
On the Hardness of Network Design for Bottleneck Routing Games?

Dimitris Fotakis1, Alexis C. Kaporis2, Thanasis Lianeas1, and Paul G. Spirakis3,4

1 School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece.
2 Department of Information and Communication Systems Engineering, University of the Aegean, Greece.

3 Department of Computer Engineering and Informatics, University of Patras, 26500 Patras, Greece.
4 Computer Technology Institute and Press – Diophantus, University Campus, 26500 Patras, Greece.
Email: fotakis@cs.ntua.gr, kaporisa@gmail.com, tlianeas@mail.ntua.gr,

spirakis@cti.gr

Abstract. In routing games, the selfish behavior of the players may lead to a degradation of the network
performance at equilibrium. In more than a few cases however, the equilibrium performance can be signif-
icantly improved if we remove some edges from the network. This counterintuitive fact, widely known as
Braess’s paradox, gives rise to the (selfish) network design problem, where we seek to recognize routing
games suffering from the paradox, and to improve their equilibrium performance by edge removal. In this
work, we investigate the computational complexity and the approximability of the network design problem
for non-atomic bottleneck routing games, where the individual cost of each player is the bottleneck cost
of her path, and the social cost is the bottleneck cost of the network, i.e. the maximum latency of a used
edge. We first show that bottleneck routing games do not suffer from Braess’s paradox either if the network
is series-parallel, or if we consider only subpath-optimal Nash flows. On the negative side, we prove that
even for games with strictly increasing linear latencies, it is NP-hard not only to recognize instances suffer-
ing from the paradox, but also to distinguish between instances for which the Price of Anarchy (PoA) can
decrease to 1 and instances for which the PoA cannot be improved by edge removal, even if their PoA is
as large as Ω(n0.121). This implies that the network design problem for linear bottleneck routing games is
NP-hard to approximate within a factor of O(n0.121−ε), for any constant ε > 0. The proof is based on a
recursive construction of hard instances that carefully exploits the properties of bottleneck routing games,
and may be of independent interest. On the positive side, we present an algorithm for finding a subnetwork
that is almost optimal w.r.t. the bottleneck cost of its worst Nash flow, when the worst Nash flow in the
best subnetwork routes a non-negligible amount of flow on all used edges. We show that the running time is
essentially determined by the total number of paths in the network, and is quasipolynomial when the number
of paths is quasipolynomial.

? This work was partially supported by an NTUA Basic Research Grant (PEBE 2009), by the Greek GSR project Algo-
rithmic Game Theory/THALIS, by the ERC project RIMACO, and by the EU-FP7 Project e-Compass.

1 Introduction

A typical instance of a non-atomic bottleneck routing game consists of a directed network, with an ori-
gin s and a destination t, where each edge is associated with a non-decreasing function that determines
the edge’s latency as a function of its traffic. A rate of traffic is controlled by an infinite population of
players, each willing to route a negligible amount of traffic through an s− t path. The players are non-
cooperative and selfish, and seek to minimize the maximum edge latency, a.k.a. the bottleneck cost of
their path. Thus, the players reach a Nash equilibrium flow, or simply a Nash flow, where they all use
paths with a common locally minimum bottleneck cost. Bottleneck routing games and their variants
have received considerable attention due to their practical applications in communication networks
(see e.g., [6, 3] and the references therein).

Previous Work and Motivation. Every bottleneck routing game is known to admit a Nash flow
that is optimal for the network, in the sense that it minimizes the maximum latency on any used edge,
a.k.a. the bottleneck cost of the network (see e.g., [3, Corollary 2]). On the other hand, bottleneck
routing games usually admit many different Nash flows, some with a bottleneck cost quite far from the
optimum. Hence, there has been a considerable interest in quantifying the performance degradation
due to the players’ non-cooperative and selfish behavior in (several variants of) bottleneck routing
games. This is typically measured by the Price of Anarchy (PoA) [12], which is the ratio of the
bottleneck cost of the worst Nash flow to the optimal bottleneck cost of the network.

Simple examples (see e.g., [7, Figure 2]) demonstrate that the PoA of bottleneck routing games
with linear latency functions can be as large as Ω(n), where n is the number of vertices of the network.
For atomic splittable bottleneck routing games, where the population of players is finite, and each
player controls a non-negligible amount of traffic which can be split among different paths, Banner and
Orda [3] observed that the PoA can be unbounded, even for very simple networks, if the players have
different origins and destinations and the latency functions are exponential. On the other hand, Banner
and Orda proved that if the players use paths that, as a secondary objective, minimize the number of
bottleneck edges, then all Nash flows are optimal. For a variant of non-atomic bottleneck routing
games, where the social cost is the average (instead of the maximum) bottleneck cost of the players,
Cole, Dodis, and Roughgarden [7] proved that the PoA is 4/3, if the latency functions are affine and a
subclass of Nash flows, called subpath-optimal Nash flows, is only considered. Subsequently, Mazalov
et al. [15] studied the inefficiency of the best Nash flow under this notion of social cost.

For atomic unsplittable bottleneck routing games, where each player routes a unit of traffic through
a single s − t path, Banner and Orda [3] proved that for polynomial latency functions of degree d,
the PoA is O(md), where m is the number of edges of the network. On the other hand, Epstein,
Feldman, and Mansour [8] proved that for series-parallel networks with arbitrary latency functions, all
Nash flows are optimal. Subsequently, Busch and Magdon-Ismail [5] proved that the PoA of atomic
unsplittable bottleneck routing games with identity latency functions can be bounded in terms of
natural topological properties of the network. In particular, they proved that the PoA of such games
is bounded from above by O(l + log n), where l is the length of the longest s − t path, and by
O(k2 + log2 n), where k is length of the longest cycle.

With the PoA of bottleneck routing games so high and crucially depending on topological prop-
erties of the network, a natural approach to improving the performance at equilibrium is to exploit the
essence of Braess’s paradox [4], namely that removing some edges may change the network topology
(e.g., it may decrease the length of the longest path or cycle), and significantly improve the bottleneck
cost of the worst Nash flow (see e.g., Fig. 1). This approach gives rise to the (selfish) network design
problem, where we seek to recognize bottleneck routing games suffering from the paradox, and to
improve the bottleneck cost of the worst Nash flow by edge removal. In particular, given a bottleneck

1

Fig. 1. An example of Braess’s paradox for bottleneck routing games. We consider a routing instance with identity latency
functions and a unit of traffic to be routed from s to t. The worst Nash flow, in (a), routes all flow through the path (s, u, v, t),
and has a bottleneck cost of 1. On the other hand, the optimal flow routes 1/2 unit through the path (s, u, t) and 1/2 unit
through the path (s, v, t), and has a bottleneck cost of 1/2. Hence, PoA = 2. In the subnetwork (b), obtained by removing
the edge (u, v), we have a unique Nash flow that coincides with the optimal flow, and thus the PoA becomes 1. Hence the
network on the left is paradox-ridden, and the network on the right is the best subnetwork of it.

routing game, we seek for the best subnetwork, namely, the subnetwork for which the bottleneck cost
of the worst Nash flow is best possible. In this setting, one may distinguish two extreme classes of in-
stances: paradox-free instances, where edge removal cannot improve the bottleneck cost of the worst
Nash flow, and paradox-ridden instances, where the bottleneck cost of the worst Nash flow in the best
subnetwork is equal to the optimal bottleneck cost of the original network (see also [17, 10]).

The approximability of selective network design, a generalization of network design where we
cannot remove certain edges, was considered by Hou and Zhang [11]. For atomic unsplittable bottle-
neck routing games with a different traffic rate and a different origin and destination for each player,
they proved that if the latency functions are polynomials of degree d, it is NP-hard to approximate
selective network design within a factor of O(md−ε), for any constant ε > 0. Moreover, for atomic
k-splittable bottleneck routing games with multiple origin-destination pairs, they proved that selective
network design is NP-hard to approximate within any constant factor.

However, a careful look at the reduction of [11] reveals that their strong inapproximability results
crucially depend on both (i) that we can only remove certain edges from the network, so that the
subnetwork actually causing a high PoA cannot be destroyed, and (ii) that the players have different
origins and destinations (and also are atomic and have different traffic rates). As for the importance
of (ii), in a different setting, where the players’ individual cost is the sum of edge latencies on their
path and the social cost is the bottleneck cost of the network, it is known that Braess’s paradox can be
dramatically more severe for instances with multiple origin-destination pairs than for instances with a
single origin-destination pair. More precisely, Lin et al. [13] proved that if the players have a common
origin and destination, the removal of at most k edges from the network cannot improve the equilib-
rium bottleneck cost by a factor greater than k + 1. On the other hand, Lin et al. [14] presented an
instance with two origin-destination pairs where the removal of a single edge improves the equilib-
rium bottleneck cost by a factor of 2Ω(n). Therefore, both at the technical and at the conceptual level,
the inapproximability results of [11] do not really shed light on the approximability of the (simple,
non-selective) network design problem in the simplest, and most interesting, setting of non-atomic
bottleneck routing games with a common origin-destination pair for all players.

Contribution. Hence, in this work, we investigate the approximability of the network design problem
for the simplest, and seemingly easier to approximate, variant of non-atomic bottleneck routing games
(with a single origin-destination pair). Our main result is that network design is hard to approximate
within reasonable factors, and holds even for the special case of strictly increasing linear latencies. To
the best of our knowledge, this is the first work that investigates the impact of Braess’s paradox and
the approximability of the network design problem for the basic variant of bottleneck routing games.

2

In Section 3, we use techniques similar to those in [8, 7], and show that bottleneck routing games
do not suffer from Braess’s paradox either if the network is series-parallel, or if we consider only
subpath-optimal Nash flows.

On the negative side, we employ, in Section 4, a reduction from the 2-Directed Disjoint Paths
problem, and show that for linear bottleneck routing games, it is NP-hard to recognize paradox-
ridden instances (Lemma 1). In fact, the reduction shows that it is NP-hard to distinguish between
paradox-ridden instances and paradox-free instances, even if their PoA is equal to 4/3, and thus, it is
NP-hard to approximate the network design problem within a factor less than 4/3.

In Section 5, we apply essentially the same reduction, but in a recursive way, and obtain a much
stronger inapproximability result. In particular, we assume the existence of a γ-gap instance, which
establishes that network design is inapproximable within a factor less than γ, and show that the con-
struction of Lemma 1, but with some edges replaced by copies of the gap instance, amplifies the
inapproximability threshold by a factor of 4/3, while it increases the size of the network by roughly
a factor of 8 (Lemma 2). Therefore, starting from the 4/3-gap instance of Lemma 1, and recursively
applying this construction a logarithmic number times, we show that it is NP-hard to approximate
the network design problem for linear bottleneck routing games within a factor of O(n0.121−ε), for
any constant ε > 0. An interesting technical point is that we manage to show this inapproximabil-
ity result, even though we do not know how to efficiently compute the worst equilibrium bottleneck
cost of a given subnetwork. Hence, our reduction uses a certain subnetwork structure to identify good
approximations to the best subnetwork. To the best of our knowledge, this is the first rime that a sim-
ilar recursive construction is used to amplify the inapproximability threshold of the network design
problem, and of any other optimization problem related to selfish routing.

In Section 6, we consider latency functions that satisfy a Lipschitz condition, and present an
algorithm for finding a subnetwork that is almost optimal w.r.t. the bottleneck cost of its worst Nash
flow, when the worst Nash flow in the best subnetwork routes a non-negligible amount of flow on
all used edges. The algorithm is based on Althöfer’s Sparcification Lemma [1], and is motivated by
its recent application to network design for additive routing games [10]. For any constant ε > 0, the
algorithm computes a subnetwork and an ε/2-Nash flow whose bottleneck cost is within an additive
term of O(ε) from the worst equilibrium bottleneck cost in the best subnetwork. The running time is
roughly |P|poly(logm)/ε2 , and is quasipolynomial, when the number |P| of paths is quasipolynomial.

Other Related Work. Considerable attention has been paid to the approximability of the network
design problem for additive routing games, where the players seek to minimize the sum of edge laten-
cies on their path, and the social cost is the total latency incurred by the players. In fact, Roughgarden
[17] first introduced the selfish network design problem in this setting, and proved that it is NP-hard
to recognize paradox-ridden instances. Roughgarden also proved that it is NP-hard to approximate
the network design problem for additive routing games within a factor less than 4/3 for affine laten-
cies, and less than bn/2c for general latencies. For atomic unsplittable additive routing games with
weighted players, Azar and Epstein [2] proved that network design is NP-hard to approximate within
a factor less than 2.618, for affine latencies, and less than dΘ(d), for polynomial latencies of degree d.

On the positive side, Milchtaich [16] proved that non-atomic additive routing games on series-
parallel networks do not suffer from Braess’s paradox. Fotakis, Kaporis, and Spirakis [10] proved
that we can efficiently recognize paradox-ridden instances when the latency functions are affine, and
all, but possibly a constant number of them, are strictly increasing. Moreover, applying Althöfer’s
Sparsification Lemma [1], they gave an algorithm that approximates network design for affine additive
routing games within an additive term of ε, for any constant ε > 0, in time that is subexponential if
the total number of s− t paths is polynomial and all paths are of polylogarithmic length.

3

2 Model, Definitions, and Preliminaries

Routing Instances. A routing instance is a tuple G = (G(V,E), (ce)e∈E , r), where G(V,E) is a
directed network with an origin s and a destination t, ce : [0, r] 7→ IR≥0 is a continuous non-decreasing
latency function associated with each edge e, and r > 0 is the traffic rate entering at s and leaving at
t. We let n ≡ |V | and m ≡ |E|, and let P denote the set of simple s− t paths in G. A latency function
ce(x) is linear if ce(x) = aex, for some ae > 0, and affine if ce(x) = aex+ be, for some ae, be ≥ 0.
We say that a latency function ce(x) satisfies the Lipschitz condition with constant ξ > 0, if for all
x, y ∈ [0, r], |ce(x)− ce(y)| ≤ ξ|x− y|.
Subnetworks and Subinstances. Given a routing instance G = (G(V,E), (ce)e∈E , r), any subgraph
H(V,E′), E′ ⊆ E, obtained from G by edge deletions, is a subnetwork of G. H has the same origin
s and destination t as G, and the edges of H have the same latency functions as in G. Each instance
H = (H(V,E′), (ce)e∈E′ , r), where H(V,E′) is a subnetwork of G(V,E), is a subinstance of G.

Flows. A (G-feasible) flow f is a non-negative vector indexed by P so that
∑

p∈P fp = r. For a flow
f and each edge e, we let fe =

∑
p:e∈p fp denote the amount of flow that f routes through e. A path p

(resp. edge e) is used by flow f if fp > 0 (resp. fe > 0). Given a flow f , the latency of each edge e is
ce(fe), and the bottleneck cost of each path p is bp(f) = maxe∈p ce(fe). The bottleneck cost of a flow
f , denoted B(f), is B(f) = maxp:fp>0 bp(f), i.e., the maximum bottleneck cost of any used path.

Optimal Flow. An optimal flow of an instance G, denoted o, minimizes the bottleneck cost among all
G-feasible flows. We letB∗(G) = B(o). We note that for every subinstanceH of G,B∗(H) ≥ B∗(G).

Nash Flows and their Properties. We consider a non-atomic model of selfish routing, where the
traffic is divided among an infinite population of players, each routing a negligible amount of traffic
from s to t. A flow f is at Nash equilibrium, or simply, is a Nash flow, if f routes all traffic on
paths of a locally minimum bottleneck cost. Formally, f is a Nash flow if for all s − t paths p, p′, if
fp > 0, then bp(f) ≤ bp′(f). Therefore, in a Nash flow f , all players incur a common bottleneck cost
B(f) = minp bp(f), and for every s− t path p′, B(f) ≤ b′p(f).

We observe that if a flow f is a Nash flow for an s − t network G(V,E), then the set of edges e
with ce(fe) ≥ B(f) comprises an s− t cut in G. For the converse, if for some flow f , there is an s− t
cut consisting of edges e either with fe > 0 and ce(fe) = B(f), or with fe = 0 and ce(fe) ≥ B(f),
then f is a Nash flow. Moreover, for all bottleneck routing games with linear latencies aex, a flow f
is a Nash flow iff the set of edges e with ce(fe) = B(f) comprises an s− t cut.

It can be shown that every bottleneck routing game admits at least one Nash flow (see e.g., [7,
Proposition 2]), and that there is an optimal flow that is also a Nash flow (see e.g., [3, Corollary 2]). In
general, a bottleneck routing game admits many different Nash flows, each with a possibly different
bottleneck cost of the players. Given an instance G, we let B(G) denote the bottleneck cost of the
players in the worst Nash flow of G, i.e. the Nash flow f that maximizes B(f) among all Nash flows.
We refer to B(G) as the worst equilibrium bottleneck cost of G. For convenience, for an instance
G = (G, c, r), we sometimes write B(G, r), instead of B(G), to denote the worst equilibrium bottle-
neck cost of G. We note that for every subinstance H of G, B∗(G) ≤ B(H), and that there may be
subinstancesH with B(H) < B(G), which is the essence of Braess’s paradox (see e.g., Fig. 1).

The following proposition considers the effect of a uniform scaling of the latency functions.

Proposition 1. Let G = (G, c, r) be a routing instance, let α > 0, and let G′ = (G,αc, r) be the
routing instance obtained from G if we replace the latency function ce(x) of each edge e with αce(x).
Then, any G-feasible flow f is also G′-feasible and has BG′(f) = αBG(f). Moreover, a flow f is a
Nash flow (resp. optimal flow) of G iff f is a Nash flow (resp. optimal flow) of G′.

4

Proof. Since the traffic rate of both G and G′ is r, any G-feasible flow f is also G′-feasible. Moreover,
the G′-latency of f on each edge e is αce(fe). This immediately implies that BG′(f) = αBG(f), and
that f is a Nash flow (resp. optimal flow) of G iff f is a Nash flow (resp. optimal flow) of G′. ut

Subpath-Optimal Nash Flows. For a flow f and any vertex u, let bf (u) denote the minimum bottle-
neck cost of f among all s− u paths. The flow f is a subpath-optimal Nash flow [7] if for any vertex
u and any s− t path p with fp > 0 that includes u, the bottleneck cost of the s− u part of p is bf (u).
For example, the Nash flow f in Fig. 1.a is not subpath-optimal, because bf (v) = 0, through the edge
(s, v), while the bottleneck cost of the path (s, u, v) is 1. For this instance, the only subpath-optimal
Nash flow is the optimal flow with 1/2 unit on the path (s, u, t) and 1/2 unit on the path (s, v, t).
ε-Nash Flows. The definition of a Nash flow can be generalized to that of an “almost Nash” flow: For
some constant ε > 0, a flow f is an ε-Nash flow if for all s−t paths p, p′, if fp > 0, bp(f) ≤ bp′(f)+ε.
Price of Anarchy. The Price of Anarchy (PoA) of an instance G, denoted ρ(G), is the ratio of the worst
equilibrium bottleneck cost of G to the optimal bottleneck cost. Formally, ρ(G) = B(G)/B∗(G).
Paradox-Free and Paradox-Ridden Instances. A routing instance G is paradox-free if for every
subinstance H of G, B(H) ≥ B(G). Paradox-free instances do not suffer from Braess’s paradox and
their PoA cannot be improved by edge removal. If an instance is not paradox-free, edge removal
can decrease the worst equilibrium bottleneck cost by a factor greater than 1 and at most ρ(G). An
instance G is paradox-ridden if there is a subinstanceH of G such thatB(H) = B∗(G) = B(G)/ρ(G).
Namely, the PoA of paradox-ridden instances can decrease to 1 by edge removal.
Best Subnetwork. Given an instance G = (G, c, r), the best subnetwork H∗ of G minimizes the
worst equilibrium bottleneck cost, i.e., for all subnetworks H of G, B(H∗, r) ≤ B(H, r).
Problem Definitions. In this work, we investigate the complexity and the approximability of two
fundamental selfish network design problems for bottleneck routing games:

– Paradox-Ridden Recognition (ParRidBC) : Given an instance G, decide if G is paradox-ridden.
– Best Subnetwork (BSubNBC) : Given an instance G, find the best subnetwork H∗ of G.

We note that the objective function of BSubNBC is the worst equilibrium bottleneck cost B(H, r) of
a subnetworkH . Thus, a (polynomial-time) algorithmA achieves an α-approximation for BSubNBC
if for all instances G, A returns a subnetwork H with B(H, r) ≤ αB(H∗, r). A subtle point is that
given a subnetwork H , we do not know how to efficiently compute the worst equilibrium bottleneck
cost B(H, r) (see also [2, 11], where a similar issue arises). To deal with this delicate issue, our
hardness results use a certain subnetwork structure to identify a good approximation to BSubNBC.
Series-Parallel Networks. A directed s − t network is series-parallel if it either consists of a single
edge (s, t) or can be obtained from two series-parallel graphs with terminals (s1, t1) and (s2, t2)
composed either in series or in parallel. In a series composition, t1 is identified with s2, s1 becomes s,
and t2 becomes t. In a parallel composition, s1 is identified with s2 and becomes s, and t1 is identified
with t2 and becomes t.

3 Paradox-Free Network Topologies and Paradox-Free Nash Flows

We start by discussing two interesting cases where Braess’s paradox does not occur. We first show that
if we have a bottleneck routing game G defined on an s − t series-parallel network, then ρ(G) = 1,
and thus Braess’s paradox does not occur. We recall that this was also pointed out in [8] for the case of
atomic unsplittable bottleneck routing games. Moreover, we note that a directed s−t network is series-
parallel iff it does not contain a θ-graph with degree-2 terminals as a topological minor. Therefore, the

5

example in Fig. 1 demonstrates that series-parallel networks is the largest class of network topologies
for which Braess’s paradox does not occur (see also [16] for a similar result for the case of additive
routing games).

Proposition 2. Let G be bottleneck routing game on an s−t series-parallel network. Then, ρ(G) = 1.

Proof. Let f be any Nash flow of G. We use induction on the series-parallel structure of the network
G, and show that f is an optimal flow w.r.t the bottleneck cost, i.e., that B(f) = B∗(G). For the
basis, we observe that the claim holds if G consists of a single edge (s, t). For the inductive step, we
distinguish two cases, depending on whether G is obtained by the series or the parallel composition
of two series-parallel networks G1 and G2.

Series Composition. First, we consider the case where G is obtained by the series composition of an
s− t′ series-parallel network G1 and a t′− t series-parallel network G2. We let f1 and f2, both of rate
r, be the restrictions of f into G1 and G2, respectively.

We start with the case where B(f) = B(f1) = B(f2). Then, either f1 is a Nash flow in G1,
or f2 is a Nash flow in G2. Otherwise, there would be a s − t′ path p1 in G1 with bottleneck cost
bp1(f1) < B(f1), and an t′ − t path p2 in G2, with bottleneck cost bp2(f2) < B(f2). Combining
p1 and p2, we obtain an s − t path p = p1 ∪ p2 in G with bottleneck cost smaller than B(f), which
contradicts the hypothesis that f is a Nash flow of G. If f1 (or f2) is a Nash flow inG1 (resp.G2), then
by induction hypothesis f1 (resp. f2) is an optimal flow in G1 (resp. in G2), and thus f is an optimal
flow of G.

Otherwise, we assume, without loss of generality, thatB(f) = B(f1) < B(f2). Then, f1 is a Nash
flow in G1. Otherwise, there would be an s− t′ path p1 in G1 with bottleneck cost bp1(f1) < B(f1),
which could be combined with any t′ − t path p2 in G2, with bottleneck cost B(f2) < B(f1), into
an s − t path p = p1 ∪ p2 with bottleneck cost smaller than B(f). The existence of such a path p
contradicts the the hypothesis that f is a Nash flow of G. Therefore, by induction hypothesis f1 is an
optimal flow in G1, and thus f is an optimal flow of G.

Parallel Composition. Next, we consider the case where G is obtained by the parallel composition
of an s− t series-parallel network G1 and an s− t series-parallel network G2. We let f1 and f2 be the
restriction of f into G1 and G2, respectively, let r1 (resp. r2) be the rate of f1 (resp. f2), and let G1

(resp. G2) be the corresponding routing instance. Then, since f is a Nash flow of G, f1 and f2 are Nash
flows of G1 and G2 respectively, andB(f1) = B(f2) = B(f). Therefore, by the induction hypothesis,
f1 and f2 are optimal flows of G1 and G2, and f is an optimal flow of G. To see this, we observe that
any flow different from f must route more flow through either G1 or G2. But if the flow through e.g.
G1 is more than r1, the bottleneck cost through G1 would be at least as large as B(f1). ut

Next, we show that any subpath-optimal Nash flow achieves a minimum bottleneck cost, and thus
Braess’s paradox does not occur if we restrict ourselves to subpath-optimal Nash flows.

Proposition 3. Let G be bottleneck routing game, and let f be any subpath-optimal Nash flow of G.
Then, B(f) = B∗(G).

Proof. Let f be any subpath-optimal Nash flow of G, let S be the set of vertices reachable from s via
edges with bottleneck cost less than B(f), let δ+(S) be the set of edges e = (u, v) with u ∈ S and
v 6∈ S, and let δ−(S) be the set of edges e = (u, v), with u 6∈ S and v ∈ S. Then, in [7, Lemma 4.5],
it is shown that (i) (S, V \ S) is an s− t cut, (ii) for all edges e ∈ δ+(S), ce(fe) ≥ B(f), (iii) for all
edges e ∈ δ+(S) with fe > 0, ce(fe) = B(f), and (iv) for all edges e ∈ δ−(S), fe = 0.

6

Fig. 2. (a) The network G constructed in the proof of Lemma 1. (b) The best subnetwork of G, with PoA = 1, for the case
where D contains a pair of vertex-disjoint paths connecting s1 to t1 and s2 to t2.

By (i) and (iv), any optimal flow o routes at least as much traffic as the subpath-optimal Nash
flow f routes through the edges in δ+(S). Thus, there is some edge e ∈ δ+(S) with oe ≥ fe,
which implies that ce(oe) ≥ ce(fe) ≥ B(f), where the second inequality follows from (ii). Since
B∗(G) = B(o) ≥ ce(oe), we obtain that B∗(G) = B(f). ut

4 Recognizing Paradox-Ridden Instances is Hard

In this section, we show that given a linear bottleneck routing game G, it is NP-hard not only to decide
whether G is paradox-ridden, but also to approximate the best subnetwork within a factor less than
4/3. To this end, we employ a reduction from the 2-Directed Disjoint Paths problem (2-DDP), where
we are given a directed networkD and distinguished vertices s1, s2, t1, t2, and ask whetherD contains
a pair of vertex-disjoint paths connecting s1 to t1 and s2 to t2. 2-DDP was shown NP-complete in [9,
Theorem 3], even if the network D is known to contain two edge-disjoint paths connecting s1 to t2
and s2 to t1. In the following, we say that a subnetwork D′ of D is good if D′ contains (i) at least one
path outgoing from each of s1 and s2 to either t1 or t2, (ii) at least one path incoming to each of t1 and
t2 from either s1 or s2, and (iii) either no s1 − t2 paths or no s2 − t1 paths. We say that D′ is bad if
any of these conditions is violated by D′. We note that we can efficiently check whether a subnetwork
D′ of D is good, and that a good subnetwork D′ serves as a certificate that D is a YES-instance of
2-DDP. Then, the following lemma directly implies the hardness result of this section.

Lemma 1. Let I = (D, s1, s2, t1, t2) be any 2-DDP instance. Then, we can construct, in polynomial
time, an s − t network G(V,E) with a linear latency function ce(x) = aex, ae > 0, on each edge e,
so that for any traffic rate r > 0, the bottleneck routing game G = (G, c, r) has B∗(G) = r/4, and:

1. If I is a YES-instance of 2-DDP, there exists a subnetwork H of G with B(H, r) = r/4.
2. If I is a NO-instance of 2-DDP, for all subnetworks H ′ of G, B(H ′, r) ≥ r/3.
3. For all subnetworks H ′ of G, either H ′ contains a good subnetwork of D, or B(H ′, r) ≥ r/3.

Proof. We construct a network G(V,E) with the desired properties by adding 4 vertices, s, t, v, u, to
D and 9 “external” edges e1 = (s, u), e2 = (u, v), e3 = (v, t), e4 = (s, v), e5 = (v, s1), e6 = (s, s2),
e7 = (t1, u), e8 = (u, t), e9 = (t2, t) (see also Fig. 2.a). The external edges e1 and e3 have latency
ce1(x) = ce3(x) = x/2. The external edges e4, . . . , e9 have latency cei = x. The external edge e2 and
each edge e of D have latency ce2(x) = ce(x) = εx, for some ε ∈ (0, 1/4).

We first show that B∗(G) = r/4. As for the lower bound, since the edges e1, e4, and e6 form an
s − t cut in G, every G-feasible flow has a bottleneck cost of at least r/4. As for the upper bound,

7

we may assume that D contains an s1 − t2 path p and an s2 − t1 path q, which are edge-disjoint
(see also [9, Theorem 3]). Then, we route a flow of r/4 through each of the paths (e4, e5, p, e9) and
(e6, q, e7, e8), and a flow of r/2 through the path (e1, e2, e3), which gives a bottleneck cost of r/4.

Next, we show (1), namely that if I is a YES-instance of 2-DDP, then there exists a subnetwork
H of G with B(H, r) = r/4. By hypothesis, there is a pair of vertex-disjoint paths in D, p and
q, connecting s1 to t1, and s2 to t2. Let H be the subnetwork of G that includes all external edges
and only the edges of p and q from D (see also Fig. 2.b). We let H = (H, c, r) be the corresponding
subinstance of G. The flow routing r/4 units through each of the paths (e4, e5, p, e7, e8) and (e6, q, e9),
and r/2 units through the path (e1, e2, e3), is anH-feasible Nash flow with a bottleneck cost of r/4.

We proceed to show that any Nash flow of H achieves a bottleneck cost of r/4. For sake of
contradiction, let f be a Nash flow of H with B(f) > r/4. Since f is a Nash flow, the edges e with
ce(fe) ≥ B(f) form an s− t cut in H . Since the bottleneck cost of e2 and of any edge in p and q is at
most r/4, this cut includes either e6 or e9 (or both), either e1 or e3 (or both), and either e4 or e8 (or e5

or e6, in certain combinations with other edges). Let us consider the case where this cut includes e1,
e4, and e6. Since the bottleneck cost of these edges is greater than r/4, we have more than r/2 units
of flow through e1 and more than r/4 units of flow through each of e4 and e6. Hence, we obtain that
more than r units of flow leave s, a contradiction. All other cases are similar.

To conclude the proof, we have also to show (3), namely that for any subnetwork H ′ of G, if
H ′ does not contain a good subnetwork of D, then B(H ′, r) ≥ r/3. We observe that (3) implies (2),
because if I is a NO-instance, any two paths, p and q, connecting s1 to t1 and s2 to t2, have some vertex
in common, and thus, D includes no good subnetworks. To show (3), we let H ′ be any subnetwork
of G, and let H′ be the corresponding subinstance of G. We first show that either H ′ contains (i) all
external edges, (ii) at least one path outgoing from each of s1 and s2 to either t1 or t2, and (iii) at least
one path incoming to each of t1 and t2 from either s1 or s2, or H ′ includes a “small” s − t cut, and
thus anyH′-feasible flow f has B(f) ≥ r/3.

To prove (i), we observe that if some of the edges e1, e4, and e6 is missing fromH ′, r units of flow
are routed through the remaining ones, which results in a bottleneck cost of at least r/3. The same
argument applies to the edges e3, e8, and e9. Similarly, if e2 is not present in H ′, the edges e4, e6, and
e8 form an s− t cut, and routing r units of flow through them causes a bottleneck cost of at least r/3.
Therefore, we can assume, without loss of generality, that all these external edges are present in H ′.

Now, let us focus on the external edges e5 and e7. If e5 is not present in H ′ and there is a path p
outgoing from s2 to either t1 or t2, routing 2r/3 units of flow through the path (e1, e2, e3) and r/3
units through the path (e6, p, e9) (or through the path (e6, p, e7, e8)) is a Nash flow with a bottleneck
cost of r/3 (see also Fig. 3.a). If s2 is connected to neither t1 nor t2 (no matter whether e5 is present
in H ′ or not), the edges e1 and e4 form an s − t cut, and thus, any H′-feasible flow has a bottleneck
cost of at least r/3. Similarly, we can show that if either e7 is not present in H ′, or neither s1 nor s2 is
connected to t2, anyH′-feasible flow has a bottleneck cost of at least r/3. Therefore, we can assume,
without loss of generality, that all external edges are present in H ′, and that H ′ includes at least one
path outgoing from s2 to either t1 or t2, and at least one path incoming to t2 from either s1 or s2.

Similarly, we can assume, without loss of generality, that H ′ includes at least one path outgoing
from s1 to either t1 or t2, and at least one path incoming to t1 from either s1 or s2. E.g., if s1 is
connected to neither t1 nor t2, routing 2r/3 units of flow through the path (e1, e2, e3) and r/3 units
through s2 and either t1 or t2 (or both) is a Nash flow with a bottleneck cost of r/3. A similar argument
applies to the case where neither s1 nor s2 is connected to t1.

Let us now consider a subnetwork H ′ of G that does not contain a good subnetwork of D, but
it contains (i) all external edges, (ii) at least one path outgoing from each of s1 and s2 to either t1
or t2, and (iii) at least one path incoming to each of t1 and t2 from either s1 or s2. By (ii) and (iii),

8

Fig. 3. Possible subnetworks of G when there is no pair of vertex-disjoint paths connecting s1 to t1 and s2 to t2. The
subnetwork (a) contains an s2 − t2 path and does not include e5. In the subnetwork (b), we essentially have all edges of G.
In (c), we depict a Nash flow that consists of three paths, each carrying r/3 units of flow, and has a bottleneck cost of r/3.

and the hypothesis that the subnetwork of D included in H ′ is bad, H ′ contains an s1 − t2 path p
and an s2 − t1 path q (see also Fig. 3.b). At the intuitive level, this corresponds to the case where no
edges are removed from G. Then, routing r/3 units of flow on each of the s − t paths (e1, e2, e3),
(e1, e2, e5, p, e9), and (e6, q, e7, e2, e3) has a bottleneck cost of r/3 and is a Nash flow, because the
set of edges with bottleneck cost r/3 comprises an s − t cut (see also Fig. 3.c). Therefore, we have
shown part (3) of the lemma, which in turn, immediately implies part (2). ut

We note that the bottleneck routing game G in the proof of Lemma 1 has ρ(G) = 4/3, and is
paradox-ridden, if I is a YES instance of 2-DDP, and paradox-free, otherwise. Thus, we obtain that:

Theorem 1. Deciding whether a bottleneck routing game with strictly increasing linear latencies is
paradox-ridden is NP-hard.

Moreover, Lemma 1 implies that it is NP-hard to approximate BSubNBC within a factor less than
4/3. The subtle point here is that given a subnetwork H , we do not know how to efficiently compute
the worst equilibrium bottleneck cost B(H, r). However, we can use the notion of a good subnetwork
of D and deal with this issue. Specifically, let A be any approximation algorithm for BSubNBC with
approximation ratio less than 4/3. Then, if D is a YES-instance of 2-DDP, A applied to the network
G, constructed in the proof of Lemma 1, returns a subnetwork H with B(H, r) < r/3. Thus, by
Lemma 1, H contains a good subnetwork of D, which can be checked in polynomial time. If D is a
NO-instance,D contains no good subnetworks. Hence, the outcome ofAwould allow us to distinguish
between YES and NO instances of 2-DDP.

Remark 1. If we let the edges to have more general latency functions, such as polynomials of greater
degree or exponential functions, then we can get greater inapproximability factors for BSubNBC. For
example, if we use the cost functions xk instead of x and xk/2k instead of x/2 in network G in the
proof of Lemma 1 (fig. 2), then we will get an inapproximability ratio of (4/3)k.

Using ax instead of x and ax/2 instead of x/2 in the proof of Lemma 1 (fig. 2), we get an inap-
proximability ratio of ar/12 = B∗(G)1/3 (depending on a and r).

5 Approximating the Best Subnetwork is Hard

Next, we apply essentially the same construction as in the proof of Lemma 1, but in a recursive way,
and show that it is NP-hard to approximate BSubNBC for linear bottleneck routing games within a

9

factor of O(n.121−ε), for any constant ε > 0. Throughout this section, we let I = (D, s1, s2, t1, t2)
be a 2-DDP instance, and let G be an s − t network, which includes (possibly many copies of) D
and can be constructed from I in polynomial time. We assume that G has a linear latency function
ce(x) = aex, ae > 0, on each edge e, and for any traffic rate r > 0, the bottleneck routing game
G = (G, c, r) has B∗(G) = r/γ1, for some γ1 > 0. Moreover,

1. If I is a YES-instance of 2-DDP, there exists a subnetwork H of G with B(H, r) = r/γ1.
2. If I is a NO-instance of 2-DDP, for all subnetworksH ′ ofG,B(H ′, r) ≥ r/γ2, for a γ2 ∈ (0, γ1).
3. For all subnetworks H ′ of G, either H ′ contains at least one copy of a good subnetwork of D, or
B(H ′, r) ≥ r/γ2.

The existence of such a network shows that it is NP-hard to approximate BSubNBC within a factor
less than γ = γ1/γ2. Thus, we usually refer to G as a γ-gap instance (with linear latencies). For
example, for the network G in the proof of Lemma 1, γ1 = 4 and γ2 = 3, and thus G is a 4/3-gap
instance. We next show that given I and a γ1/γ2-gap instance G, we can construct a (4γ1)/(3γ2)-gap
instance G′, i.e., we can amplify the inapproximability gap by a factor of 4/3.

Lemma 2. Let I = (D, s1, s2, t1, t2) be a 2-DDP instance, and let G be a γ1/γ2-gap instance with
linear latencies, based on I. Then, we can construct, in time polynomial in the size of I and G, an
s− t network G′ with a linear latency function ce(x) = aex, ae > 0, on each edge e, so that for any
traffic rate r > 0, the bottleneck routing game G′ = (G′, c, r) has B∗(G) = r/(4γ1), and:

1. If I is a YES-instance of 2-DDP, there exists a subnetwork H of G′ with B(H, r) = r/(4γ1).
2. If I is a NO-instance of 2-DDP, for every subnetwork H ′ of G′, B(H ′, r) ≥ r/(3γ2).
3. For all subnetworks H ′ of G′, either H ′ contains at least one copy of a good subnetwork of D, or
B(H ′, r) ≥ r/(3γ2).

Proof. Starting from D, we obtain G′ by applying the construction of Lemma 1, but with all external
edges, except for e2, replaced by a copy of the gap-instance G. For convenience, we refer to the copy
of the gap-instance replacing the external edge ei, i ∈ {1, 3, . . . , 9}, as the edgework Gi. Formally,
to obtain G′, we start from D and add four new vertices, s, t, v, u. We connect s to u, with the
s−u edgework G1, and v to t, with the s−u edgework G3, where in both G1 and G3, we replace the
latency function ce(x) of each edge e in the gap instance with ce(x)/2 (this is because in Lemma 1, the
external edges e1 and e3 have latencies x/2). Moreover, instead of the external edge ei, i ∈ {4, . . . , 9},
we connect (s, v), (v, s1), (s, s2), (t1, u), (u, t), and (t2, t) with the edgework Gi. The latencies
in these edgeworks are as in the gap instance. Furthermore, we add the external edge e2 = (u, v)
with latency ce2(x) = εx, for some ε ∈ (0, 1

4γ1
) (see also Fig. 4.a). Also, each edge e of D has

latency ce(x) = εx. We next consider the corresponding routing instance G′ with an arbitrary traffic
rate r > 0. Throughout the proof, when we define a routing instance, we omit, for simplicity, the
coordinate c, referring to the latency functions, with the understanding that they are defined as above.

Intuitively, each Gi, i ∈ {4, . . . , 9}, behaves as an external edge (hence the term edge(net)work),
which at optimality has a bottleneck cost of r/γ1, for any traffic rate r entering Gi. Moreover, if I is
a YES-instance of 2-DDP, the edgework Gi has a subedgework Hi for which B(Hi, r) = r/γ1, for
any r, while if Hi does not contain any copies of a good subnetwork of D (or, if I is a NO-instance),
for all subedgeworks H ′i of Gi, B(H ′i, r) ≥ r/γ2, for any r. The same holds for G1 and G3, but with
a worst equilibrium bottleneck cost of r/(2γ1) in the former case, and of r/(2γ2) in the latter case,
because the latency functions of G1 and G3 are scaled by 1/2 (see also Proposition 1).

The proofs of the following propositions are conceptually similar to the proofs of the correspond-
ing claims in the proof Lemma 1.

10

Fig. 4. (a) The network G′ constructed in the proof of Lemma 2. The structure of G′ is similar to the structure of the network
G in Fig. 2, with each external edge ei, except for e2, replaced by the edgework Gi. (b) The structure of a best subnetwork
H of G′, with PoA = 1, when D contains a pair of vertex-disjoint paths, p and q, connecting s1 to t1 and s2 to t2. To
complete H , we use an optimal subnetwork (or simply, subedgework) of each edgework Gi.

Proposition 4. The optimal bottleneck cost of G′ is B∗(G′) = r/(4γ1).

Proof. We have to show that B∗(G′) = r/(4γ1). For the upper bound, as in the proof of Lemma 1,
we assume that D contains an s1 − t2 path p and an s2 − t1 path q, which are edge-disjoint. We route
(i) r/4 units of flow through the edgeworks G4, G5, next through the path p, and next through the
edgework G9, (ii) r/4 units through the edgeworks G6, next through the path q, and next through the
edgeworks G7 and G8, and (ii) r/2 units through the edgework G1, next through the external edge
e2, and next through the edgework G3. These routes are edge(work)-disjoint, and if we route the flow
optimally through each edgework, the bottleneck cost is r/(4γ1). As for the lower bound, we observe
that the edgeworks H1, H4, and H6 essentially form an s − t cut in G′, and thus every feasible flow
has a bottleneck cost of at least r/(4γ1). ut

Proposition 5. If I is a YES-instance, there is a subnetwork H of G′ with B(H, r) = r/(4γ1).

Proof. If I is a YES-instance of 2-DDP, then (i) there are two vertex-disjoint paths in D, p and q,
connecting s1 to t1 and s2 to t2, and (ii) there is an optimal subnetwork (or simply, subedgework) Hi

of each edgework Gi so that for any traffic rate r routed through Hi, the worst equilibrium bottleneck
cost B(Hi, r) is r/γ1, if i ∈ {4, . . . , 9}, and r/(2γ1), if i ∈ {1, 3}. Let H be the subnetwork of G′

that consists of only the edges of the paths p and q from D, of the external edge e2, and of the optimal
subedgeworks Hi, i ∈ {1, 3, . . . , 9} (see also Fig. 4.b). We observe that we can route: (i) r/4 units of
flow through the subedgeworks H4, H5, next through the path p, and next through the subedgeworks
H7 and H8, (ii) r/4 units of flow through the subedgework H6, next through the path q, and next
through the subedgework H9, and (iii) r/2 units of flow through the subedgework H1, next through
the external edge e2, and next through the subedgeworkH3. These routes are edge(work)-disjoint, and
if we use any Nash flow through each of the routing instances (Hi, r/4), i ∈ {4, . . . , 9}, (H1, r/2),
and (H3, r/2), we obtain a Nash flow of the instance (H, r) with a bottleneck cost of r/(4γ1).

We next show that any Nash flow of (H, r) has a bottleneck cost of at most r/(4γ1). To reach
a contradiction, let us assume that some feasible Nash flow f has bottleneck cost B(f) > r/(4γ1).
We recall that f is a Nash flow iff the edges of G′ with bottleneck cost B(f) > r/(4γ1) form an
s − t cut. This cut does not include the edges of the paths p and q and the external edge e2, due to
the choice of their latencies. Hence, this cut includes a similar cut either in H6 or in H9 (or in both),
either in H1 or H3 (or in both), and either in H4 or in H8 (or in H5 or in H6, in certain combinations
with other subedgeworks, see also Fig. 4.b). Let us consider the case where the edges with bottleneck
cost B(f) > r/(4γ1) form a cut in H1, H4, and H6. Namely, the edges of H1, H4, and H6, with

11

bottleneck cost equal to B(f) > r/(4γ1) form an s− u, an s− v, and an s− s2 cut, respectively, and
thus the restriction of f to each of H1, H4, and H6, is an equilibrium flow of bottleneck cost greater
than r/(4γ1) for the corresponding routing instance. Since I is a YES-instance, this can happen only
if the flow through H1 is more than r/2, and the flow through each of H4 and H6 is more than r/4
(see also property (ii) of optimal subedgeworks above). Hence, we obtain that more than r units of
flow leave s, a contradiction. All other cases are similar. ut

The most technical part of the proof is to show (3), namely that for any subnetworkH ′ ofG′, ifH ′

does not contain any copies of a good subnetwork of D, then B(H ′, r) ≥ r/(3γ2). This immediately
implies (2), since if I is a NO-instance of 2-DDP, D includes no good subnetworks. To prove (3),
we consider any subnetwork H ′ of G′, and let H ′i be the subedgework of each Gi present in H ′. We
assume that the subedgeworksH ′i do not contain any copies of a good subnetwork ofD, and show that
if the subnetwork of D connecting s1 and s2 to t1 and t2 in H ′ is also bad, then B(H ′, r) ≥ r/(3γ2).

At the technical level, we repeatedly use the idea of a flow fi through a subedgework H ′i that “sat-
urates”H ′i, in the sense that fi is a Nash flow with bottleneck cost at least ri/(3γ2) for the subinstance
(H ′i, ri). Formally, we say that a flow rate ri saturates a subedgework H ′i if B(H ′i, ri) ≥ ri/(3γ2).
We refer to the flow rate rsi for which B(H ′i, r

s
i) = rsi /(3γ2) as the saturation rate of H ′i. We note

that the saturation rate rsi is well-defined, because the latency functions of Gis are linear and strictly
increasing. Moreover, by property (3) of gap instances, the saturation rate of each subedgework H ′i is
rsi ≤ r/3, if i ∈ {4, . . . , 9}, and rsi ≤ 2r/3, if i ∈ {1, 3}. Thus, at the intuitive level, the subedge-
works H ′i behave as the external edges of the network constructed in the proof of Lemma 1. Hence,
to show that B(H ′, r) ≥ r/(3γ2), we need to construct a flow of rate (at most) r that saturates a
collection of subedgeworks comprising an s− t cut in H ′.

Our first step in this direction is to simplify the possible structure of H ′.

Proposition 6. Let H ′ be any subnetwork of G′ whose subedgeworks H ′i do not contain any copies
of a good subnetwork of D. Then, either the subnetwork H ′ contains (i) the external edge e2, (ii) at
least one path outgoing from each of s1 and s2 to either t1 or t2, and (iii) at least one path incoming
to each of t1 and t2 from either s1 or s2, or B(H ′, r) ≥ r/(3γ2).

Proof. For convenience, in the proofs of Proposition 6 and Proposition 7, we slightly abuse the ter-
minology, and say that a collection of subedgeworks of H ′ form an s − t cut, if the union of any
cuts in them comprises an s − t cut in H ′. Moreover, whenever we write that ri units of flow are
routed through a subedgework Hi, we assume that the routing through Hi corresponds to the worst
Nash flow of (Hi, ri). Also, we recall that since subedgeworks H ′i do not contain any copies of a
good subnetwork of D, by property (3) of gap instances, the saturation rate of each H ′i is rsi ≤ r/3, if
i ∈ {4, . . . , 9}, and rsi ≤ 2r/3, if i ∈ {1, 3}.

We start by showing that either the external edge e2 is present in H ′, or B(H ′, r) ≥ r/(3γ2).
Indeed, if e2 is not present inH ′, the subedgeworksH ′4,H ′6, andH ′8 form an s−t cut inH ′. Therefore,
we can construct a Nash flow f that routes at least r/3 units of flow through H ′4, H ′6, and H ′8, and has
B(f) ≥ r/(3γ2). Therefore, we can assume, without loss of generality, that e2 is present in H ′.

Similarly, we show that either H ′ includes at least one path outgoing from s2 to either t1 or t2,
and at least one path incoming to t2 from either s1 or s2, or B(H ′, r) ≥ r/(3γ2). In particular, if s2

is connected to neither t1 nor t2, the subedgeworks H ′1 and H ′4 form an s − t cut in H ′. Thus, we
can construct a Nash flow f that saturates the subedgework H ′1 (or the subedgeworks H ′3 and H ′8,
if rs1 > rs3 + rs8) and the subedgework H ′4 (or the subedgeworks H ′3 and either H ′5, or H ′9 and at
least one of the H ′7 and H ′8, depending on rs4 and the saturation rates of the rest). We note that this
is always possible with r units of flow, because rs1 ≤ 2r/3 and rs4 ≤ r/3. Therefore, the bottleneck

12

Fig. 5. The structure of possible subnetworks of G′ when there is no pair of vertex-disjoint paths connecting s1 to t1 and
s2 to t2. The subnetwork (a) contains a path outgoing from s2 to either t1 or t2, and no path outgoing from s1 to either t1
or t2. Hence, no flow can be routed through the edgework G5, and thus we can regard G5 as being absent from H ′. The
subnetwork (b) essentially corresponds to the case where all edges of G′ are present in H ′.

cost of f is B(f) ≥ r/(3γ2). In case where there is no path incoming to t2 from either s1 or s2,
the subedgeworks H ′3 and H ′8 form an s − t cut in H ′. As before, we can construct a Nash flow
f that saturates the subedgeworks H ′3 and H ′8 (or, as before, an appropriate combination of other
subedgeworks carrying flow to H ′3 and H ′8), and has B(f) ≥ r/(3γ2). Therefore, we can assume,
without loss of generality, that H ′ includes at least one path outgoing from s2 to either t1 or t2, and at
least one path incoming to t2 from either s1 or s2.

Next, we show that either H ′ includes at least one path outgoing from s1 to either t1 or t2, and
at least one path incoming to t1 from either s1 or s2, or B(H ′, r) ≥ r/(3γ2). In particular, let us
consider the case where s1 is connected to neither t1 nor t2 (see also Fig. 5.a, the case where there is
no path incoming to t1 from either s1 or s2 can be handled similarly). In the following, we assume
that s2 is connected to t2 (because, by the analysis above, we can assume that there is a path incoming
to t2, and s1 is not connected to T2), and construct a Nash flow f of bottleneck cost B(f) ≥ r/(3γ2).

We first route min{rs6, rs9} ≤ r/3 units of flow through the subedgework H ′6, next through an
s2− t2 path, and finally through the subedgework H ′9, and saturate either H ′6 or H ′9 (or both). If there
is an s2 − t1 path and H ′6 is not saturated, we keep routing flow through H ′6, next through an s2 − t1
path, and next through the subedgeworks H ′7 and H ′8, until either the subedgework H ′6 or at least one
of the subedgeworks H ′7 and H ′8 become saturated. Thus, we saturate at least one edgework on every
s− t path that includes s2.

Next, we show how to saturate at least one edgework on every s− t path that includes either v or
u. If rs1 ≤ rs3 ≤ 2r/3, we route rs1 units of flow through H ′1, e2, and H ′3, and route min{rs3 − rs1, rs4}
units of flow through H ′4 and H ′3, and saturate either H ′1 and H ′3 or H ′1 and H ′4. If rs3 < rs1 ≤ 2r/3,
we route rs3 units of flow through H ′1, e2, and H ′3, and route min{rs3 − rs1, rs8} units of flow through
H ′1 and H ′8, and saturate either H ′1 and H ′3 or H ′3 and H ′8.

The remaining flow (if any) can be routed through these routes, in proportional rates. In all cases,
we obtain an s− t cut consisting of saturated subedgeworks. Thus, the resulting flow f is a Nash flow
with a bottleneck cost of at least r/(3γ2). ut

Now, let us focus on a subnetwork H ′ of G′ that contains (i) the external edge e2, (ii) at least one
path outgoing from each of s1 and s2 to either t1 or t2, and (iii) at least one path incoming to each of
t1 and t2 from either s1 or s2. If the copy of the subnetwork of D connecting s1 and s2 to t1 and t2 in
H ′ is also bad, properties (ii) and (iii) imply that H ′ contains an s1 − t2 path p and an s2 − t1 path
q. In this case, the entire subnetwork H ′ essentially behaves as if it included all edges of G′. Then, a

13

routing similar to that in Fig. 3.c gives a Nash flow with a bottleneck cost of r/(3γ2). This intuition is
formalized by the following proposition.

Proposition 7. Let H ′ be any subnetwork of G′ that satisfies (i), (ii), and (iii) above, and does not
contain any copies of a good subnetwork of D. Then B(H ′, r) ≥ r/(3γ2).

Proof. In the following, we consider a subnetwork H ′ of G′ which does not include any copies of
a good subnetwork of D, and contains (i) the external edge e2, (ii) at least one path outgoing from
each of s1 and s2 to either t1 or t2, and (iii) at least one path incoming to each of t1 and t2 from
either s1 or s2. Since the copy of the subnetwork of D connecting s1 and s2 to t1 and t2 in H ′ is bad,
properties (ii) and (iii) imply that H ′ contains an s1− t2 path p and an s2− t1 path q. Moreover, since
the subedgeworks H ′i do not include any copies of a good subnetwork of D, by property (3) of gap
instances, the saturation rate of each H ′i is rsi ≤ r/3, if i ∈ {4, . . . , 9}, and rsi ≤ 2r/3, if i ∈ {1, 3}.

We next show that for such a subnetwork H ′, we can construct a Nash flow f of bottleneck cost
B(f) ≥ r/(3γ2). At the conceptual level, as in the last case in the proof of Lemma 1, we seek to
construct a Nash flow by routing r/3 units of flow through each of the following three routes: (i) H ′1,
e2, and H ′3, (ii) H ′1, e2, H ′5, p, and H ′9, and (iii) H ′6, q, H ′7, e2, and H ′3. However, for simplicity of the
analysis, we regard the corresponding (edge) flow as being routed through just two routes: a rate of
2r/3 is routed through H ′1, e2, and H ′3, and a rate of r/3 is routed through the (possibly non-simple)
route H ′6, q, H ′7, e2, H ′5, p, and H ′9. We do so because the latter routing allows us to consider fewer
cases in the analysis. We conclude the proof by showing that if the latter route is not simple, we can
always decompose the flow into the three simple routes above.

In the following, we assume that with a flow rate of at most 2r/3, routed through H ′1, e2, and H ′3
(and possibly through H ′4 and H ′8), we can saturate both subedgeworks H ′1 and H ′3. Otherwise, as in
the last case in the proof of Proposition 6, we can show how with a total flow rate of at most 2r/3,
part of which is routed through either H ′4 or H ′8, we can saturate either H ′1 and H ′4, or H ′3 and H ′8.
Then, the remaining r/3 units of flow can saturate either H ′6, in the former case, or H ′9, in the latter
case. Thus, we obtain a Nash flow with a bottleneck cost of at least r/(3γ2).

Having saturated both subedgeworksH ′1 andH ′3, using at most 2r/3 units of flow, we have at least
r/3 units of flow to saturate the subedgeworks H ′5, H ′6, H ′7, and H ′9, or an appropriate subset of them,
so that together withH ′1 andH ′3, they form an s−t cut inH ′. We first route τ ≡ min{rs5, rs6, rs7, rs9} ≤
r/3 units of flow throughH ′6, q,H ′7, e2,H ′5, p, andH ′9, until t, and consider different cases, depending
on which of the subedgeworks H ′5, H ′6, H ′7, and H ′9 has the minimum saturation rate.

– If τ = rs9, H ′9 is saturated. We first assume that H ′ contains an s1 − t1 path, and route (some of)
the remaining flow (i) through H ′4, H ′5, an s1 − t1 path, H ′7, and H ′8, and (ii) through H ′6, q, H ′7,
andH ′8. We do so until either at least one of the subedgeworksH ′7 andH ′8 or the subedgeworkH ′6
and at least one of the subedgeworksH ′4 andH ′5 become saturated. Since min{rs7, rs8} ≤ r/3, this
requires at most r/3−τ additional units of flow. IfH ′ does not contain an s1−t1 path, we route the
remaining flow only through route (ii), until either at least one of the subedgeworks H ′7 and H ′8 or
the subedgeworkH ′6 become saturated. In both cases, the newly saturated subedgeworks, together
with the saturated subedgeworks H ′1, H ′3, and H ′9, form an s − t cut of saturated subedgeworks,
and thus the worst equilibrium bottleneck cost is at least r/(3γ2).

– If τ = rs6, H ′6 is saturated. As before, we first assume that H ′ contains an s1 − t1 path, and route
the remaining flow (i) throughH ′4,H ′5, p, andH ′9, and (ii) throughH ′4,H ′5, an s1−t1 path,H ′9 and
H ′8, until either at least one of the subedgeworks H ′4 and H ′5, or the subedgework H ′9 and at least
one of the subedgeworks H ′7 and H ′8 become saturated. Since min{rs4, rs5} ≤ r/3, this requires
at most r/3 − τ additional units of flow. If H ′ does not contain an s1 − t1 path, we route the

14

remaining flow only through route (i), until either at least one of the subedgeworks H ′4 and H ′5 or
the subedgeworkH ′9 become saturated. In both cases, the newly saturated subedgeworks, together
with the saturated subedgeworks H ′1, H ′3, and H ′6, form an s − t cut of saturated subedgeworks,
and thus the worst equilibrium bottleneck cost is at least r/(3γ2).

– If τ = rs7, H ′7 is saturated. Then, we first assume that H ′ contains an s2 − t2 path, and route the
remaining flow (i) through H ′4, H ′5, p, and H ′9, and (ii) through H ′6, an s2 − t2 path, and H ′9, until
either the subedgework H ′9, or the subedgework H ′6 and at least one of the subedgeworks H ′4 and
H ′5 become saturated. Since rs9 ≤ r/3, this requires at most r/3− τ additional units of flow. If H ′

does not contain an s2 − t2 path, we route the remaining flow only through route (i), until either
at least one of the subedgeworks H ′4 and H ′5 or the subedgework H ′9 become saturated. In both
cases, the newly saturated subedgeworks, together with the saturated subedgeworks H ′1, H ′3, and
H ′7, form an s − t cut of saturated subedgeworks, and thus the worst equilibrium bottleneck cost
is at least r/(3γ2).

– If τ = rs5, H ′5 is saturated. As before, we first assume that H ′ contains an s2 − t2 path, and route
the remaining flow (i) through H ′6, q, H ′7, and H ′8, and (ii) through H ′6, an s2 − t2 path, and H ′9,
until either the subedgework H ′6, or the subedgework H ′9 and at least one of the subedgeworks H ′7
and H ′8 become saturated. Since rs6 ≤ r/3, this requires at most r/3− τ additional units of flow.
If H ′ does not contain an s2 − t2 path, we route the remaining flow only through route (i), until
either at least one of the subedgeworks H ′7 and H ′8 or the subedgework H ′6 become saturated. In
both cases, the newly saturated subedgeworks, together with the saturated subedgeworks H ′1, H ′3,
and H ′5, form an s − t cut of saturated subedgeworks, and thus the worst equilibrium bottleneck
cost is at least r/(3γ2).

Thus, in all cases, we obtain an equilibrium flow with a bottleneck cost of at least r/(3γ2). How-
ever, in the construction above, the route H ′6, q, H ′7, e2, H ′5, p, H ′9 may not be simple, since p and
q may not be vertex-disjoint. If this is the case, this route is technically not allowed by our model,
where the flow is only routed through simple s − t paths. Nevertheless, the corresponding edge flow
can be decomposed into the following three simple routes: (i) H ′1, e2, and H ′3, (ii) H ′1, e2, H ′5, p, and
H ′9, and (iii) H ′6, q, H ′7, e2, and H ′3, unless min{rs1, rs3} ≤ r/3. Moreover, if min{rs1, rs3} ≤ r/3, we
can work as above, and saturate both H ′1 and H ′3 with at most r/3 units of flow. The remaining 2r/3
units of flow can be routed (i) through H ′6, q, H ′7, and H ′8, and (ii) through H ′4, H ′5, p, and H ′9, and
possibly either through H ′6, an s2− t2 path5, andH ′9, or through H ′4, H ′5, an s1− t1 path, H ′7, andH ′8,
until either H ′4 (or H ′5) and H ′6, or H ′7 (or H ′8) and H ′9 are saturated. This routing only uses simple
routes. In addition, these saturated subedgeworks, together with the saturated subedgeworks H ′1 and
H ′3, form an s− t cut of saturated subedgeworks, and thus the worst equilibrium bottleneck cost is at
least r/(3γ2). ut

Propositions 6 and 7 immediately imply part (3) of the lemma, which, in turn, implies part (2). ut

Each time we apply Lemma 2 to a γ-gap instance G, we obtain a 4γ/3-gap instance G′ with a
number of vertices of at most 8 times the vertices of G plus the number of vertices of D. Therefore,
if we start with an instance I = (D, s1, s2, t1, t2) of 2-DDP, where D has k vertices, and apply
Lemma 1 once, and subsequently apply Lemma 2 for blog4/3 kc times, we obtain a k-gap instance
G′, where the network G′ has n = O(k8.23) vertices. Suppose now that there is a polynomial-time
algorithm A that approximates the best subnetwork of G′ within a factor of O(k1−ε) = O(n0.121−ε),
for some small ε > 0. Then, if I is a YES-instance of 2-DDP, algorithm A, applied to G′, should

5 We note that if the paths p and q are not vertex-disjoint, we also have an s1 − t1 path and an s2 − t2 path in H ′.

15

return a best subnetwork H with at least one copy of a good subnetwork of D. Since H contains a
polynomial number of copies of subnetworks of D, and we can check whether a subnetwork of D is
good in polynomial time, we can efficiently recognize I as a YES-instance of 2-DDP. On the other
hand, if I is a NO-instance of 2-DDP, D includes no good subnetworks. Again, we can efficiently
check that in the subnetwork returned by algorithm A, there are not any copies of a good subnetwork
of D, and hence recognize I as a NO-instance of 2-DDP. Thus, we obtain that:

Theorem 2. For bottleneck routing games with strictly increasing linear latencies, it is NP-hard to
approximate BSubNBC within a factor of O(n0.121−ε), for any constant ε > 0.

Remark 2. If in the network G in the proof of Lemma 1 (fig.2) we replace the cost functions x and
x/2 with xl and xl/2l respectively, we will get an instance with γ1 = 4l and γ2 = 3l, and thus G
would be a (4/3)l-gap instance. Moreover, if we apply the same techniques as in lemma 2, we can
amplify the inaproximability gap. As in Lemma 2 we inductively create a new network using as a base
the base network of figure 2 with cost functions xl instead of x and xl/2l instead of x/2. In the new
network the edges e4, . . . , e9 are replaced with a copy of the old network with the known gap (4/3)l.
Edges e1, e3 are replaced with a copy of the old network but with all the cost functions divided by 2l.
This will result to a graph that gives an inapproximability gap of (4/3)2l. Doing this t = log(4/3)l n

times, we result to a network withO(n
log

(4/3)l
8+1

) vertices and an inapproximability gap of n. So, in a
similar way like before, we get that (unless P=NP), we cannot polynomially approximate BSubNBC

within a factor of O(n
1/(log

(4/3)l
8+1) − ε)

Using ax instead of x and ax/2 instead of x/2 and applying the same technique for say t times we
get a network with gap B∗(G)(4/3)t−1

6 Networks with Quasipolynomially Many Paths

In this section, we approximate, in quasipolynomial-time, the best subnetwork and its worst equilib-
rium bottleneck cost for instances G = (G, c, r) where the network G has quasipolynomially many
s− t paths, the latency functions are continuous and satisfy a Lipschitz condition, and the worst Nash
flow in the best subnetwork routes a non-negligible amount of flow on all used edges.

We highlight that the restriction to networks with quasipolynomially many s− t paths is somehow
necessary, in the sense that Theorem 2 shows that if the network has exponentially many s− t paths,
as it happens for the hard instances of 2-DDP, and thus for the networks G and G′ constructed in the
proofs of Lemma 1 and Lemma 2, it is NP-hard to approximate BSubNBC within any reasonable
factor. Also, we can always assume, without loss of generality, that the worst Nash flow of the best
subnetworkH∗ assigns positive flow to all edges ofH∗. Otherwise, we can remove any unused edges,
without increasing the worst equilibrium bottleneck cost ofH∗. In addition, we assume here that there
is a constant δ > 0, such that the worst Nash flow in H∗ routes more than δ units of flow on all edges
of the best subnetwork H∗.

In the following, we normalize the traffic rate r to 1. This is for convenience and can be made
without loss of generality6. Our algorithm is based on [10, Lemma 2], which applies Althöfer’s “Spar-
sification” Lemma [1], and shows that any flow can be approximated by a “sparse” flow using loga-
rithmically many paths.

6 Given a bottleneck routing game G with traffic rate r > 0, we can replace each latency function ce(x) with ce(rx), and
obtain a bottleneck routing game G′ with traffic rate 1, and the same Nash flows, PoA, and solutions to BSubNBC.

16

Lemma 3. Let G = (G(V,E), c, 1) be a routing instance, and let f be any G-feasible flow. Then, for
any ε > 0, there exists a G-feasible flow f̃ using at most k(ε) = blog(2m)/(2ε2)c + 1 paths, such
that for all edges e, |f̃e − fe| ≤ ε, if fe > 0, and f̃e = 0, otherwise.

By Lemma 3, there exists a sparse flow f̃ that approximates the worst Nash flow f on the best
subnetwork H∗ of G. Moreover, the proof of [10, Lemma 2] shows that the flow f̃ is determined by
a multiset P of at most k(ε) paths, selected among the paths used by f . Then, for every path p ∈ P ,
f̃p = |P (p)|/|P |, where |P (p)| is number of times the path p is included in the multiset P , and |P |
is the cardinality of P . Therefore, if the total number |P| of s − t paths in G is quasipolynomial, we
can find, in quasipolynomial-time, by exhaustive search, a flow-subnetwork pair that approximates the
optimal solution of BSubNBC. Based on this intuition, we next obtain an approximation algorithm
for BSubNBC on networks with quasipolynomially many paths, under the assumption that there is a
constant δ > 0, such that the worst Nash flow in the best subnetwork H∗ routes more than δ units of
flow on all edges of H∗. This assumption is necessary so that the exhaustive search on the family of
sparse flows of Lemma 3 can generate the best subnetwork H∗, which is crucial for the analysis.

Theorem 3. Let G = (G(V,E), c, 1) be a bottleneck routing game with continuous latency functions
that satisfy the Lipschitz condition with a constant ξ > 0, let H∗ be the best subnetwork of G, and
let f∗ be the worst Nash flow in H∗. If for all edges e of H∗, f∗e > δ, for some constant δ > 0,
then for any constant ε > 0, we can compute in time |P|O(log(2m)/min{δ2,ε2/ξ2}) a flow f and a
subnetwork H such that: (i) f is an ε/2-Nash flow in the subnetwork H , (ii) B(f) ≤ B(H∗, 1) + ε,
(iii) B(H, 1) ≤ B(f) + ε/4, and (iv) B(f) ≤ B(H, 1) + ε/2.

Proof. Let ε > 0 be a constant, and let ε1 = min{δ, ε/(4ξ)}, and ε2 = ε/2. We show that a
flow-subnetwork pair (H, f) with the desired properties can be computed in time |P|O(k(ε1)), where
k(ε1) = blog(2m)/min{2δ2, ε2/(8ξ2)}c + 1, For convenience, we say that a flow g is a candidate
flow if there is a multiset P of paths from P , with |P | ≤ k(ε1), such that gp = |P (p)|/|P |, for each
p ∈ P . Namely, a candidate flow belongs to the family of sparse flows, which by Lemma 3, can ap-
proximate any other flow. Similarly, a subnetwork H is a candidate subnetwork if there is a candidate
flow g such that H consists of the edges used by g (and only of them), and a subnetwork-flow pair
(H, g) is a candidate solution, if g is a candidate flow, H is a candidate subnetwork that includes all
the edges used by g (and possibly some other edges), and g is an ε2-Nash flow in H .

By exhaustive search, in time |P|O(k(ε1)), we generate all candidate flows, all candidate subnet-
works, and compute the bottleneck cost B(g) of any candidate flow g. Then, for each pair (H, g),
where g is a candidate flow and H is a candidate subnetwork, we check, in polynomial time, whether
g is an ε2-Nash flow in H , and thus whether (H, g) is a candidate solution. Thus, in time |P|O(k(ε1)),
we determine all candidate solutions. For each candidate subnetwork H that participates in at least
one candidate solution, we let B̃(H) be the maximum bottleneck cost B(g) of a candidate flow g for
which (H, g) is a candidate solution. The algorithm returns the subnetwork H that minimizes B̃(H),
and a flow f for which (H, f) is a candidate solution and B̃(H) = B(f).

The exhaustive search above can be implemented in |P|O(k(ε1)) time. As for the properties of
the solution (H, f), the definition of candidate solutions immediately implies (i), i.e., that f is an
ε/2-Nash flow in H .

In the following we use Lemma 3, and show (ii), (iii), and (iv).
We first show (ii), i.e., that B(f) ≤ B(H∗, 1) + ε. We recall that H∗ denotes the best subnetwork

of G and f∗ denotes the worst Nash flow in H∗. Also, by hypothesis, f∗e > δ > 0, for all edges e of
H∗.

17

By Lemma 3, there is a candidate flow f̃ such that for all edges e of H∗, |f̃e − f∗e | ≤ ε1. Thus,
since ε1 ≤ δ, H∗ is a candidate network, because f̃e > 0 for all edges e of H∗. Moreover, by the
Lipschitz condition and the choice of ε1, for all edges e of H∗, |ce(f̃e) − ce(f∗e)| ≤ ε/4. Therefore,
since f∗ is a Nash flow in H∗, f̃ is an ε2-Nash flow in H∗, and thus (H, f̃) is a candidate solution.
Furthermore, |B(f̃) − B(f∗)| ≤ ε/4, i.e., the bottleneck cost of f̃ is within an additive term of ε/4
from the worst equilibrium bottleneck cost of H∗. In particular, B(f̃) ≤ B(H∗, 1) + ε/4.

We also need to show that for any other candidate flow g for which (H∗, g) is a candidate solution,
B(g) ≤ B(f̃)+3ε/4, and thus B̃(H∗) ≤ B(f̃)+3ε/4 ≤ B(H∗, 1)+ε. To reach a contradiction, let
us assume that there is a candidate flow g that is an ε2-Nash flow inH∗ and hasB(g) > B(f̃)+3ε/4.
But then, we should expect that there is a Nash flow g′ in H∗ that closely approximates g and has a
bottleneck cost of B(g′) ≈ B(g) > B(f∗), a contradiction. Formally, since g is an ε2-Nash flow in
H∗, the set of edges with ce(ge) ≥ B(g)− ε/2 comprises an s− t cut in H∗. Then, by the continuity
of the latency functions, we can fix a part of the flow routed essentially as in g, so that there is an s− t
cut consisting of used edges with latency B(g)− ε/2, and possibly unused edges with latency at least
B(g)− ε/2, and reroute the remaining flow on top of it, so that we obtain a Nash flow g′ in H∗. But
then,

B(g′) ≥ B(g)− ε/2 > B(f̃) + ε/4 ≥ B(f∗) ,

which contradicts the hypothesis that f∗ is the worst Nash flow in H∗.
Therefore, B̃(H∗) ≤ B(H∗, 1)+ε. Since the algorithm returns the candidate solution (H, f), and

not a candidate solution including H∗, B̃(H) ≤ B(H∗). Thus, we obtain (ii), namely that B̃(H) =
B(f) ≤ B(H∗, 1) + ε.

We proceed to show (iii), namely that B(H, 1) ≤ B(f) + ε/4. To this end, we let g be the worst
Nash flow inH . By Lemma 3, there is a candidate flow g̃ such that for all edges e ofH , |g̃e−ge| ≤ ε1,
if ge > 0, and g̃e = 0, otherwise. Therefore, by the Lipschitz condition and the choice of ε1, for all
edges e of H , |ce(g̃e) − ce(ge)| ≤ ε/4, if ge > 0, and ce(g̃e) = ce(ge) = 0, otherwise. This implies
that |B(g̃) − B(g)| ≤ ε/4, i.e., that bottleneck cost of g̃ is within an additive term of ε/4 from the
bottleneck cost of g. In particular, B(g) ≤ B(g̃) + ε/4.

We also need to show that (H, g̃) is a candidate solution. Since H is a candidate subnetwork and
g̃ is a candidate flow, we only need to show that g̃ is an ε2-Nash flow in H . Since g is a Nash flow
in H , the set of edges C = {e : ce(ge) ≥ B(g)} comprises an s − t cut in H . In fact, for all edges
e ∈ C, ce(ge) = B(g), if ge > 0, and ce(ge) ≥ B(g), otherwise. Let us now consider the latency in g̃
of each edge e ∈ C. If ge = 0, then ce(g̃e) = ce(ge) ≥ B(g) ≥ B(g̃)− ε/4. If ge > 0, then

B(g̃) ≥ ce(g̃e) ≥ ce(ge)− ε/4 = B(g)− ε/4 ≥ B(g̃)− ε/2 .

Therefore, for the flow g̃, we have an s − t cut in H consisting of edges e either with g̃e > 0 and
B(g̃) − ε/2 ≤ ce(g̃e) ≤ B(g̃), or with g̃e = 0 and ce(g̃e) ≥ B(g̃) − ε/4. By the standard properties
of ε-Nash flows (see also in Section 2), we obtain that g̃ is a ε2-Nash flow in H .

Hence, we have shown that (H, g̃) is a candidate solution, and thatB(g) ≤ B(g̃)+ε/4. Therefore,
the algorithm considers both candidate solutions (H, f) and (H, g̃), and returns (H, f), which implies
that B(g̃) ≤ B(f). Thus, we obtain (iii), namely that B(H, 1) = B(g) ≤ B(f) + ε/4.

To conclude the proof, we next show (iv), namely that B(f) ≤ B(H, 1) + ε/2. For the proof,
we use the same notation as in (iii). The argument is essentially identical to that used in the second
part of the proof of (ii). More specifically, to reach a contradiction, we assume that the candidate
flow f , which is an ε2-Nash flow in H , has B(f) > B(H, 1) + ε/2. Then, as before, we should
expect that there is a Nash flow f ′ in H that approximates f and has a bottleneck cost of B(f ′) ≈

18

B(f) > B(H, 1), a contradiction. Formally, since f is an ε2-Nash flow in H , the set of edges with
ce(fe) ≥ B(f) − ε/2 comprises an s − t cut in H . Then, by the continuity of the latency functions,
we can fix a part of the flow routed essentially as in f , so that there is an s− t cut consisting of used
edges with latency B(f) − ε/2, and possibly unused edges with latency at least B(f) − ε/2, and
reroute the remaining flow on top of it, so that we obtain a Nash flow f ′ in H . But then, B(f ′) ≥
B(f) − ε/2 > B(H, 1), which contradicts the definition of the worst equilibrium bottleneck cost
B(H, 1) of H . Thus, we obtain (iv), namely that B(f) ≤ B(H, 1) + ε/2. ut

Therefore, the algorithm of Theorem 3 returns a flow-subnetwork pair (H, f) such that f is an
ε/2-Nash flow in H , the worst equilibrium bottleneck cost of the subnetwork H approximates the
worst equilibrium bottleneck cost of H∗, since B(H∗, 1) ≤ B(H, 1) ≤ B(H∗, 1) + 5ε/4, by (ii)
and (iii), and the bottleneck cost of f approximates the worst equilibrium bottleneck cost of H , since
B(H, 1)− ε/4 ≤ B(f) ≤ B(H, 1) + ε/2, by (iii) and (iv).

References

1. I. Althöfer. On sparse approximations to randomized strategies and convex combinations. Linear Algebra and Appli-
cations, 99:339–355, 1994.

2. Y. Azar and A. Epstein. The hardness of network design for unsplittable flow with selfish users. In Proc. of the 3rd
Workshop on Approximation and Online Algorithms (WAOA ’05), volume 3879 of LNCS, pages 41–54, 2005.

3. R. Banner and A. Orda. Bottleneck routing games in communication networks. IEEE Journal on Selected Areas in
Communications, 25(6):1173–1179, 2007.

4. D. Braess. Über ein paradox aus der Verkehrsplanung. Unternehmensforschung, 12:258–268, 1968.
5. C. Busch and M. Magdon-Ismail. Atomic routing games on maximum congestion. Theoretical Computer Science,

410:3337–3347, 2009.
6. I. Caragiannis, C. Galdi, and C. Kaklamanis. Network load games. In Proc. of the 16th Symposium on Algorithms and

Computation (ISAAC ’05), volume 3827 of LNCS, pages 809–818, 2005.
7. R. Cole, Y. Dodis, and T. Roughgarden. Bottleneck links, variable demand, and the tragedy of the commons. In Proc.

of the 17th ACM-SIAM Symposium on Discrete Algorithms (SODA ’06), pages 668–677, 2006.
8. A. Epstein, M. Feldman, and Y. Mansour. Efficient graph topologies in network routing games. Games and Economic

Behaviour, 66(1):115125, 2009.
9. S. Fortune, J.E. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theoretical Computer

Science, 10:111–121, 1980.
10. D. Fotakis, A.C. Kaporis, and P.G. Spirakis. Efficient methods for selfish network design. In Proc. of the 36th Collo-

quium on Automata, Languages and Programming (ICALP-C ’09), volume 5556 of LNCS, pages 459–471, 2009.
11. H. Hou and G. Zhang. The hardness of selective network design for bottleneck routing games. In Proc. of the 4th

Conference on Theory and Applications of Models of Computation (TAMC ’07), volume 4484 of LNCS, pages 58–66,
2007.

12. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In Proc. of the 16th Symposium on Theoretical Aspects of
Computer Science (STACS ’99), volume 1563 of LNCS, pages 404–413, 1999.

13. H. Lin, T. Roughgarden, and É. Tardos. A stronger bound on Braess’s paradox. In Proc. of the 15th ACM-SIAM
Symposium on Discrete Algorithms (SODA ’04), pages 340–341, 2004.

14. H. Lin, T. Roughgarden, É. Tardos, and A. Walkover. Braess’s Paradox, Fibonacci Numbers, and Exponential Inap-
proximability. In Proc. of the 32th Colloquium on Automata, Languages and Programming (ICALP ’05), volume 3580
of LNCS, pages 497–512, 2005.

15. V. Mazalov, B. Monien, F. Schoppmann, and K. Tiemann. Wardrop equilibria and price of stability for bottleneck
games with splittable traffic. In Proc. of the 2nd Workshop on Internet and Network Economics (WINE ’06), volume
4286 of LNCS, pages 331–342, 2006.

16. I. Milchtaich. Network topology and the efficiency of equilibrium. Games and Economic Behavior, 57:321346, 2006.
17. T. Roughgarden. On the severity of Braess’s paradox: Designing networks for selfish users is hard. Journal of Computer

and System Sciences, 72(5):922–953, 2006.

19

