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Background 



4 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Network design

 Network: carries people and/or commodities (oil, data, etc.) between a number 
of locations.

 Example: optical-core communications network covering the United States.
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Network design (contd.)

 Typical formulation of minimum-cost network design problem:

Available network topology

Tree, ring, general graph, …

Set of end-to-end traffic demands

Single sink, all pairs, multi-commodity, …

A function representing the cost of a network element in relation to the traffic 
carried by that element

Uniform vs. non-uniform

Problem-specific requirements, if any

Latency, fault tolerance, “hard” capacity constraints, …

Goal: determine a minimum-cost network that can serve all traffic demands 
(and respect any additional requirements)
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Some simple cost functions

Linear cost function ⇒ decomposes to a shortest-paths problem for each 
traffic demand

Easy – solvable in polynomial time [Dijkstra]

Step-function (“flat cost”) ⇒ Steiner forest problem

Somewhat easy – we can find a solution with at most twice the optimal cost in 
polynomial time (i.e. approximation ratio 2) [Agrawal-Klein-Ravi, Goemans-Williamson]
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Buy-at-bulk cost functions

Sub-additive cost function (continuous or discontinuous) ⇒ buy-at-bulk 
network design problem

Sub-additivity: f(x1 + x2) ≤ f(x1) + f(x2)

Models economies of scale

Manageable – we can find a solution with at most O(log n) times or polylog(n) times the 
optimal cost in polynomial time (uniform/non-uniform version resp.) [Awerbuch-Azar, 
Chekuri-Hajiaghayi-Kortsarz-Salavatipour]
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Energy costs and (dis)economies of scale

 What if the cost function has the form f(x) = σ + xα for x > 0, f(0) = 0?

Motivation: describes power consumption of CMOS circuits with speed scaling

Reflects a combination of economies and diseconomies of scale

Similarly-shaped cost curves commonly encountered in many industries ⇒ potential for 
wide model applicability
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Energy costs and (dis)economies of scale (contd.)

Bad news: a lower bound on the approximation ratio is exponentially 
dependent on α [A, Andrews-Fernandez-Zhang-Zhao]

Good(?) news: in case of CMOS power, α ≤ 3 and thus may be considered a constant

More good news: for the uniform version, we can find a solution with at most 
polylog(n) times the optimal cost in polynomial time
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Achieving a polylogarithmic
approximation
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Algorithm outline

Partition traffic demands by bandwidth, in buckets [1, 2), [2, 4), [4, 8), …

Discretize cost function

For each bucket, while there exist unrouted demands:

Solve LP relaxation and decompose fractional solution into well-cut-linked flows

Construct an expander graph as virtual network topology

Route (at least) some of the demands via edge-disjoint paths on the virtual topology

Output the union of all partial routings

 We need to ensure that each partial routing (i) serves at least a polylogarithmic
fraction of the demands, and (ii) has cost at most polylog(n) times the optimum.

Recall the analysis of the greedy set-cover algorithm…

However, a low ratio of cost / (#demands served) for every partial solution does not 
suffice in our case. We must bound the overall number of partial solutions as well.



12 | Network Design with (Dis)economies of Scale Copyright © 2010 Alcatel-Lucent. All rights reserved.

Bucketing demands

Place demands with bandwidth [2j – 1, 2j) in bucket j.

Round up the bandwidth of all demands in bucket j to 2j.

Lose only a factor of 2 in the approximation.

Henceforth, we deal with the demands in one bucket at a time.

All such demands have the same bandwidth (convenient).

W.l.o.g. we also assume that each demand has distinct endpoints (terminals) from 
other demands in the same bucket.

For a bucket j such that 2j ≥ σ1 / α, replace the cost function with f*(x) = 2xα at 
a loss of another factor 2 in the approximation.

Then, apply a CP-rounding algorithm from [Andrews-Fernandez-Zhang-Zhao] to route 
the demands in that bucket. 

For a bucket j such that 2j < σ1 / α, aggregate demands.

For simplicity, let’s forget about aggregation; assume σ1 / α = 1 and unit demands…
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Discretizing the cost function

Replace each link by a collection of parallel edges, with a fixed capacity equal 
to σ1 / α, and flat (step-function) costs:

f(σ1 / α) – f(0) = 2σ,

f(2σ1 / α) - f(σ1 / α) = (2α – 1)σ,

f(3σ1 / α) - f(2σ1 / α) = (3α – 2α)σ,

and so on.

f(x)
⇒ (3α – 2α)σ

(2α – 1)σ

2σ
…

Clearly, cheap edges will be used before expensive ones.

Note: this transformation does not make the problem equivalent to Steiner 
forest, because of edge capacities.
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LP relaxation and well-cut-linked flows

We formulate and solve an LP relaxation of the problem instance (including 
only the demands in the current bucket).

In the (fractional) solution, each demand may be routed along more than one 
paths, each carrying only part of the demand’s bandwidth.

These paths constitute a flow associated with the demand.

Not acceptable as a solution to our problem.

Decompose into well-cut-linked terminals
[Chekuri-Khanna-Shepherd]

Create node-disjoint subgraphs of original graph.
– Discard demands with terminals in different subgraphs.
– At least a certain fraction of demands survives.

Salient property: In order to cut one such subgraph in two parts, we would have to 
remove edges carrying a substantial total amount of flow (in the above fractional 
solution), proportional to the smaller total remaining demand in either part.
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Constructing an expander topology

When is a graph G′ = (V′, E′) an expander?

Regular

Expansion: for any S ⊂ V′ with |S| ⊂ |V′| / 2, the number of edges in the cut (S, V′ - S)
is at least c|S|, for a constant c > 0.

Very similar the property of well-cut-linked terminals we saw earlier.

But how to use it for expander construction?

Suppose we are given a routine that for any balanced partition (A, B) of a node set V* 
produces a perfect matching. Then, we can construct an expander by calling this 
routine O(log2 |V*|) times. [Khandekar-Rao-Vazirani]

We build an expander on the terminals of each subgraph of the decomposition.

Here, perfect matchings consist of entire paths joining terminals, not just edges.

Well-cut-linkedness ensures the existence of such a path-matching.

Result: a virtual expander topology that uses each edge of the real topology at most a 
polylogarithmic number of times crucial for bounding 

routing cost
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Edge-disjoint routing in the virtual topology

Given an expander and a set of node pairs (with each node belonging to at 
most one pair), we can route at least a polylogarithmic fraction of those pairs 
via edge-disjoint paths. [Rao-Zhou]

Expander graphs tend to have many short paths…

Thus, in the real topology we can route at least a polylogarithmic fraction of 
the demands, while the load on every edge is at most polylogarithmically
larger compared to the solution of the LP relaxation.

We apply the same process on the remaining demands. No more than a 
polylogarithmic number of iterations required.

 Putting it all together:

Theorem. Uniform network design with (dis)economies of scale is polylog(n)-
approximable.
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Concluding remarks 
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Concluding remarks

Applicability extends to more general cost functions (not necessarily 
polynomial) as long as they increase at least at a linear rate – but not too 
quickly, of course.

Asymptotically linear concave functions are also covered. In general, though, concave 
cost functions are better handled in the buy-at-bulk framework.

 Open questions

What is the (in)approximability of the non-uniform version?

The intermediate capacitated problem may be viewed as a special case of 
Fixed Charge Network Flow, which has been well-studied from a heuristics 
perspective. Can our algorithm be adapted for the latter problem too?

Thank you!


