ contains at least one copy of a good

subnetwork of D, or B(H ′, r) ≥ r/γ2.

The existence of such a network G shows that it is NP-hard to approximate
BSubNBC within a factor less than γ = γ1/γ2. Thus, we refer to G as a γ-gap
instance. E.g., the network constructed in the proof of Lemma 1 has γ1 = 4 and
γ2 = 3, and thus it is a 4/3-gap instance. We next show that given I and a
γ1/γ2-gap instance G, we can construct a 4γ1/(3γ2)-gap instance G′.

Lemma 2. Let I = (D, s1, s2, t1, t2) be a 2-DDP instance, and let G be a γ1/γ2-
gap instance with linear latencies, based on I. Then, we can construct, in time
polynomial in the size of I and G, an s − t network G′ with a linear latency
function ce(x) = aex, ae > 0, on each edge e, so that for any traffic rate r > 0,
the bottleneck routing game G′ = (G′, c, r) has B∗(G) = r/(4γ1), and:

1. If I is a yes-instance, there is a subnetwork H of G′ with B(H, r) = r/(4γ1).
2. If I is a no-instance, for all subnetworks H ′, B(H ′, r) ≥ r/(3γ2).
3. For all subnetworks H ′ of G′, either H ′ contains at least one copy of a good

subnetwork of D, or B(H ′, r) ≥ r/(3γ2).

The proof applies the construction of Lemma 1, but with all external edges,
except for e2, replaced by a copy of the gap-instance G. Hence, the number of
vertices of G′ is at most 8 times the number of vertices of G plus the number of
vertices ofD. If we start with an instance I of 2-DDP whereD has k vertices, and
apply Lemma 1 once, and subsequently apply Lemma 2 for �log4/3 k� times, we

obtain a k-gap instance G′ where G′ has n = O(k8.23) vertices. Suppose now that
there is a polynomial-time algorithm A that approximates the best subnetwork
of G′ within a factor of O(k1−ε) = O(n0.121−ε), for a constant ε > 0. Then, if I is
a yes-instance, algorithm A, applied to G′, should return a best subnetwork H
with at least one copy of a good subnetwork of D. Since H contains a polynomial
number of copies of subnetworks of D, and we can check this in polynomial time,
and efficiently recognize I as a yes-instance of 2-DDP. On the other hand, if
I is a no-instance, D includes no good subnetworks. Again, we can efficiently
check that in the subnetwork returned by A, there are not any copies of a good
subnetwork of D, and hence recognize I as a no-instance of 2-DDP. Thus:

Theorem 2. For bottleneck routing games with linear latencies, it is NP-hard
to approximate BSubNBC within a factor of O(n0.121−ε), for any constant ε > 0.
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6 Networks with Quasipolynomially Many Paths

In this section, we approximate, in quasipolynomial-time, the best subnetwork
and its worst equilibrium bottleneck cost for instances G = (G, c, r) where the
network G has quasipolynomially many s− t paths, the latency functions satisfy
a Lipschitz condition, and the worst Nash flow in the best subnetwork routes a
non-negligible amount of flow on all edges.

The restriction to networks with quasipolynomially many s− t paths is some-
how necessary, in the sense that Theorem 2 shows that if the network has expo-
nentially many s− t paths, as it happens for the hard instances of 2-DDP, and
thus for the networks G and G′ in the proofs of Lemma 1 and Lemma 2, it is
NP-hard to approximate BSubNBC within any reasonable factor. In addition,
we assume here that there is a constant δ > 0, such that the worst Nash flow in
the best subnetwork H∗ routes more than δ units of flow on all edges of H∗.

W.l.o.g., we normalize the traffic rate r to 1. Our algorithm is based on [11,
Lemma 2], which applies Althöfer’s Lemma [1], and shows that any flow can be
approximated by a sparse flow using logarithmically many paths.

Lemma 3. Let G = (G(V,E), c, 1) be an instance, and let f be a flow. Then, for
any ε > 0, there exists a G-feasible flow f̃ using at most k(ε) = �log(2m)/(2ε2)�+
1 paths, such that for all edges e, |f̃e − fe| ≤ ε, if fe > 0, and f̃e = 0, otherwise.

By Lemma 3, there exists a sparse flow f̃ that approximates the worst Nash flow
f on the best subnetwork H∗ of G. Moreover, the proof of [11, Lemma 2] shows
that the flow f̃ is determined by a multiset P of at most k(ε) paths, selected
among the paths used by f . Then, for every path p ∈ P , f̃p = |P (p)|/|P |, where
|P (p)| is number of times the path p is included in the multiset P . Therefore,
if the total number |P| of s − t paths in G is quasipolynomial, we can find, by
exhaustive search, in quasipolynomial-time, a flow-subnetwork pair that approx-
imates the optimal solution of BSubNBC. Based on this intuition, we can obtain
an approximation algorithm for BSubNBC on networks with quasipolynomially
many paths, under the technical assumption that the worst Nash flow in the
best subnetwork routes a non-negligible amount of flow on all edges.

Theorem 3. Let G = (G(V,E), c, 1) be a bottleneck routing game with latency
functions that satisfy the Lipschitz condition with a constant ξ > 0, let H∗ be the
best subnetwork of G, and let f∗ be the worst Nash flow in H∗. If for all edges
e of H∗, f∗

e > δ, for some constant δ > 0, then for any constant ε > 0, we can

compute in time |P|O(log(2m)/min{δ2,ε2/ξ2}) a flow f and a subnetwork H such
that: (i) f is an ε/2-Nash flow in the subnetwork H, (ii) B(f) ≤ B(H∗, 1) + ε,
(iii) B(H, 1) ≤ B(f) + ε/4, and (iv) B(f) ≤ B(H, 1) + ε/2.

The algorithm of Theorem 3 computes a flow-subnetwork pair (H, f) such that
f is an ε/2-Nash flow in H , the worst equilibrium bottleneck cost of H approxi-
mates the worst equilibrium bottleneck cost of H∗, since B(H∗, 1) ≤ B(H, 1) ≤
B(H∗, 1) + 5ε/4, by (ii) and (iii), and the bottleneck cost of f approximates
the worst equilibrium bottleneck cost of H , since B(H, 1) − ε/4 ≤ B(f) ≤
B(H, 1) + ε/2, by (iii) and (iv).
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14. Lin, H., Roughgarden, T., Tardos, É.: A stronger bound on Braess’s paradox. In:
Proc. of the 15th ACM-SIAM Symposium on Discrete Algorithms, SODA 2004,
pp. 340–341 (2004)
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