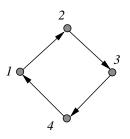
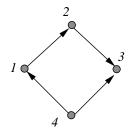
Unilateral Orientation of Mixed Graphs

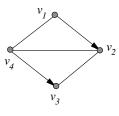

Tamara Mchedlidze, Antonios Symvonis

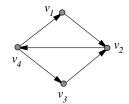
Dept. of Mathematics, National Technical University of Athens, Athens, Greece. {mchet,symvonis}@math.ntua.gr


August 26, 2010

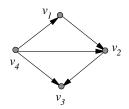
Definitions

- Strong Digraph
- Unilateral Digraph

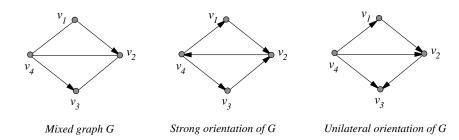

Strong digraph


Unilateral digraph

Definitions


- Mixed Graph
- Strong Orientation
- Unilateral Orientation

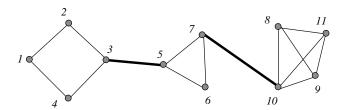
Mixed graph G


Strong orientation of G

Unilateral orientation of G

Definitions

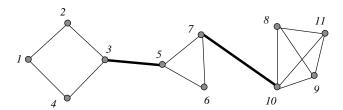
Problem: Given a mixed graph G, determine if G has a strong or a unilateral orientation.


Some known results

Theorem (Robbins, 1939)

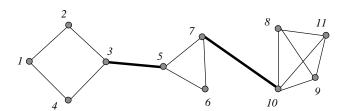
A connected graph G has a strongly connected orientation if and only if G has no bridge.

Theorem (Boesch and Tindell, 1980)


A mixed multigraph M admits a strong orientation if and only if M is strong and the underlying multigraph of M is bridgeless.

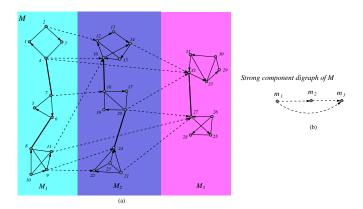
Some known results

Theorem (Chartrand, Harary, Schultz, Wall, 1994)
A connected graph G has a unilateral orientation if and only if all of the bridges of G lie on a common path.


Question: What about unilateral orientations of mixed graphs?

Some known results

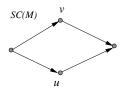
Theorem (Chartrand, Harary, Schultz, Wall, 1994) A connected graph G has a unilateral orientation if and only if all of the bridges of G lie on a common path.


Question: What about unilateral orientations of mixed graphs? Open till now!

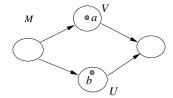
Main Results

- Characterization of Unilaterally Orientable Mixed Graphs
- Linear Time Algorithm Testing if a Given Mixed Graph has a Unilateral Orientation

Characterization of unilaterally orienable mixed graphs

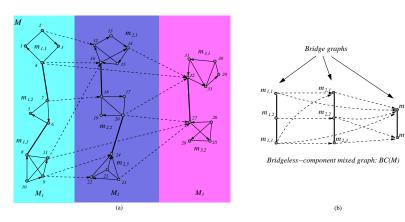

Lemma (First necessary condition)

If a mixed graph M admits a unilateral orientation ⇒ the strong component digraph of M, SC(M), has a hamiltonian path.


Characterization of unilaterally orientable mixed graphs

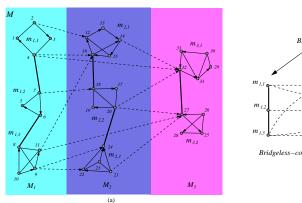
Lemma (First necessary condition)

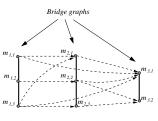
If a mixed graph M admits a unilateral orientation \Rightarrow strong component digraph of M, SC(M), has a hamiltonian path.



Stong component digraph without hamiltonian path

Vertices a and b are not connected by a directed path


Characterization of unilaterally orientable mixed graphs

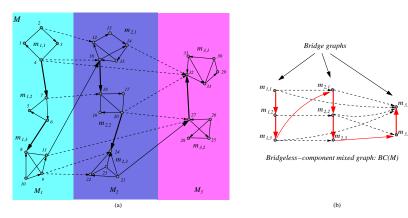


Lemma (Second necessary condition)

If a mixed graph M admits a unilateral orientation \Rightarrow the bridge graph, B(M), of each of its strong component is a path.

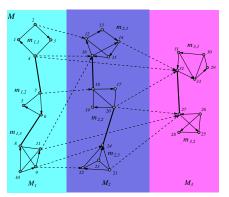
Characterization of unilaterally orientable mixed graphs

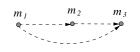
Bridgeless-component mixed graph: BC(M)


(b)

Theorem (Main result)

A mixed graph M admits a unilateral orientation ⇔ the bridgeless-component mixed graph, BC(M), admits a hamiltonian orientation.

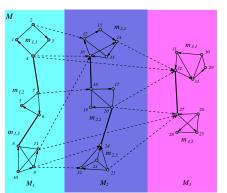

Characterization of unilaterally orienable mixed graphs

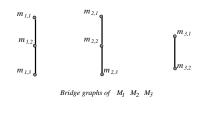


Theorem (Main result)

A mixed graph M admits a unilateral orientation \Leftrightarrow the bridgeless-component mixed graph, BC(M), admits a hamiltonian orientation.

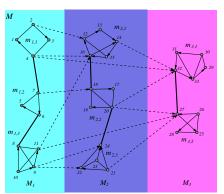
10 / 16

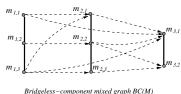




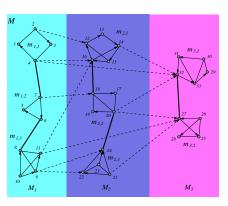
 $Strong\ component\ digraph\ SC(M)$

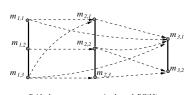
- Construct the strong connected digraph SC(M) of M;
- if SC(M) has no hamiltonian path then return("NO")
 else continue;
- Complexity: O(V + A + E)





- \forall strong component M_i of M, construct bridge graph $B(M_i)$;
- if B_{Mi} is not a simple path then return("NO")
 else continue;
- Complexity: O(V + A + E)





Briageiess—component mixea graph BC(N

- Construct bridgeless-component mixed graph BC(M) of M;
- if BC(M) has no hamiltonian path then return("NO")
 else return("YES");
- Complexity: O(k), k < n.

 $Bridgeless-component\ mixed\ graph\ BC(M)$

- $p_1^a = p_1^b = true$
- $\bullet \ \ p_i^a = \left(p_{i-1}^a = \mathsf{true} \ \land \ \exists (a_{i-1}, b_i) \in A'\right) \lor \left(p_{i-1}^b = \mathsf{true} \ \land \ \exists (b_{i-1}, b_i) \in A'\right)$
- $p_i^b = (p_{i-1}^b = \mathsf{true} \land \exists (b_{i-1}, a_i) \in A') \lor (p_{i-1}^a = \mathsf{true} \land \exists (a_{i-1}, a_i) \in A'),$ for $1 < i \le k$

Summerizing

Theorem.

Given a mixed graph M = (V, A, E), we can decide whether M admits a unilateral orientation in O(V + A + E) time. Moreover, if M is unilaterally orientable, a unilateral orientation can be computed in O(V + A + E) time.

Theorem (Our result)

A mixed graph admits a unilateral orientation if and only if all the bridges of its strong components lie on a common path.

Theorem (Chartrand, Harary, Schultz, Wall, 1994)

A connected graph G has a unilateral orientation if and only if all of the bridges of G lie on a common path.

Thank You!