
Perspectives on learning in games
Tutorial — Part II

Gabriele Farina
MIT

 gfarina@mit.edu

Athens • 4 July 2024

Imperfect-information Extensive-Form Games

• Games played on a game tree (think chess, go, poker, monopoly,
Avalon, Liar’s dice, …)
• Stochastic moves are allowed (random draws of cards, random roll

of dice, random arrivals, …)

We will be mostly interested in the general case of
imperfect-information games

(i.e., certain moves or stochastic events are only observed by a subset of players)

Difficulties with Extensive-Form Games

Compared to normal-form games, imperfect-information extensive-
form games bring many conceptual challenges

Difficulties with Extensive-Form Games

Compared to normal-form games, imperfect-information extensive-
form games bring many conceptual challenges

The number of (deterministic) strategies grows exponentially in the game tree1

Difficulties with Extensive-Form Games

Compared to normal-form games, imperfect-information extensive-
form games bring many conceptual challenges

The number of (deterministic) strategies grows exponentially in the game tree1

Imperfect information makes backward induction and local reasoning not viable2

General principle: you need to think about what the opponents don’t know about you and leverage that
to your advantage. Sometimes that means bluffing, to not reveal private information.

Difficulties with Extensive-Form Games

Compared to normal-form games, imperfect-information extensive-
form games bring many conceptual challenges

The number of (deterministic) strategies grows exponentially in the game tree

Other players have control over what part of the game tree is visited/explored

1

3

Imperfect information makes backward induction and local reasoning not viable2

General principle: you need to think about what the opponents don’t know about you and leverage that
to your advantage. Sometimes that means bluffing, to not reveal private information.

Difficulties with Extensive-Form Games

Compared to normal-form games, imperfect-information extensive-
form games bring many conceptual challenges

• Nonetheless: many positive results 🎉

The number of (deterministic) strategies grows exponentially in the game tree

Other players have control over what part of the game tree is visited/explored

1

3

Imperfect information makes backward induction and local reasoning not viable2

General principle: you need to think about what the opponents don’t know about you and leverage that
to your advantage. Sometimes that means bluffing, to not reveal private information.

Imperfect-Information Extensive-Form Games

How it started:

1950

Imperfect-Information Extensive-Form Games

How it started: How it’s going:

1950

2017

How Extensive-Form Games Are Drawn

Example (Kuhn poker).

How Extensive-Form Games Are Drawn

Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with
the following dynamics. First, Player 1 decides to either check or bet $1.

How Extensive-Form Games Are Drawn

Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with
the following dynamics. First, Player 1 decides to either check or bet $1.

How Extensive-Form Games Are Drawn

Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with
the following dynamics. First, Player 1 decides to either check or bet $1.

Then,

How Extensive-Form Games Are Drawn

Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with
the following dynamics. First, Player 1 decides to either check or bet $1.

Then,
• If Player 1 checks, Player 2 can check or bet another $1 after matching the pot.

How Extensive-Form Games Are Drawn

Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with
the following dynamics. First, Player 1 decides to either check or bet $1.

Then,
• If Player 1 checks, Player 2 can check or bet another $1 after matching the pot.

• If Player 2 checks, a showdown occurs; if Player 2 bets, Player 1 can fold or call.

How Extensive-Form Games Are Drawn

Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with
the following dynamics. First, Player 1 decides to either check or bet $1.

Then,
• If Player 1 checks, Player 2 can check or bet another $1 after matching the pot.

• If Player 2 checks, a showdown occurs; if Player 2 bets, Player 1 can fold or call.
• If Player 1 folds, Player 2 takes the pot; if Player 1 calls, a showdown occurs.

How Extensive-Form Games Are Drawn

Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with
the following dynamics. First, Player 1 decides to either check or bet $1.

Then,
• If Player 1 checks, Player 2 can check or bet another $1 after matching the pot.

• If Player 2 checks, a showdown occurs; if Player 2 bets, Player 1 can fold or call.
• If Player 1 folds, Player 2 takes the pot; if Player 1 calls, a showdown occurs.

• If Player 1 bets, Player 2 can fold or call the bet by matching the pot.

How Extensive-Form Games Are Drawn

Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with
the following dynamics. First, Player 1 decides to either check or bet $1.

Then,
• If Player 1 checks, Player 2 can check or bet another $1 after matching the pot.

• If Player 2 checks, a showdown occurs; if Player 2 bets, Player 1 can fold or call.
• If Player 1 folds, Player 2 takes the pot; if Player 1 calls, a showdown occurs.

• If Player 1 bets, Player 2 can fold or call the bet by matching the pot.
• If Player 2 folds, Player 1 takes the pot; if Player 2 calls, a showdown occurs.

How Extensive-Form Games Are Drawn

Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with
the following dynamics. First, Player 1 decides to either check or bet $1.

Then,
• If Player 1 checks, Player 2 can check or bet another $1 after matching the pot.

• If Player 2 checks, a showdown occurs; if Player 2 bets, Player 1 can fold or call.
• If Player 1 folds, Player 2 takes the pot; if Player 1 calls, a showdown occurs.

• If Player 1 bets, Player 2 can fold or call the bet by matching the pot.
• If Player 2 folds, Player 1 takes the pot; if Player 2 calls, a showdown occurs.

When a showdown occurs, the player with the higher card wins the pot and the game immediately ends

How Extensive-Form Games Are Drawn

As noted by Kuhn himself, even the previous small game already captures central
aspects of deceptive behavior

J
K

A Bit of Nomenclature

A Bit of Nomenclature

• The nodes of the game tree are often called histories (will be
denoted with letter h)

A Bit of Nomenclature

• The nodes of the game tree are often called histories (will be
denoted with letter h)
• The collection of information sets for a given player is called the

information partition of the player

A Bit of Nomenclature

• The nodes of the game tree are often called histories (will be
denoted with letter h)
• The collection of information sets for a given player is called the

information partition of the player
• The game has perfect information if all information sets are

singleton

The structure of Information

The structure of Information

The structure of Information

The structure of Information

The structure of Information

The structure of Information

Perfect vs Imperfect Recall

Perfect Recall: information sets satisfy the fact that that no player
forgets about their actions, and about information once acquired

Perfect vs Imperfect Recall

Perfect Recall: information sets satisfy the fact that that no player
forgets about their actions, and about information once acquired

🚨 Danger zone™:
unexpected things

happen when trying to
formalize opCmal

strategies in the presence
of imperfect recall

Perfect vs Imperfect Recall

Perfect Recall: information sets satisfy the fact that that no player
forgets about their actions, and about information once acquired

More formally:

Perfect vs Imperfect Recall

Perfect Recall: information sets satisfy the fact that that no player
forgets about their actions, and about information once acquired

More formally:

Strategies in Extensive-Form Games

Approach 1: Convert to Normal-
Form Game

(aka “reduced normal-form
representaCon”)

Approach 2: The RL way:
“Behavioral Strategies”

Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a
list of all possible

assignments of actions at
each information set

Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a
list of all possible

assignments of actions at
each information set

Histories in the same
informa<on must get

assigned the same ac<on

Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a
list of all possible

assignments of actions at
each information set

Histories in the same
information must get

assigned the same action

Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a
list of all possible

assignments of actions at
each information set

Histories in the same
informa<on must get

assigned the same ac<on

No need to specify actions at histories that
are for sure unreachable

Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a
list of all possible

assignments of actions
at each information set

(Histories in the same
information must get

assigned the same
action)

Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a
list of all possible

assignments of actions
at each information set

(Histories in the same
information must get

assigned the same
action)

Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a
list of all possible

assignments of actions
at each information set

(Histories in the same
information must get

assigned the same
action)

Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

Each player constructs a
list of all possible

assignments of actions
at each information set

(Histories in the same
information must get

assigned the same
action)

Valid assignments for Player 1: 27
Valid assignments for Player 2: 64

These assignments are called
“reduced normal-form plans”

Equivalent Normal-Form Game

1/3 0 -1/3 ⋯ 1/2

0 1/3 0 ⋯ 0

-1/3 2/3 1/2 ⋯ 0

⋮ ⋮ ⋮ ⋮

1/2 0 -2/3 ⋯ -1/2

Re
du

ce
d

no
rm

al
-f

or
m

 p
la

ns
 fo

r P
la

ye
r 1

Reduced normal-form plans for Player 2

(27 x 64 matrix)

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

Equivalent Normal-Form Game

1/3 0 -1/3 ⋯ 1/2

0 1/3 0 ⋯ 0

-1/3 2/3 1/2 ⋯ 0

⋮ ⋮ ⋮ ⋮

1/2 0 -2/3 ⋯ -1/2

Re
du

ce
d

no
rm

al
-f

or
m

 p
la

ns
 fo

r P
la

ye
r 1

Reduced normal-form plans for Player 2

(27 x 64 matrix)

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

Don’t forget
nature moves

Equivalent Normal-Form Game

1/3 0 -1/3 ⋯ 1/2

0 1/3 0 ⋯ 0

-1/3 2/3 1/2 ⋯ 0

⋮ ⋮ ⋮ ⋮

1/2 0 -2/3 ⋯ -1/2

Re
du

ce
d

no
rm

al
-f

or
m

 p
la

ns
 fo

r P
la

ye
r 1

Reduced normal-form plans for Player 2

(27 x 64 matrix)

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

Don’t forget
nature moves

With this, we have reduced the
extensive-form game to a normal-

form game (“reduced normal form of
the extensive-form game”)

Equivalent Normal-Form Game

1/3 0 -1/3 ⋯ 1/2

0 1/3 0 ⋯ 0

-1/3 2/3 1/2 ⋯ 0

⋮ ⋮ ⋮ ⋮

1/2 0 -2/3 ⋯ -1/2

Re
du

ce
d

no
rm

al
-f

or
m

 p
la

ns
 fo

r P
la

ye
r 1

Reduced normal-form plans for Player 2

(27 x 64 matrix)

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

Don’t forget
nature moves

With this, we have reduced the
extensive-form game to a normal-

form game (“reduced normal form of
the extensive-form game”)

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

1/3 0 -1/3 ⋯ 1/2

0 1/3 0 ⋯ 0

-1/3 2/3 1/2 ⋯ 0

⋮ ⋮ ⋮ ⋮

1/2 0 -2/3 ⋯ -1/2

Re
du

ce
d

no
rm

al
-f

or
m

 p
la

ns
 fo

r P
la

ye
r 1

Reduced normal-form plans for Player 2

(27 x 64 matrix)

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

With this, we have reduced the
extensive-form game to a normal-

form game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Example: Nash equilibrium in Kuhn
poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over
the 27 plans of

Player 1
Distribution over
the 64 plans of

Player 2

Payoff matrix on
the left

You can use any technique for normal-form games:
learning, linear programming, …

Equivalent Normal-Form Game

1/3 0 -1/3 ⋯ 1/2

0 1/3 0 ⋯ 0

-1/3 2/3 1/2 ⋯ 0

⋮ ⋮ ⋮ ⋮

1/2 0 -2/3 ⋯ -1/2

Re
du

ce
d

no
rm

al
-fo

rm
 p

la
ns

 fo
r P

la
ye

r 1

Reduced normal-form plans for Player 2

(27 x 64 matrix)

Payoff matrix: Each cell contains the
expected utility when players use that
combination of reduced normal-form

plans

With this, we have reduced the
extensive-form game to a normal-form

game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Example: Nash equilibrium in Kuhn
poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over
the 27 plans of

Player 1
Distribution over
the 64 plans of

Player 2

Payoff matrix on
the left

You can use any technique for normal-form games:
learning, linear programming, …

Big issue: the number of reduced normal-form plans scales
exponentially with the game tree size!

This approach is not scalable beyond very small games

We need better techniques

Equivalent Normal-Form Game

Quick Aside

Recent discovery: for certain algorithms, we can actually get around the exponential size and
still operate in this exponential representation implicitly via a kernel trick

[Farina et al., 2022] Kernelized Multiplicative Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form and Normal-Form Games

https://www.mit.edu/~gfarina/2022/komwu_icml22/

Quick Aside

Recent discovery: for certain algorithms, we can actually get around the exponential size and
still operate in this exponential representation implicitly via a kernel trick

Specifically, this applies to the multiplicative weights update (MWU) algorithm.

[Farina et al., 2022] Kernelized Multiplicative Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form and Normal-Form Games

https://www.mit.edu/~gfarina/2022/komwu_icml22/

Quick Aside

Recent discovery: for certain algorithms, we can actually get around the exponential size and
still operate in this exponential representation implicitly via a kernel trick

Specifically, this applies to the multiplicative weights update (MWU) algorithm.

Takeaway
Running MWU on the reduced normal-form representation
of an extensive-form game can be done in linear time per
iteration in the size of the game tree (as opposed to linear
in the number of reduced normal-form plans)

[Farina et al., 2022] Kernelized Multiplicative Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form and Normal-Form Games

https://www.mit.edu/~gfarina/2022/komwu_icml22/

Quick Aside

Recent discovery: for certain algorithms, we can actually get around the exponential size and
still operate in this exponential representation implicitly via a kernel trick

Specifically, this applies to the multiplicative weights update (MWU) algorithm.

Takeaway
Running MWU on the reduced normal-form representation
of an extensive-form game can be done in linear time per
iteration in the size of the game tree (as opposed to linear
in the number of reduced normal-form plans)

We can use this technique to
compute Nash eq. (in two-

player zero-sum games) and
coarse correlated equilibrium

[Farina et al., 2022] Kernelized Multiplicative Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form and Normal-Form Games

https://www.mit.edu/~gfarina/2022/komwu_icml22/

Recap on Normal-Form Strategies

Idea Obvious downsides Good news

(Reduced) Normal-form
strategies

Distribution over
deterministic strategies

𝜇 ∈ Δ(𝑃𝑙𝑎𝑛𝑠)

Exponentially-sized
object

In rare cases, it’s possible
to operate implicitly on
the exponential object
via a kernel trick

Behavioral Strategies

Idea: Strategy = choice of distribution over available actions
at each “decision point”

Let’s introduce some notation for the tree-form decision process faced by
each player…

Behavioral Strategies

Idea: Strategy = choice of distribution over available actions
at each “decision point”

Information set

Let’s introduce some notation for the tree-form decision process faced by
each player…

Tree-form Decision
Processes
• The game tree is a description of the global dynamics of

the game, without taking the side of any player in
particular

• The problem faced by an individual player is called a tree-
form decision process

• TFDP provides a more natural formalism for defining
player-specific quantities and procedures, such as
strategies and learning algorithms, that inherently refer to
the decision space that one player faces while playing the
game

• From the point of view of each player, two types of nodes:
decision points and observation points

Example in Kuhn Poker (Player 1)

Another Example

Algorithm for constructing the tree-form decision process of a player:

Another Example

1. For each information set of the player, construct a corresponding decision node

Algorithm for constructing the tree-form decision process of a player:

Another Example

1. For each information set of the player, construct a corresponding decision node

2. The parent of each decision node is the last action of the player on the path from the
root of the game tree to any node of the information set

💡 Does not matter which one
when the player has perfect

recall! (why?)

Algorithm for constructing the tree-form decision process of a player:

Another Example

1. For each information set of the player, construct a corresponding decision node

2. The parent of each decision node is the last action of the player on the path from the
root of the game tree to any node of the information set

💡 Does not matter which one
when the player has perfect

recall! (why?)

3. If multiple decision nodes want to have the same parent action, connect with an
observation node

Algorithm for constructing the tree-form decision process of a player:

Behavioral strategies
Idea: Strategy = choice of
distribution over available

actions at each decision point

Behavioral strategies

0.1 0.9

Idea: Strategy = choice of
distribution over available

actions at each decision point

Behavioral strategies

0.1 0.9

0.8 0.2

Idea: Strategy = choice of
distribution over available

actions at each decision point

Behavioral strategies

0.1 0.9

0.8 0.2

0.5 0.5

Idea: Strategy = choice of
distribution over available

actions at each decision point

Behavioral strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

Idea: Strategy = choice of
distribution over available

actions at each decision point

Behavioral strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

Idea: Strategy = choice of
distribution over available

actions at each decision point

Behavioral strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

! Set of strategies is convex

Idea: Strategy = choice of
distribution over available

actions at each decision point

Behavioral strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

! Set of strategies is convex

❌ Expected utility is not
 linear in this representation

 Reason: prob. of reaching a
 terminal state is product of
 variables

Idea: Strategy = choice of
distribution over available

actions at each decision point

Behavioral strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

! Set of strategies is convex

❌ Expected utility is not
 linear in this representation

 Reason: prob. of reaching a
 terminal state is product of
 variables

Products = non-convexity 😪

Idea: Strategy = choice of
distribution over available

actions at each decision point

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state:
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state:
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.6 (Pl2)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state:
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state:
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.4 (Pl2)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.4 (Pl2)
x 0.8 (Pl1)

0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.4 (Pl2)
x 0.8 (Pl1)

0.6 0.4

When these are variables being optimized, we have a product! Non-
convexity in player’s strategy

Kuhn’s Theorem

(Under perfect recall assumption)
Normal-form strategies and behavioral strategies are equally powerful

(more formally: they can induce the same distribution over terminal states)

🚨 Danger zone™: the theorem is not true anymore if the player does not have
perfect recall!

Recap on Behavioral Strategies

Idea Obvious downsides Good news

(Reduced) Normal-form
strategies

Distribution over
deterministic strategies

𝜇 ∈ Δ(Π)

Exponentially-sized
object

In rare cases, it’s possible
to operate implicitly on
the exponential object
via a kernel trick

Behavioral strategies Local distribution over
actions at each decision
point

𝒃 ∈	×𝒋	𝚫(𝑨𝒋)

Expected utility is
nonconvex in the the
entries of vector 𝒃

Kuhn’s theorem: same
power as reduced
normal-form strategies

“Fixing” Behavioral Strategies: Sequence-Form Strategies

Idea: Store probability for whole
sequences of actions

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

Idea: Store probability for whole
sequences of actions

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

Idea: Store probability for whole
sequences of actions

0.1

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

Idea: Store probability for whole
sequences of actions

0.1

0.08

Since sequence-form strategies already automa<cally
encode products of probabili<es on paths, expected u<lity

is linear in this strategy representa<on!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

Idea: Store probability for whole
sequences of actions

0.1

0.08 0.02

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

Idea: Store probability for whole
sequences of actions

0.1 0.9

0.08 0.02

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

Idea: Store probability for whole
sequences of actions

0.1 0.9 0.5 0.5 0.75 0.25

0.08 0.02 0.2 0.3 0.075 0.675

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9 ⭐ Consistency constraints

Idea: Store probability for whole
sequences of actions

0.1 0.9 0.5 0.5 0.75 0.25

0.08 0.02 0.2 0.3 0.075 0.675

Since sequence-form strategies already automa<cally
encode products of probabili<es on paths, expected u<lity

is linear in this strategy representa<on!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9 ⭐ Consistency constraints

1. Entries all non-negative

Idea: Store probability for whole
sequences of acCons

0.1 0.9 0.5 0.5 0.75 0.25

0.08 0.02 0.2 0.3 0.075 0.675

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9 ⭐ Consistency constraints

1. Entries all non-negative
2. Root sequence has probability 1.0

Idea: Store probability for whole
sequences of actions

0.1 0.9 0.5 0.5 0.75 0.25

0.08 0.02 0.2 0.3 0.075 0.675

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9 ⭐ Consistency constraints

1. Entries all non-negaave
2. Root sequence has probability 1.0
3. Probability mass conservaaon

Idea: Store probability for whole
sequences of actions

Children

Parent 0.1 0.9 0.5 0.5 0.75 0.25

0.08 0.02 0.2 0.3 0.075 0.675

Since sequence-form strategies already automa<cally
encode products of probabili<es on paths, expected u<lity

is linear in this strategy representa<on!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

! Set of strategies is convex

⭐ Consistency constraints

1. Entries all non-negative
2. Root sequence has probability 1.0
3. Probability mass conservation

Idea: Store probability for whole
sequences of acCons

0.1 0.9 0.5 0.5 0.75 0.25

0.08 0.02 0.2 0.3 0.075 0.675

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

“Fixing” Behavioral Strategies: Sequence-Form Strategies

0.1 0.9

0.8 0.2

0.5 0.5

0.4 0.6

0.75 0.25

0.1 0.9

! Set of strategies is convex

! Expected utility is a
 linear function

⭐ Consistency constraints

1. Entries all non-negative
2. Root sequence has probability 1.0
3. Probability mass conservation

Idea: Store probability for whole
sequences of actions

0.1 0.9 0.5 0.5 0.75 0.25

0.08 0.02 0.2 0.3 0.075 0.675

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility

is linear in this strategy representation!

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state:
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state:
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (Pl1) x 0.6 (Pl2)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state:
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state:
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.08 (Pl1)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.08 (Pl1) x 0.4 (Pl2)
0.6 0.4

Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

Decision problem and behavioral strategy of Player 2

Prob of reaching this terminal state: 1/6 (Nature) x 0.08 (Pl1) x 0.4 (Pl2)
0.6 0.4

Nonlinearity is gone

Sequence-Form Representation

Expected utility is linear in every player’s strategy (just like
normal-form games)

Sequence-Form Representation

Expected utility is linear in every player’s strategy (just like
normal-form games)

Where did we pay a price? In normal-form games, strategy set
is very simple (simplex). In extensive-form games, we have

sequence-form polytopes

Sequence-Form Representation

Expected utility is linear in every player’s strategy (just like
normal-form games)

Where did we pay a price? In normal-form games, strategy set
is very simple (simplex). In extensive-form games, we have

sequence-form polytopes

Everything sBll convex: We can use convex opBmizaBon tools

Equilibrium Computation (Extensive-Form)

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

With this, we have reduced the
extensive-form game to a normal-

form game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over
the 27 plans of

Player 1
Distribution over
the 64 plans of

Player 2

Payoff matrix on
the left

You can use any technique for normal-form games:
learning, linear programming, …

BEFORE: Reduced–normal form

Equilibrium Computation (Extensive-Form)

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

With this, we have reduced the
extensive-form game to a normal-

form game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over
the 27 plans of

Player 1
Distribution over
the 64 plans of

Player 2

Payoff matrix on
the left

You can use any technique for normal-form games:
learning, linear programming, …

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

With this, we have reduced the
extensive-form game to a normal-

form game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!$

min
"$

𝑥′#𝐵𝑦′

Sequence-form
polytope of player
1 (dimension 12)

Sequence-form
polytope of player
2 (dimension 12)

Sequence-form
payoff matrix

You can still use learning, linear programming, …

BEFORE: Reduced–normal form NOW: Sequence form

Equilibrium Computation (Extensive-Form)

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

With this, we have reduced the
extensive-form game to a normal-

form game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over
the 27 plans of

Player 1
Distribution over
the 64 plans of

Player 2

Payoff matrix on
the left

You can use any technique for normal-form games:
learning, linear programming, …

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

With this, we have reduced the
extensive-form game to a normal-

form game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!$

min
"$

𝑥′#𝐵𝑦′

Sequence-form
polytope of player
1 (dimension 12)

Sequence-form
polytope of player
2 (dimension 12)

Sequence-form
payoff matrix

You can still use learning, linear programming, …

BEFORE: Reduced–normal form NOW: Sequence form

Scale exponentially
with tree size

Equilibrium Computation (Extensive-Form)

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

With this, we have reduced the
extensive-form game to a normal-

form game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!
min
"
𝑥#𝐴𝑦

Distribution over
the 27 plans of

Player 1
Distribution over
the 64 plans of

Player 2

Payoff matrix on
the left

You can use any technique for normal-form games:
learning, linear programming, …

Payoff matrix: Each cell contains the
expected utility when players use

that combination of reduced normal-
form plans

With this, we have reduced the
extensive-form game to a normal-

form game

Inherit notions of Nash, correlated
equilibrium, coarse correlated

equilibrium, …

Nash equilibrium in Kuhn poker:

max
!$

min
"$

𝑥′#𝐵𝑦′

Sequence-form
polytope of player
1 (dimension 12)

Sequence-form
polytope of player
2 (dimension 12)

Sequence-form
payoff matrix

You can still use learning, linear programming, …

BEFORE: Reduced–normal form NOW: Sequence form

Scale exponentially
with tree size

Scale linearly with
tree size

Recap

Idea Obvious downsides Good news

(Reduced) Normal-form
strategies

Distribution over
deterministic strategies

𝜇 ∈ Δ(Π)

Exponentially-sized
object

In rare cases, it’s possible
to operate implicitly on
the exponential object
via a kernel trick

Behavioral strategies Local distribution over
actions at each decision
point

𝑏 ∈	×" 	Δ(𝐴")

Expected utility is
nonconvex in the the
entries of vector 𝑏

Kuhn’s theorem: same
power as reduced
normal-form strategies

Sequence-form
strategies

”Probability flows” on
the tree-form decision
process

𝒙 ∈ 𝑸 (convex polytope)

None Everything is convex!

Kuhn’s theorem applies
automatically.

Learning in extensive-form games

Recall (Part I): No-External-Regret

Learning
Algorithm

Recall (Part I): No-External-Regret

Learning
Algorithm

Strategies

𝑥(") ∈ 𝑋

Recall (Part I): No-External-Regret

Learning
Algorithm

Strategies

𝑥(") ∈ 𝑋

𝑋 = Simplex for normal-form games

𝑋 = sequence-form polytope for
extensive-form games

Recall (Part I): No-External-Regret

Learning
Algorithm

Strategies

𝑥(") ∈ 𝑋

Utility vectors

𝑢(")

𝑋 = Simplex for normal-form games

𝑋 = sequence-form polytope for
extensive-form games

Recall (Part I): No-External-Regret

Learning
Algorithm

Strategies

𝑥(") ∈ 𝑋

Utility vectors

𝑢(")

Objective: sublinear (external) regret

𝑅($) ≔ max
%&∈(

*
"*+

$

⟨𝑢("), -𝑥 − 𝑥(")⟩	

𝑋 = Simplex for normal-form games

𝑋 = sequence-form polytope for
extensive-form games

Recall (Part I): Learning in Normal-Form Games

Learning
Algorithm

Recall (Part I): Learning in Normal-Form Games

Learning
Algorithm

0.6

0.3

0.1

Strategy

Recall (Part I): Learning in Normal-Form Games

Learning
Algorithm

0.6

0.3

0.1

-2.0

+1.4

-0.7

StrategyUtility vector

Recall (Part I): Learning Algorithms

Recall (Part I): Learning Algorithms

Regret matching (RM): Probability of each action
proportional to ReLU of regret on the action 𝑥(&) ∝ 𝑟 & (

Recall (Part I): Learning Algorithms

Regret matching (RM): Probability of each action
proportional to ReLU of regret on the action

Multiplicative Weights Update (MWU): Prob. of each
action proportional to exp of regret on the action

𝑥(&) ∝ 𝑟 & (

𝑥(&) ∝ exp(𝜂 ⋅ 𝑟 &)

Recall (Part I): Learning Algorithms

Regret matching (RM): Probability of each action
proportional to ReLU of regret on the action

Multiplicative Weights Update (MWU): Prob. of each
action proportional to exp of regret on the action

Follow-The-Regularized-Leader (FTRL):

𝑥(&) ∝ 𝑟 & (

𝑥(&) ∝ exp(𝜂 ⋅ 𝑟 &)

𝑥(&) = argmax
!∈*

⟨𝑟(&), 𝑥⟩ −
1
𝜂
𝜓(𝑥)	

Recall (Part I): Learning Algorithms

Regret matching (RM): Probability of each action
proportional to ReLU of regret on the action

Multiplicative Weights Update (MWU): Prob. of each
action proportional to exp of regret on the action

Follow-The-Regularized-Leader (FTRL):

𝑥(&) ∝ 𝑟 & (

𝑥(&) ∝ exp(𝜂 ⋅ 𝑟 &)

𝑥(&) = argmax
!∈*

⟨𝑟(&), 𝑥⟩ −
1
𝜂
𝜓(𝑥)	

Recall: MWU is FTRL
with negative entropy

Recall (Part I): Connections with Equilibria

• Recall: when all players play external-regret-minimizing
strategies, then:
• In two-player zero-sum games, their average strategies converge to the set of

Nash equilibrium (gives an alternative approach to previous lecture)
• In general, the average product distribution of play converges to the set of

coarse-correlated equilibria

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local
decision problem over actions at

each decision point

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local
decision problem over actions at

each decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local
decision problem over actions at

each decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

Main idea:

𝑅($) ≔ max
&'∈)	

=
+,-

$

𝑢 + , @𝑥 − 𝑥 +

Every point in the polytope is a convex combination of
its finitely many vertices V ≔ 𝑣-, … , 𝑣. . So, operate a
change of variable: learn the convex combination, not
the points 𝑥(+)

𝑅($) ≔ max
/0∈1(2)	

=
+,-

$ ⋮
⟨𝑢 + , 𝑣⟩

⋮
, H𝜆 − 𝜆(+)

Perf. of vertex

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local
decision problem over actions at

each decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

Key question:

How to sidestep
exponential size?

Main idea:

𝑅($) ≔ max
&'∈)	

=
+,-

$

𝑢 + , @𝑥 − 𝑥 +

Every point in the polytope is a convex combination of
its finitely many vertices V ≔ 𝑣-, … , 𝑣. . So, operate a
change of variable: learn the convex combination, not
the points 𝑥(+)

𝑅($) ≔ max
/0∈1(2)	

=
+,-

$ ⋮
⟨𝑢 + , 𝑣⟩

⋮
, H𝜆 − 𝜆(+)

Perf. of vertex

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local
decision problem over actions at

each decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

Main idea:

Run a local no-regret algorithm at
each decision point to update your
strategy.

”Process” the utility vector 𝑢(+) (which
is for the whole sequence-form
strategy) and chop it up into local
feedback for each decision point.

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local
decision problem over actions at

each decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

Key question:

What is the local
feedback?

Main idea:

Run a local no-regret algorithm at
each decision point to update your
strategy.

”Process” the utility vector 𝑢(+) (which
is for the whole sequence-form
strategy) and chop it up into local
feedback for each decision point.

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local
decision problem over actions at

each decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

Main idea:

The sequence-form polytope is a convex set. So, we can
apply the FTRL algorithm in its general form, and that
guarantees no-regret

𝑥(&) = argmax
!∈+

⟨𝑈(&), 𝑥⟩ −
1
𝜂
𝜓(𝑥)	

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local
decision problem over actions at

each decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

Key question:

What regularizers are
easy to deal with?

Main idea:

The sequence-form polytope is a convex set. So, we can
apply the FTRL algorithm in its general form, and that
guarantees no-regret

𝑥(&) = argmax
!∈+

⟨𝑈(&), 𝑥⟩ −
1
𝜂
𝜓(𝑥)	

Kernelized MWU

𝜆(J) ≔ J
|L!|

𝟏	 ∈ ℝL!

For 𝑡 = 1, 2, …
Play mixed strategy ΩM ∋ 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe reward vector 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈.!
R(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω3 ⊆ ℝ4
𝑉5 vertices of Ω3

General Setup:

ΩZ ⊆ ℝP		polyhedral strategy set
for Player i (e.g., sequence-form
polytope for EFGs) with 0/1
vertices

𝑉M verCces of ΩZ

𝜆(J) ≔ J
|L!|

𝟏	 ∈ ℝL!

For 𝑡 = 1, 2, …
Play mixed strategy ΩM ∋ 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe reward vector 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈.!
R(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω3 ⊆ ℝ4
𝑉5 vertices of Ω3

“Utility of vertex v”

…We weight vertices using MWU

General Setup:

ΩZ ⊆ ℝP		polyhedral strategy set
for Player i (e.g., sequence-form
polytope for EFGs) with 0/1
vertices

𝑉M verCces of ΩZ

𝜆(J) ≔ J
|L!|

𝟏	 ∈ ℝL!

For 𝑡 = 1, 2, …
Play mixed strategy ΩM ∋ 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe reward vector 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈.!
R(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω3 ⊆ ℝ4
𝑉5 vertices of Ω3

𝜆(J) ≔ J
|L!|

𝟏	 ∈ ℝL!

For 𝑡 = 1, 2, …
Play mixed strategy ΩM ∋ 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe reward vector 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈.!
R(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω3 ⊆ ℝ4
𝑉5 vertices of Ω3

Main theorem

When ΩM has 0/1-coordinate
vertices, Vertex MWU can be

implemented using d+1
evaluations of the 0/1-

polyhedral kernel at each
iteration

𝜆(J) ≔ J
|L!|

𝟏	 ∈ ℝL!

For 𝑡 = 1, 2, …
Play mixed strategy ΩM ∋ 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe reward vector 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈.!
R(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω3 ⊆ ℝ4
𝑉5 vertices of Ω3

Main theorem

When ΩM has 0/1-coordinate
vertices, Vertex MWU can be

implemented using d+1
evaluations of the 0/1-

polyhedral kernel at each
iteration

Crucially independent on the number of vertices of ΩM!

As long as the kernel function can be evaluated efficiently,
then Vertex (O)MWU can be simulated in polynomial time

Setup
Ω ⊆ ℝP
𝑉 vertices of Ω
𝑉 ⊆ {0, 1}P

Setup
Ω ⊆ ℝP
𝑉 vertices of Ω
𝑉 ⊆ {0, 1}P

Definition (0/1-feature map of Ω)

𝜙[∶ ℝP → ℝL, 𝜙[𝑥 𝑣 ≔ ∏\:O \ ^J𝑥[𝑘]

Setup
Ω ⊆ ℝP
𝑉 vertices of Ω
𝑉 ⊆ {0, 1}P

Definition (0/1-feature map of Ω)

𝜙[∶ ℝP → ℝL, 𝜙[𝑥 𝑣 ≔ ∏\:O \ ^J𝑥[𝑘]

Given any vector, for each vertex it computes the product
of the coordinates that are hot for that vertex

Setup
Ω ⊆ ℝP
𝑉 vertices of Ω
𝑉 ⊆ {0, 1}P

Definition (0/1-feature map of Ω)

𝜙[∶ ℝP → ℝL, 𝜙[𝑥 𝑣 ≔ ∏\:O \ ^J𝑥[𝑘]

Given any vector, for each vertex it computes the product
of the coordinates that are hot for that vertex

Definition (0/1-polyhedral kernel of Ω)

𝐾[∶ ℝP×ℝP → ℝ, 𝐾[𝑥, 𝑦 ≔ 𝜙[𝑥 , 𝜙[𝑦 = ∑O∈L∏\:O \ ^J𝑥 𝑘 ⋅ 𝑦[𝑘]

Let’s see how the feature map and the kernel help
simulate Vertex MWU

Idea #1
𝜆(J) ≔ J

|L|𝟏	 ∈ ℝ
L

For 𝑡 = 1, 2, …
Play 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe utility 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈. R
(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ4
𝑉 vertices of Ω
𝑉 ⊆ {0,1}4 Recall (feature map):

𝜙! ∶ ℝ" → ℝ#, 𝜙! 𝑥 𝑣 ≔ ∏$:& $ '(𝑥[𝑘]

5

3

Idea #1
𝜆(J) ≔ J

|L|𝟏	 ∈ ℝ
L

For 𝑡 = 1, 2, …
Play 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe utility 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈. R
(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ4
𝑉 vertices of Ω
𝑉 ⊆ {0,1}4

Lemma 1: At all times t, 𝜆 N is
proportional to the feature

map of the vector

ℝP ∋ 𝑏 N ≔ exp 𝜂H
c^J

NdJ

𝑢 c 	

Recall (feature map):
𝜙! ∶ ℝ" → ℝ#, 𝜙! 𝑥 𝑣 ≔ ∏$:& $ '(𝑥[𝑘]

Proof: by induction

5

3

Idea #1
𝜆(J) ≔ J

|L|𝟏	 ∈ ℝ
L

For 𝑡 = 1, 2, …
Play 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe utility 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈. R
(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ4
𝑉 vertices of Ω
𝑉 ⊆ {0,1}4

Lemma 1: At all times t, 𝜆 N is
proportional to the feature

map of the vector

ℝP ∋ 𝑏 N ≔ exp 𝜂H
c^J

NdJ

𝑢 c 	

Recall (feature map):
𝜙! ∶ ℝ" → ℝ#, 𝜙! 𝑥 𝑣 ≔ ∏$:& $ '(𝑥[𝑘]

Proof: by induction

Consequence: by keeping track of 𝑏(N) we
are implicitly keeping track of 𝜆(N) as well

…So, no need to actually perform the update on
line 5 explicitly

5

3

Idea #1
𝜆(J) ≔ J

|L|𝟏	 ∈ ℝ
L

For 𝑡 = 1, 2, …
Play 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe utility 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈. R
(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ4
𝑉 vertices of Ω
𝑉 ⊆ {0,1}4

Lemma 1: At all times t, 𝜆 N is
proportional to the feature

map of the vector

ℝP ∋ 𝑏 N ≔ exp 𝜂H
c^J

NdJ

𝑟 c 	

Recall (feature map):
𝜙! ∶ ℝ" → ℝ#, 𝜙! 𝑥 𝑣 ≔ ∏$:& $ '(𝑥[𝑘]

Proof: by induction

Consequence: by keeping track of 𝑏(N) we
are implicitly keeping track of 𝜆(N) as well

…So, no need to actually perform the update on
line 5 explicitly

5

3

Remaining obstacle: how can
we evaluate line 3 with only

implicit access to 𝜆(&) via 𝑏(&)?

Idea #2
𝜆(J) ≔ J

|L|𝟏	 ∈ ℝ
L

For 𝑡 = 1, 2, …
Play 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe utility 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈. R
(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ4
𝑉 vertices of Ω
𝑉 ⊆ {0,1}4 Lemma 1: At all times t, 𝜆 N is

proportional to the feature map
of the vector

ℝ" ∋ 𝑏) ≔ exp 𝜂=
*'(

)+(

𝑢 * 	
5

3

Idea #2
𝜆(J) ≔ J

|L|𝟏	 ∈ ℝ
L

For 𝑡 = 1, 2, …
Play 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe utility 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈. R
(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ4
𝑉 vertices of Ω
𝑉 ⊆ {0,1}4 Lemma 1: At all times t, 𝜆 N is

proportional to the feature map
of the vector

ℝ" ∋ 𝑏) ≔ exp 𝜂=
*'(

)+(

𝑢 * 	
5

3

Lemma 2: At all times t, 𝑥 N can be reconstructed from 𝑏(N) as

𝑥(N) = 1 −
𝐾[𝑏 N , 𝟏 − 𝑒J
𝐾[𝑏 N , 𝟏

, … , 1 −
𝐾[(𝑏 N , 𝟏 − 𝑒P)
𝐾[(𝑏 N , 𝟏)

(d+1 kernel
evaluations)

𝜆(J) ≔ J
|L|𝟏	 ∈ ℝ

L

For 𝑡 = 1, 2, …
Play 𝑥(N) ≔ ∑O	∈	L! 𝜆

(N) 𝑣 ⋅ 𝑣

Observe utility 𝑢(N) ∈ ℝP

Set 𝜆 NQJ 𝑣 ≔ R(#) O ⋅T%	⟨(# ,*⟩

∑*,∈. R
(#) O, ⋅T%	⟨(# ,*,⟩

Vertex MWU algorithm
Setup

Ω ⊆ ℝ4
𝑉 vertices of Ω
𝑉 ⊆ {0,1}4

𝑏(J) ≔ 0 ∈ ℝP
𝑏(J) ≔ 𝟏	 ∈ ℝP

For 𝑡 = 1, 2, …

Play 𝑥(+) ≔ 1 − 6! 7 " ,𝟏:;#
6! 7 " ,𝟏

, … , 1 − 6!(7 " ,𝟏:;$)
6!(7 " ,𝟏)

Observe utility 𝑢(N) ∈ ℝP

Set 𝑏 NQJ ≔ exp 𝜂 ∑c^JN 𝑢 c

Kernelized MWU algorithm
Setup

Ω ⊆ ℝ4
𝑉 vertices of Ω
𝑉 ⊆ {0,1}4

Handout with proof at: https://www.mit.edu/~gfarina/2024/mit_theory_reading_group_komwu_2024/

Counterfactual Regret
Minimization

Idea: Minimize regret globally on the tree
by thinking locally at each decision point

Counterfactual Regret Minimization

Idea: Minimize regret globally on the tree
by thinking locally at each decision point

🚨
Papercut
Alert™

Counterfactual Regret Minimization

Idea: Minimize regret globally on the tree
by thinking locally at each decision point

CFR updates strategies in behavioral form…🚨
Papercut
Alert™

Counterfactual Regret Minimization

Idea: Minimize regret globally on the tree
by thinking locally at each decision point

CFR updates strategies in behavioral form…

…but is a no-external-regret algorithm for
sequence-form strategies

🚨
Papercut
Alert™

Counterfactual Regret Minimization

Big Picture Idea:

A B
C

D E F

Local
Learner

Local
Learner

Local
Learner

Local
Learner

Local
Learner

Local
Learner

Each local
learner is

responsible for
refining the

behavior at their
decision point

Can locally use
regret matching,

mulBplicaBve
weights update,

…

Local Training Feedback

Each local learner receives as feedback what is known as a
counterfactual utility vector

This is constructed starBng from the 𝑢(")

Recall: Learning in Normal-Form Games

Learning
Algorithm

Recall: Learning in Normal-Form Games

Learning
Algorithm

0.6

0.3

0.1

Strategy

Recall: Learning in Normal-Form Games

Learning
Algorithm

0.6

0.3

0.1

-2.0

+1.4

-0.7

StrategyUtility vector

Recall: Learning in Normal-Form Games

CFR
Learning

Algorithm

𝑏J 𝑏e

𝑏f 𝑏g

Probabiliaes of acaons chosen
by local learners

Local
Learner

Local
Learner

Recall: Learning in Normal-Form Games

CFR
Learning

Algorithm

𝑏J

𝑏e

𝑏J𝑏f

𝑏J𝑏g

Strategy
(in sequence form)

𝑏J 𝑏e

𝑏f 𝑏g

Probabilities of actions chosen
by local learners

Local
Learner

Local
Learner

Recall: Learning in Normal-Form Games

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4

CFR
Learning

Algorithm-0.7 -0.4

Local
Learner

Local
Learner

Recall: Learning in Normal-Form Games

-2.0

+1.4

-0.7

-0.4

Utility vector
(for sequence-form
strategy)

Strategy

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4

CFR
Learning

Algorithm-0.7 -0.4

Local
Learner

Local
Learner

Recall: Learning in Normal-Form Games

-2.0

+1.4

-0.7

-0.4

Uality vector
(for sequence-form
strategy)

Strategy

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4 𝑏J

𝑏e

𝑏J𝑏f

𝑏J𝑏g

Strategy
(in sequence form)

CFR
Learning

Algorithm-0.7 -0.4

Local
Learner

Local
Learner

Recall: Learning in Normal-Form Games

-2.0

+1.4

-0.7

-0.4

Utility vector
(for sequence-form
strategy)

Strategy

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4 𝑏J

𝑏e

𝑏J𝑏f

𝑏J𝑏g

Strategy
(in sequence form)

CFR
Learning

Algorithm-0.7 -0.4

Main question: what utility
to pass to the local learners?

Local
Learner

Local
Learner

Counterfactual Utilities

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4

-0.7 -0.4

Local
Learner

Local
Learner

Counterfactual Utilities

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4

-0.7 -0.4

Local
Learner

Local
Learner

Give to each local learner the expected u)lity in the subtree
rooted at each ac/on:

Counterfactual Utilities

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4

-0.7 -0.4

Local
Learner

Local
Learner

Give to each local learner the expected u)lity in the subtree
rooted at each ac/on:

N𝑢f = −0.7
N𝑢g = −0.4

Counterfactual Utilities

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4

-0.7 -0.4

Local
Learner

Local
Learner

Give to each local learner the expected utility in the subtree
rooted at each action:

N𝑢f = −0.7
N𝑢g = −0.4
N𝑢e = +1.4

Counterfactual Utilities

𝑏J 𝑏e

𝑏f 𝑏g

-2.0
+1.4

-0.7 -0.4

Local
Learner

Local
Learner

Give to each local learner the expected utility in the subtree
rooted at each action:

N𝑢f = −0.7
N𝑢g = −0.4
N𝑢e = +1.4
N𝑢J = −2.0 + 𝑏f ⋅ −0.7 + 𝑏g ⋅ (−0.4)

Regret bound

• Theorem: the regret cumulated by CFR can be bounded as

𝑅@AB
(#) ≤B

C

max 0, 𝑅C
#

Decision points Local regret cumulated by learner at j

Regret bound

• Theorem: the regret cumulated by CFR can be bounded as

𝑅@AB
(#) ≤B

C

max 0, 𝑅C
#

• Therefore: if the local regret minimizers all have regret 𝑂(𝑇) ,
then CFR has regret 𝑂(𝑇) (where the 𝑂 hides game-dependent
constants)

Decision points Local regret cumulated by learner at j

Regret bound

• Theorem: the regret cumulated by CFR can be bounded as

𝑅@AB
(#) ≤B

C

max 0, 𝑅C
#

• Therefore: if the local regret minimizers all have regret 𝑂(𝑇) ,
then CFR has regret 𝑂(𝑇) (where the 𝑂 hides game-dependent
constants)

Decision points Local regret cumulated by learner at j

Further pushing performance

• Regret Matching+ at each decision point (see Lecture 5)
• Use alternation

• When computing average strategy, weigh strategy at time t by t:

𝑥̅(#) ∝B
#

𝑡	 ⋅ 𝑥(&)	

CFR+: CFR with the following seQngs:

Advantages of CFR

…On the other hand, it converges to equilibrium at a 1/sqrt(T) rate,
rather than e^(-T)

Compared to linear programming, CFR is significantly more
scalable

CFR uses an approach local to each decision point (easier to
parallelize, warm-start, etc.)

- [Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning. ICML-17]
- [Brown & Sandholm, Strategy-based warm starting for regret minimization in games, AAAI 2016]
- …

CFR Lends itself to further extensions

FTRL in Extensive-Form Games

Follow-the-Regularized-Leader

𝑥(&) = argmax
!∈+

	⟨𝑈(&), 𝑥⟩ −
1
𝜂
𝜓(𝑥)	

Depending on the choice of strongly convex regularizer 𝜓,
 solving the step above might be impractical

Follow-the-Regularized-Leader

𝑥(&) = argmax
!∈+

	⟨𝑈(&), 𝑥⟩ −
1
𝜂
𝜓(𝑥)	

Depending on the choice of strongly convex regularizer 𝜓,
 solving the step above might be impractical

Example: if 𝜓 is the squared Euclidean distance, then the solution can
be found in polynomial time but it is complicated and expensive in

practice!

Efficient Regularizers

Idea: construct regularizers that mimic the structure of the
tree-form decision problem

𝑏J 𝑏e

𝑏f 𝑏g

Local
reg. 𝜓-

Local
reg. 𝜓<

Strategy
(in sequence form)

Then is strongly convex, and the soluaon to the FTRL
problem can be computed in a borom-up fashion

Efficient Regularizers

Idea: construct regularizers that mimic the structure of the
tree-form decision problem

𝑏J 𝑏e

𝑏f 𝑏g

Local
reg. 𝜓-

Local
reg. 𝜓<

𝑏J

𝑏e

𝑏J𝑏f

𝑏J𝑏g
Strategy
(in sequence form)

𝑥 =

Then is strongly convex, and the solution to the FTRL
problem can be computed in a bottom-up fashion

Efficient Regularizers

Idea: construct regularizers that mimic the structure of the
tree-form decision problem

𝑏J 𝑏e

𝑏f 𝑏g

Local
reg. 𝜓-

Local
reg. 𝜓<

Dilated regularizers

𝜓 𝑥 ≔ 𝜓J 𝑏J, 𝑏e + 𝑏J ⋅ 𝜓e 𝑏f, 𝑏g

𝑏J

𝑏e

𝑏J𝑏f

𝑏J𝑏g
Strategy
(in sequence form)

𝑥 =
Where 𝑓- and 𝑓< are local strongly convex regularizers
(e.g., negaave entropy)

Then is strongly convex, and the solution to the FTRL
problem can be computed in a bottom-up fashion

No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Conversion to a single simplex of
convex combinations of vertices

Decomposition into local decision
problem over actions at each

decision point

Use general convex optimization
tools (e.g., FTRL)

Exploits structure
of problem and
specific learning
algorithm

Less specialized;
general tool

For large games, learning-based methods (+ function
approximation) are today the scalable state of the art

Overall: kernelization gives better theoretical
bounds on the regret

CFR gives better empirical performance

