On the (In)Security of
RSA and BLS Signatures

Joint Work with: Yevgeniy Dodis and Iftach Haitner

Digital Signatures

 Alice wants to send a message m to Bob

* Bob wants to make sure that this message was
signed by Alice

o

-

N
I:’KAIice
* Alice computes a signature o using her secret

key SK and sends (m,o) to Bob.

* Bob, using Alice’s public key PK, . ., checks if o
is a valid signature of m.

Security of Digital Signatures

Universal unforgeability

* Consider the following game:
— Alice generates a random pair of keys
— Alice sends PK and a random message m to Bob
— Bob outputs a signature
Bob wins the game if o is a valid signature of m.

* A Signature Scheme is Universally Unforgeable
if the probability of winning the above
game is negligible.

Existential Unforgeability against
Chosen Message Attacks

* Consider the following game (--CMA Game):
— Alice generates a random pair of keys (SK,PK)
— Alice sends PK to Bob

— Bob is allowed to ask from Alice the signatures of
arbitrary messages.
— Bob outputs a pair (m,o)

Bob wins the game if o is a valid signature of m and
Bob never asked from Alice the signature of this
m.

Existential Unforgeability against
Chosen Message Attacks

e A Signature Scheme is t-Unforgeable Against
Chosen Message Attacks if the probability of
Bob winning the above game is negligible.

* A Signature Scheme is Unforgeable Against
Chosen Message Attacks if it is t-Unforgeable
for unbounded t.

Simple RSA signatures

* Generation of (SK,PK):

— Pick two primes p,g and let n=pq
— Pick a random (prime) number e s.t. gcd(e,p(n))=1
— Let d be such that ed=1 mod ®(n)

SK=d and PK=(e,n)
* Signature of m:
o=m9 mod n
* Checking validity of o:

Check if c®=m mod n

Security of simple RSA Signatures

* Universal Unforgeability: YES

— RSA Assum.: given (e,n) and a random v it is hard
to compute the e-th root of y

* Producing a valid signature of a random message m is
equivalent to computing the e-th root of m.

* Existential Unforgeability: NO
— Pick a random o and set m=0°® (remember PK=e)
— Output (m,o).

RSA Signatures

* Why don’t we ‘process’ the message m before
signing it, to achieve stronger security?

e Let H be a hash function
— Signing m:
o=H(m)94 mod n

* Security?

Random Oracle Model

* |n this model every party is assumed to have
black-box access to the same oracle.

* This oracle answers every query with a truly
random response, however identical queries
have the same response.

 The oracle can be thought as a random
function

RSA Signatures

* Why don’t we ‘process’ the message m before
signing it, to achieve stronger security?

* Let H be a hash function
— Signing m:
o=H(m)9 mod n
e Security: This Scheme is Existentially Unforgeable

against Chosen Message Attacks in the random
oracle model

— H is the random oracle

Remarks

The Random Oracle Model is ideal but
unrealistic
— A random function cannot be described efficiently

In practice hash functions like SHA-1, MD5 are
used.

RSA Signatures are used in practice because of
their simplicity and their short length.

ldeally we would like to remove the Random
Oracle from RSA Signatures

Our Results

For every t there exists an efficiently
computable Hash Function Family such that the
resulting RSA Signature Scheme is t-Unforgeable
Against Chosen Message Attacks

Using ‘standard techniques’ we cannot
instantiate the random oracle with an efficiently
computable function (so that RSA Signature Scheme
remains Existentially Unforgeable against Chosen
Message Attacks)

Fully Black-Box Reductions

e A standard technique for proving the security
of schemes in cryptography.

* We construct a polynomial time algorithm R
which given black-box access to any forger F
breaks a computational assumption.

— E.g.: In our (positive) result, for every t
 Came up with a hash function H
* Constructed an algorithm R

e Such that for any F which wins the t-CMA game (of the
RSA Scheme with H) with non-negligible probability, R
breaks the RSA assumption.

Black-Box Separation

* Such results rule out the existence of fully black-
box reductions.

e What we would like to do here is to show the
existence of an oracle B such that

1. Relative to B, RSA Signatures are insecure w.r.t. any
hash function H

2. If the RSA Assumption is true, then it remains true
even relative to B.

 Why would it suffice?

— Suppose that there exists a reduction R
— Then RBwould break the RSA Assumption
— Contradiction because of 2.

Our Separation

* We rule out the existence (of a hash function
and) of a specific kind of (fully black-box)

reductions.

* These are reductions which exploit the
representation of the group elements

— Remember RSA is defined over a group Z,*
 What is the model?

Generic Group Model
(GGM)

Group operations are accessed in a black-box
way.
There is an oracle G
For every n, G selects a random permutation
.l —L.
On input (n,a,b), G returns
r(ri(a) mi(b)mod n)
On input (n,a), G returns rt((rt*(a))™* mod n)

— If the operation is not valid it does not return
anything.

Remarks

* GGM is widely used in cryptography to prove
lower bounds.
 Hardness of DLP,DHP, etc..

* Most known algorithms and reductions are
generic.

e However, not all, like Index Calculus for DLP.

RSA Signhatures in GGM

* RSA Signatures are defined over GGM in a
straightforward way.

e Remember:
— Signing m:
o=H(m)9 mod n
* In GGM the group operations are done with
the help of the GGM oracle G

— Notice that hash function H might also depend on
G

Main Theorem

* Suppose that Factoring is hard. Then there
exists no hash function H, which makes the
RSA Signature Scheme Existentially
Unforgeable against Chosen Message Attacks
in the GGM with a fully Black-Box Reduction
to the RSA Assumption.

About the proof

 We constructed an oracle B,

— relative to which RSA Signatures in GGM are
Insecure

— B is otherwise useless

Oracle B

Useful Definitions (1)

* Hardwired values: A value w belongs to the
set of hardwired values of a computation C, if
CS queries G with an input which contains w,
and w has never appeared as an output of G in
any previous query in CC.

Useful Definitions (2)

e Canonical form: The canonical form of the output
y of an algorithm CS, is a way to symbolically
write v as a product of hardwired values, i.e.
y=. wa-.

Example: Suppose that C does the following queries
o (nIW]_ ;Wz) :bl
o (n/bl ;Wz) =b2

Then the canonical form of b, is w, w,’

Description of oracle B

 The input it expects is of the form
(n,e,H,s,,...,S,)
with t=|H|.
1. B checks if s°=H(i) mod n, namely if s is a valid
signature of I.

2. B computes the canonical form of each H(i),
H(i)=N, w2~ and constructs matrix A={a}.

1. |If rank A<t then it returns L
2. Else it returns the factorization of n.

Notice: We can efficiently check if B returns | or not.

1. Forging with the help of B is quite easy.

2. We proved that if there exists a circuit R® which
can make B return the factorization of n, then
using this R we can either

— factor n or

— compress the description of n:Z —7_(used by the
generic group oracle G)

e To prove the second (and more involved) part we
used the Compression Argument introduced in
[GTOO]

Concluding

Actually we proved something stronger:

— There exists no reduction to any assumption (not only

the RSA Assumption) which can be expressed in terms
of ‘games’.

Using almost the same techniques we proved
similar results for BLS signatures.

Future work: Generalization of the impossibility
result for

— General exponent e (not only prime)
— Generic Ring Model

Thank you!

