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Imperfect-information Extensive-Form Games

* Games played on a game tree (think chess, go, poker, monopoly,
Avalon, Liar’s dice, ...)

 Stochastic moves are allowed (random draws of cards, random roll
of dice,random arrivals,...)

We will be mostly interested in the general case of
imperfect-information games

(i.e., certain moves or stochastic events are only observed by a subset of players)
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form games bring many conceptual challenges
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© Other players have control over what part of the game tree is visited/explored

. acv
* Nonetheless: many positive results &



Imperfect-Information Extensive-Form Games

How it started:

H. W. Kuhn'

A fascinating problem for the game theoretician is posed by the
common card game, Poker. While generally regarded as partaking of psycho-
logical aspects (such as bluffing) which supposedly render it Jjnaccessible
to mathematical E;EEEEEHET—Et is evident that Poker falls within the general
theory of games as elaborated by von Neumann and Morgenstern [1]. Relevant
probability problems have been considered by Borel and Ville [2] and several
variants are examined by von Neumann [1] and by Bellman and Blackwell [3].

As actually played, Poker is far too complex a game to permit a
complete analysis at present; however, this complexif?‘ts‘ESEEGE;EZg;;T_EEE
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How it’s going:
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Example (Kuhn poker).

In Kuhn poker, each player puts an ante worth $1 into the pot. Each player is then privately dealt one card
from a deck that contains 3 unique cards (Jack, Queen, King). Then, a single round of betting then occurs, with
the following dynamics. First, Player 1 decides to either check or bet S1.

Then,
 If Player 1 checks, Player 2 can check or bet another $1 after matching the pot.
* |If Player 2 checks, a showdown occurs; if Player 2 bets, Player 1 can fold or call.
* If Player 1 folds, Player 2 takes the pot; if Player 1 calls, a showdown occurs.
* |f Player 1 bets, Player 2 can fold or call the bet by matching the pot.
* If Player 2 folds, Player 1 takes the pot; if Player 2 calls, a showdown occurs.

When a showdown occurs, the player with the higher card wins the pot and the game immediately ends



How Extensive-Form Games Are Drawn
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As noted by Kuhn himself, even the previous small game already captures central
aspects of deceptive behavior

The presence of bluffing and underbidding in these solutions is
noteworthy (bluffing means betting with a ) ; underbidding means passing on
a K). All but the extreme strategies for player I, in terms of the

behavior parameters, involve both bluffing and underbidding while player
IT1's single optimal strategy instructs him to bluff with constant probabil-
ity 1/3 (underbidding is not available to him). These results compare
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A Bit of Nomenclature

* The nodes of the game tree are often called histories (will be
denoted with letter h)

* The collection of information sets for a given player is called the
information partition of the player

* The game has perfect information if all information sets are
singleton
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The structure of Information

B Second variation
Player 2 does not get to observe
her private card.




The structure of Information

B Third variation
Player 1 is allowed to look at his D/ D/ [{/ D/ [5/1] D/
private card only if he decides to
check.
D (|



The structure of Information

B Third variation
Player 1 is allowed to look at his

private card only if he decides to
check.
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Perfect Recall: information sets satisfy the fact that that no player
forgets about their actions, and about information once acquired

G ™

unexpected things
happen when trying to
formalize optimal

strategies in the presence
of imperfect recall

Sleeping Beauty problem XA 12 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

The Sleeping Beauty problem is a puzzle in decision theory in which whenever an ideally rational epistemic agent is awoken from sleep, they have no
memory of whether they have been awoken before. Upon being told that they have been woken once or twice according to the toss of a coin, once if heads
and twice if tails, they are asked their degree of belief for the coin having come up heads.

History [ edit] Sunday Monday Tuesday
» ?

The problem was originally formulated in unpublished work in the mid-1980s by Arnold Zuboff . 4 ‘

(the work was later published as "One Self: The Logic of Experience")!!] followed by a paper by H QLAS

Adam Elga.[?! A formal analysis of the problem of belief formation in decision problems with £

imperfect recall was provided first by Michele Piccione and Ariel Rubinstein in their paper: "On
the Interpretation of Decision Problems with Imperfect Recall" where the "paradox of the absent

-~ -~

» 4 222
| %@»
‘ q g N
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Perfect vs Imperfect Recall

Perfect Recall: information sets satisfy the fact that that no player
forgets about their actions, and about information once acquired

More formally:

A player i € [n] is said to have perfect recall if, for any information set I € Z;, for any two
histories h, h' € I the sequence of Player ¢’s actions encountered along the path from the root
to h and from the root to A’ must coincide (or otherwise Player ¢ would be able to distinguish

among the histories, since the player remembers all of the actions they played in the past).
The game is perfect recall if all players have perfect recall.



Strategies in Extensive-Form Games

Approach 1: Convert to Normal-
Form Game Approach 2: The RL way:
(aka “reduced normal-form “Behavioral Strategies”
representation”)



Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

oPlayer 2 O Terminal

Legend

N\
‘o Player 1 & Nature
Information set

Each player constructs a
/\ list of all possible
chk. b t ch chk. assignments of actions at

7? i \ /< \ \ e, ==

chk. bet foldcall chk bet foIdcaII chk bet foIdcaII chk bet foIdcaII chk. bet foIdcaII chk bet foIdcaII

%D\ +1 -2 1E +1 2+1 \ §1i2+1F —é#énfl El+2 Dl ‘ E1E2
/ / AR / /

fold call fold call fold call fold call fold call fold call

L g y Y L

-1 -2 -1 -2 -1 42 -1 42 -1 +2 -1 -2

)
Es
ot



Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

QPlayer 2 O Terminal

Legend

‘o Player 1 & Nature

Information set

/KJ\

\ / Each player constructs a
/</ /\ list of all possible

bet chk. assignments of actions at

PR O Py, =

cgk bft fold call chk. bet foIdcaII chk bet foIdcaII chk bet foIdcaII chk. bet foIdcaII chk bet foIdcaII

Yy \ g 2+1 IR IR ' Histories in the same
| |

1 DA Y1-2-1E 142 +1 F/\ g / i +2 = / i information must get
fold call fold call fold call ~ fold call fold call fold call aSSIgnEd the same action

L g y Y L

-1 -2 -1 -2 -1 42 -1 42 -1 +2 -1 -2



Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

‘o Player 1 & Nature
oPlayer 2 O Terminal

Legend

Information set
J

Each player constructs a
list of all possible
assignments of actions at

/

\ each information set
cgk bet fold call chk bet fold cgll cgk bet fczd ciall cgk bit foId caII chk bet foId caII chk bet foId caII Histories in the same
10D Y121 E>X 1241 >K T2l F +1 +2 1 El e R Y information must get

fold Qall fold call fold call " folepcall foll call fold gall aSSIgned the same action

L 2

-1 -2 -1 -2 -1 42 -1 42 -1 +2 -1 -2



Strategic Form

Idea: Strategy = randomize a deterministic contingency plan

- .Playerl @ Nature
g" QPlayerZ O Terminal
/ — Information set
K~ QJ
| \ Each player constructs a
list of all possible
J assignments of actions at
. , \ \ each information set
chk. bet fold/ all ¢ ilk bet foId caII chk bet fczd C§” cgk bit f}ld cgll c?k bet fold c;ll chk bet foId call Histories in the same
10D o | E>X o +1 / 121 Fe e T 4a—1 15 information must get
fold all fold call fold call ~ fol gl f cgll fold gall aSSIgnEd the same action
-1 -2 -1 -2 —1 42 -1 42 —1 42 —1 -2

No need to specify actions at histories that
are for sure unreachable
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Idea: Strategy = randomize a deterministic contingency plan
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that combination of reduced normal-
form plans
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Reduced normal-form plans for Player 2

Payoff matrix: Each cell contains the
expected utility when players use
1/3 0 1/3 1/2 that combination of reduced n'wnal-

form plans

Don’t forget
0 1/3 0 0 nature moves

With this, we have reduced the
extensive-form game to a normal-
form game (“reduced normal form of
the extensive-form game”)
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Reduced normal-form plans for Player 2

- Example: Nash equilibrium in Kuhn
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learning, linear programming, ...
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Example: Nash equilibrium in Kuhn
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Quick Aside

Recent discovery: for certain algorithms, we can actually get around the exponential size and
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Quick Aside

Recent discovery: for certain algorithms, we can actually get around the exponential size and
still operate in this exponential representation implicitly via a kernel trick

Specifically, this applies to the multiplicative weights update (MWU) algorithm.

Takeaway

Running MWU on the reduced normal-form representation
of an extensive-form game can be done in linear time per
iteration in the size of the game tree (as opposed to linear
in the number of reduced normal-form plans)

[Farina et al., 2022] Kernelized Multiplicative Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form and Normal-Form Gam
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Quick Aside

Recent discovery: for certain algorithms, we can actually get around the exponential size and
still operate in this exponential representation implicitly via a kernel trick

Specifically, this applies to the multiplicative weights update (MWU) algorithm.

Takeaway
Running MWU on the reduced normal-form representation We can use this technique to
of an extensive-form game can be done in linear time per compute Nash eq. (in two-
iteration in the size of the game tree (as opposed to linear player zero-sum games) and

in the number of reduced normal-form plans) coarse correlated equilibrium

[Farina et al., 2022] Kernelized Multiplicative Weights for 0/1-Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form and Normal-Form Gam
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Recap on Normal-Form Strategies

_____idea | Obviousdownsides

(Reduced) Normal-form Distribution over Exponentially-sized In rare cases, it’s possible
strategies deterministic strategies object to operate implicitly on
the exponential object
1 € A(Plans) via a kernel trick
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Idea: Strategy = choice of distribution over available actions
at each “decision point”

Let’s introduce some notation for the tree-form decision process faced by
each player...
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Idea: Strategy = choice of distribution over available actions

at each “decision point”
*

Let’s introduce some notation for the tree-form decision process faced by
each player...



Tree-form Decision
Processes

 The game tree is a description of the global dynamics of
the game, without taking the side of any player in
particular

 The problem faced by an individual player is called a tree-
form decision process

* TFDP provides a more natural formalism for defining
player-specific quantities and procedures, such as
strategies and learning algorithms, that inherently refer to
the decision space that one player faces while playing the
game

* From the point of view of each player, two types of nodes:
decision points and observation points




Example in Kuhn Poker (Player 1)

...... B...
,..Jack"" Queen ."Klng...
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£ % &£ v & 0%
chk.  bet chk.  bet chk.  bet
. g 1 = 4 F 1 @ Decision node
’\ /.\ /.\ »§o ® Observation node
fold call fold call fold call 5
D,{ \D El¢ \D D{ \D 0 End of process




Another Example R Tt |
- . v‘ /1 2 | O Terminal node
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Algorithm for constructing the tree-form decision process of a player:



X Observation node

Another Example PN O

@ Decision node

O Terminal node

A D BK. c"ﬂ ¥y

: : | /|
R R A S Y

Algorithm for constructing the tree-form decision process of a player:

1. For each information set of the player, construct a corresponding decision node



A @ Decision node

Another Example AT @ et

2 O Terminal node

T S RN G S

3 4

| /|
A R A S L T

Algorithm for constructing the tree-form decision process of a player:

1. For each information set of the player, construct a corresponding decision node

2. The parent of each decision node is the last action of the player on the path from the
root of the game tree to any node of the information set

. Does not matter which one
when the player has perfect
recall! (why?)



@ Decision node

Another Example

X Observation node

O Terminal node

~ Legend

Algorithm for constructing the tree-form decision process of a player:

1. For each information set of the player, construct a corresponding decision node

2. The parent of each decision node is the last action of the player on the path from the
root of the game tree to any node of the information set

. Does not matter which one
when the player has perfect
recall! (why?)

3. If multiple decision nodes want to have the same parent action, connect with an
observation node



Behavioral strategies

Idea: Strategy = choice of
distribution over available
actions at each decision point

------ Koo,
",Jack"" Qu:een King,

/" """""""""

AN AN 7\

/Chk bet /Chk. bet /Chk. bet
® h* ® h e = h ¥

chk.  bet chk.  bet chk.  bet
af 1 af d 1

fold call fold call fold call

£ % S £ %



Behavioral strategies

Idea: Strategy = choice of
distribution over available
actions at each decision point
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",Jack"" Qu:een King,
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N\ 0.9 AN 7N\
0i/chk ot S bt S by
¥ v & v g R
chk.  bet chk.  bet chk.  bet
S | £ /.{ £
fold call fold call fold call

£ % S £ %
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Idea: Strategy = choice of
distribution over available
actions at each decision point

------ e
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N\ 0.9 AN 7\
0i/chk ot S bt S by
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chk.  bet chk.  bet chk.  bet
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=t *’\ 4 Y
0.8fold call 92 fold call

£ % S

-
e,
*n
.

fold

a4

call

Y

Idea: Strategy = choice of
distribution over available
actions at each decision point
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Idea: Strategy = choice of
distribution over available
actions at each decision point
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Idea: Strategy = choice of
distribution over available
actions at each decision point
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PRTLA
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0i/chk bet 0'5/chk. bet
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0.8fold call 0-2 0.4fold call0-6
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-
.
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Idea: Strategy = choice of
distribution over available
actions at each decision point

 Set of strategies is convex



Behavioral strategies

...... ...
",Jack"" Qu:een ."Klng._.
.& """" } ......
01 .7 \ 09 . 0.5 / 0.25
;hk et 0 5/chk. bet 0 75/ bet
¥ v g R R
chk. et chk bet chk bet
+ 3 + Y £ 3
0.8fold call 0-2 0.4fold call9-® 0-1f01d call 09

SO S £ %

Idea: Strategy = choice of
distribution over available
actions at each decision point

 Set of strategies is convex

X Expected utility is not
linear in this representation

Reason: prob. of reaching a
terminal state is product of
variables
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01 .7 \ 09 . 0.5 / 0.25
;hk et 0 5/chk. bet 0 75/ bet
¥ v g R R
chk. et chk bet chk bet
+ 3 + Y £ 3
0.8fold call 0-2 0.4fold call9-® 0-1f01d call 09

SO S £ %

Idea: Strategy = choice of
distribution over available
actions at each decision point

 Set of strategies is convex

X Expected utility is not
linear in this representation

Reason: prob. of reaching a
terminal state is product of

variables /

Products = non-convexity &




Expected Utility

Game tree:

@ Player 1

- & Nature
go OPlayer 2 O Terminal
=y {‘ Informatlon set

chk. bt
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Expected Utility

Game tree:

Legend
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@) Player 2
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Expected Utility

Decision problem and behavioral strategy of Player 1

.
.
. .
______
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Y ( ) Information set
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‘e
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e v
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K . R .
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Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (PI1) x 0.4 (PI2) ¥ A T
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Expected Utility

Game tree:

Decision problem and behavioral strategy of Player 1

....... o,
._.Jack"" Queen King...
o A .....
0.5 0.25
;?Ba\be?'g O'S/Chk. bet 0'75;hk. bet
~ | @Player1l & Nature
S, OPlayer2 O Terminal | ot \D & \] & \D
\ = @ Information set chk. bet chk. bet chk. bet
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Decision problem and behavioral strategy of Player 2
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-1 -2 —1 +2 —1 +2 —1 +2 -1 -2
chk. bet chk. bet
’0 0‘ ’Q -
0.6 0.4
chk. Qet
Prob of reaching this terminal state: 1/6 (Nature) x 0.1 (PI1) x 0.4 (PI2)

ch k.Abet ch k/\bet } ﬂ/
& O ¥
x 0.8 (PI1)

chk. bet chk.
SO T
When these are variables being optimized, we have a product! Non-

A

convexity in player’s strategy



Kuhn’s Theorem

(Under perfect recall assumption)

Normal-form strategies and behavioral strategies are equally powerful
(more formally: they can induce the same distribution over terminal states)

< T™: the theorem is not true anymore if the player does not have
perfect recall!



Recap on Behavioral Strategies

______ lidea | Obviousdownsides

(Reduced) Normal-form Distribution over Exponentially-sized In rare cases, it’s possible
strategies deterministic strategies object to operate implicitly on
the exponential object
u € A(ID) via a kernel trick
Behavioral strategies Local distribution over Expected utility is Kuhn’s theorem: same
actions at each decision  nonconvex in the the power as reduced
point entries of vector b normal-form strategies

b € x; A(Aj)



“Fixing” Behavioral Strategies: Sequence-Form Strategies

Idea: Store probability for whole
sequences of actions

------ B,
",Jack"" Qu:een ."Klng._.
e« ®m T
/N N\ 7N\
;hk bet /Chk. bet ;hk. bet
R h* X N X h ¥
chk.  bet chk.  bet chk.  bet
d 1 uf uf 1
fold call fold call fold call

SO S £ %

Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility
is linear in this strategy representation!
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Idea: Store probability for whole
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Since sequence-form strategies already automatically
encode products of probabilities on paths, expected utility
is linear in this strategy representation!
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Sequence-Form Representation

Expected utility is linear in every player’s strategy (just like
normal-form games)

Where did we pay a price? In normal-form games, strategy set
is very simple (simplex). In extensive-form games, we have
sequence-form polytopes

Everything still convex: We can use convex optimization tools
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Equilibrium Computation (Extensive-Form)

BEFORE: Reduced—-normal form

Nash equilibrium in Kuhn poker:

max min x’ Ay
Xy

/ Payoff matrix on

Distribution over the left

the 27 plans of pistribution over
Player 1 the 64 nlans of
Player 2

v I Scale exponentially
OuU can use any tecl.. e e

learning, linear p.«,. ...

-

NOW: Sequence form

Nash equilibrium in Kuhn poker:

/

max min x'” By
X/ y/

/ Sequence-form

Sequence-form payoff matrix
polytope of plave

: : " Sequence-form
1 (dimension 12)

polytope of plaver
2 (dimension 12)
Scale linearly with

You can still use learnin tree size




Recap

______ lidea | Obviousdownsides

(Reduced) Normal-form
strategies

Behavioral strategies

Sequence-form
strategies

Distribution over
deterministic strategies

u € A(ID)

Local distribution over
actions at each decision
point

"Probability flows” on
the tree-form decision
process

X € Q (convex polytope)

Exponentially-sized
object

Expected utility is
nonconvex in the the
entries of vector b

None

In rare cases, it’s possible
to operate implicitly on
the exponential object
via a kernel trick

Kuhn’s theorem: same
power as reduced
normal-form strategies

Everything is convex!

Kuhn’s theorem applies
automatically.
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Recall (Part I): No-External-Regret ey,

X = sequence-form polytope for
extensive-form games

Utility vectors .
y Strategies

Learnin
u(*) —) ; ) O e X

Algorithm

Objective: sublinear (external) regret
T

R(T) maxz(u(t), % — x(O)
xeEX
t=1
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Recall (Part I): Learning Algorithms

Regret matching (RM): Probability of each action

(t) GIN
proportional to ReLU of regret on the action & [r ]

Multiplicative Weights Update (MWU): Prob. of each  ,.(©) « exp(n - )
action proportional to exp of regret on the action

Recall: MWU is FTRL
with negative entropy

Follow-The-Regularized-Leader (FTRL):

1
() — () 2y — =
X argmax(r’, x) . P (x)



Recall (Part I): Connections with Equilibria

* Recall: when all players play external-regret-minimizing
strategies, then:

* In two-player zero-sum games, their average strategies converge to the set of
Nash equilibrium (gives an alternative approach to previous lecture)

* In general, the average product distribution of play converges to the set of
coarse-correlated equilibria

1 2L 2 gt ¢ £t t+1
Re £ Y R X Ry B Y R B
1 £1 2 T gt t £t t+1
Ry |2 SN - S N 24 r, P > my P
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Exploits
structure of
problem and
specific learning
algorithm
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general tool
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No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Exploits
structure of Conversion to a single simplex of

problem and convex combinations of vertices
specific learning

algorithm

Decomposition into local
decision problem over actions at
each decision point

Use general convex optimization

Less specialized; tools (e.g., FTRL)
general tool




No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Main idea:
Exploits ‘\ /
structure of Conversion to a single simplex of \ !’
o o . /
problem and convex combinations of vertices e’
specific learning )
algorithm /

Every point in the polytope is a convex combination of
its finitely many vertices V := {v,, ..., v,,}. So, operate a
change of variable: learn the convex combination, not

the points x(® ..
Perf. of vertex
RM = maxz(u(t),a’c‘ — x(®)
Xex

t=1 T :
Less specialized,; : A
general tool R(M = _max z (u(t), vy |, A— A0

AEA(V) :

t=1




No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Main idea: Key question:

Exploits \\ / :
structure of Conversion to a single simplex of \ ,( How to sidestep

. . . / i ize?
problem and. convex combinations of vertices e exponential size:
specific learning )
algorithm )

\\.

Every point in the polytope is a convex combination of
its finitely many vertices V := {v,, ..., v,,}. So, operate a
change of variable: learn the convex combination, not

the points x(® ..
Perf. of vertex
RM = maxz(u(t),a’c‘ — x(®)
Xex

t=1 T :
Less specialized,; : A
general tool R(M = _max Z (u(t), vy |, A— A0

AEA(V) :

t=1




No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Main idea:
Exploits
structure of
problem and Local
specific learning Learner [
algorithm /.Ar'"
o chk.  bet Run a local no-regret algorithm at
Decomposition into local ¥ \D . 9 J
. . X each decision point to update your
decision problem over actions at Rad strate
each decision point chk.  bet gy
DF Local
G "Process” the utility vector u(® (which
fold ca is for the whole sequence-form
o m’l \El strategy) and chop it up into local
Less specialized; feedback for each decision point.
general tool




No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Main idea: Key question:
Exploits :
structure of What IS the l.ocal.
problem and Local feedback?
specific learning S
algorithm /Ar""
o chk.  bet Run no-regr rithm
Decomposition into local ¥ \D un @ loc.a-l 0reg et algorithm at
. . X each decision point to update your
decision problem over actions at o strate
each decision point chk.  bet gy
D’. Local
G "Process” the utility vector u(® (which
fold ca is for the whole sequence-form
o 1:1" )‘D strategy) and chop it up into local
Less specialized; feedback for each decision point.
general tool




No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

Use general convex optimization

tools (e.g., FTRL)

Main idea:

The sequence-form polytope is a convex set. So, we can
apply the FTRL algorithm in its general form, and that
guarantees no-regret

1
() = (©) 5y — —
X arg rileaé(U , X) ; Y(x)



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Exploits
structure of
problem and
specific learning
algorithm

Less specialized;
general tool

Use general convex optimization

tools (e.g., FTRL)

Main idea: Key question:

What reqularizers are

easy to deal with?

The sequence-form polytope is a convex set. So, we can
apply the FTRL algorithm in its general form, and that
guarantees no-regret

1
() = (0 5y — =
X arg ?eaé(w , X) ; Y(x)



N
No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Main idea: Ke
Exploits structure ‘\ /
of problem and Conversion to a single simplex of \ /{
ifi i . = - 7
specific learning convex combinations of vertices .

algorithm

Every point in the polytope
finitely many vertices V :=

change of variable: learn t
T

points x®
R(M = maxZ(u(t),J’c‘

XeX
t=1
Less specialized;
p R =

general tool

Kernelized MWU




General Setup:

Q; € R? polyhedral strategy set
for Player i (e.g., sequence-form
polytope for EFGs) with 0/1
vertices

V; vertices of ();

Vertex MWU algorithm

A =—=1 e R

Vil
Fort=1,2,..

Setup
Q; € R4
V; vertices of ();

Play mixed strategy Q; 2 x(® :== v, AO[] - v

Observe reward vector u(®) € R¢

Set A+ [p]

A®[p].en @)

%1y, AOW e @O




General Setup:

Q; € R? polyhedral strategy set
for Player i (e.g., sequence-form
polytope for EFGs) with 0/1
vertices

V; vertices of ();

Vertex MWU algorithm

Setup
10 =11 e RV Q; € R4
Vil V; vertices of Q;
Fort=1,2,..

Play mixed strategy Q; 2 x(® :== v, AO[] - v

Observe reward vector u(®) € R¢

Set A+ [p]

21@® [v].enlm(t),v) )
= Zvlev- 1G) [vl].en(u(t),zx
i

/

...We weight vertices using MWU

“Utility of vertex v”



Vertex MWU algorithm

Setup
10 =11 e RV Q; € R4
Vil V; vertices of Q;

Fort=1,2,..
Play mixed strategy Q; 2 x(® :== v, AD[] - v

Observe reward vector u(®) € R¢

A®[p].en @)

Set A+ [p] =

%1y, AOW e @O




Main theorem

When Q; has 0/1-coordinate
vertices, Vertex MWU can be
Implemented using d+1T
evaluations of the 0/1-
polyhedral kernel at each
Iteration

Vertex MWU algorithm

Setup
10 =11 e RV Q; € R4
Vil V; vertices of Q;

Fort=1,2,..
Play mixed strategy Q; 2 x(® :== v, AD[] - v

Observe reward vector u(®) € R¢

O[] 01 D v)
Set A+ [p] = A lvle

%1y, AOW e @O




Main theorem

When Q; has 0/1-coordinate
vertices, Vertex MWU can be
Implemented using d+17

evaluations of the 0/
polyhedral kernel at eagh
Iiteration

Vertex MWU algorithm

Setup
10 =11 e RV Q; € R4
Vil V; vertices of Q;

Fort=1,2,..
Play mixed strategy Q; 2 x(® :== v, AO[] - v

Observe reward vector u(®) € R¢

O [p].e1 @ v)
set A+ [p] = —2 ol e

Zv’evi A®[p']-en w(® p!)

Crucially independent on the number of vertices of ();!

As long as the kernel function can be evaluated efficiently,
then Vertex (O)MWU can be simulated in polynomial time



0 cR4

Setup

IV vertices of ()
V c{0,1}¢




0 cR4

Definition (0/1-feature map of Q)

¢Q : ]Rd D ]RVI

Setup

I/ vertices of ()
V c {0,1}¢

b () [v] = .p[ry=1 X[X]




Setup
0 c R?
I/ vertices of ()
V c {0,1}¢
Definition (0/1-feature map of Q)
¢q : R > R, pa(0)[v] = Hk:v[k]:1 x|k]

Given any vector, for each vertex it computes the product
of the coordinates that are hot for that vertex



Setup
0 c R?
I/ vertices of ()
V c {0,1}¢
Definition (0/1-feature map of Q)
¢q : R > R, pa(0)[v] = Hk:v[k]zl x|k]

Given any vector, for each vertex it computes the product
of the coordinates that are hot for that vertex

Definition (0/1-polyhedral kernel of Q)

Ko : RIXRY > R,  Ko(x,y) = {pa(x), o)) = Zvev [iwp=1 ¥[k] - y[k]



Let's see how the feature map and the kernel help
simulate Vertex MWU



ldea #1

Vertex MWU algorithm

Recall (feature map):

¢.Q : Rd - RVI

P () [v] = [ljp)=1 x[k]

Setup
A(l);=i1 ERV .QQ]Rd
14 V vertices of Q
Fort=1,2,.. Ve {01

Q Play x® = ¥, ey AO[v] - v

Observe utility u(®) € R%

o Set A+ [p] =

A®[p].en D)
%1y AO[W]-en @O0




Vertex MWU algorithm
Idea #1 P
.11 erV Q c R
14 V vertices of £
Recall (feature map): Fort=1,2,... ve{o
bo: R > R",  ¢pa()[v] = [Tippy=1 *[k
° ! vlil=1 X[K] e Play x(©) = ZvEVi A0 lv] - v
Lemma 1: At all times t, A is Observe utility u(® € R4
proportional to the feature O @)
map of the vector e Set AV [y] = = A([g][j] O
viev ' ,

t-1
R% 3 b® = exp {n u(T)}

=1

Proof: by induction



ldea #1

Vertex MWU algorithm

Recall (feature map):
(p.Q : Rd - IRVl (pQ(X)[U] = Hk:v[k]=1x[k]

Lemma 1: At all times t, A is
proportional to the feature
map of the vector

t-1
R% 3 b® = exp {n u(T)}

=1

Proof: by induction

Setup
.11 erV Q c R
14 V vertices of Q)
- d
Fort=1,2,.. <ol

e Play x® = ¥, ey AO[v] - v

Observe utility u® € R%

e Set A+ [p] =

A®[p].en D)
S 1y AO[v']-en @Erh

Consequence: by keeping track of b® we
are implicitly keeping track of () as well

...50, no need to actually perform the update on
line 5 explicitly



ldea #1

Vertex MWU algorithm

Recall (feature map):
da: RT>RY,  ¢a(0)[v] = [Tipp=1 x[K]

Lemma 1: At all times t, A is
proportional to the feature
map of the vector

t—1

Remaining obstacle: how can

we evaluate line 3 with only
implicit access to 1Y) via h(D)?

Setup
A0 =11 eRV Q & R
14 V vertices of Q
Fort =1, 2, ... Ve {01

e Play x® = ¥, ey AO[v] - v

Observe utility u(®) € R%

e Set A+ [p] =

A®[p].en D)
%1y AO[W]-en @O0

Consequence: by keeping track of b® we
are implicitly keeping track of () as well

...50, no need to actually perform the update on
line 5 explicitly



ldea #2

Vertex MWU algorithm

Lemma 1: At all times t, 1) is
proportional to the feature map
of the vector

t—1
R% 5 b® := exp {n Z u(T)}

=1

Setup
A(l);=i1 ERV .QQ]Rd
14 V vertices of Q
Fort=1,2,.. Ve {01

Q Play x® = ¥, ey AO[v] - v

Observe utility u(®) € R%

e Set A+ [p] =

A®[p].en D)
%1y AO[W]-en @O0




ldea #2

Vertex MWU algorithm

Lemma 1: At all times t, A is
proportional to the feature map
of the vector

t—1
R% 3 p(®) = exp {n z u(T)}
=1

Setup
A(l);zil ERV .QE]Rd
14 V vertices of Q
Fort =1, 2, ... Ve {01

e Play x® = ¥, ey AO[v] - v

Observe utility u® € R%

e Set A+ [p] =

A®[p].en D)
S 1y AO[v']-en @Erh

Lemma 2: At all times t, x() can be reconstructed from b® as

(d+1 kernel

o _ (1 _Ka(®©1-e)  Ka(b®,1-eq)
Kq(b®, 1)

evaluations)

|
Kq(b®,1) )



Vertex MWU algorithm

Kernelized MWU algorithm

Setup
10 .=11 eRrV Q € R?
14 V vertices of Q
Fort=1,2,.. ve{oy

Play x®) = Dy EV; A0 lv] - v

Observe utility u(®) € R?

A®[p].en @)
S 1oy AO '] -en @O

Set A+ [p] =

Setup
bW :=1 € R? 0 c R
I vertices of ()
Fort =1,2,.. Ve {0137
© — (1 _ Ka(0W1-e1) _ Ka(0®W1-¢g)
ARyt (1 Ko(p®,1) "™ ! Ka(b®,1)

Observe utility u(®) € R%

Set btV = exp{n ¥t ; u®}

Handout with proof at: https://www.mit.edu/~gfarina/2024/mit_theory reading_group_komwu_ 2024/




No—Re\ght Algorithms for EFGs

Different conceptual approaches exist:

Main idea: (

Exploits structure [

of problem and
specific learning Local
algorithm Learner gy

.&

wy . - .. Chk. bet
Decomposition into local decision ¥ \D

problem over actions at each

decision point chk.  bet
:
Learner
fold ca

£ b

Less specialized;
general tool

Counterfactual Regret
Minimization



Counterfactual Regret Minimization

ldea: Minimize regret globally on the tree
by thinking locally at each decision point
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ldea: Minimize regret globally on the tree
by thinking locally at each decision point
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Alert™



Counterfactual Regret Minimization

ldea: Minimize regret globally on the tree
by thinking locally at each decision point

| CFR updates strategies in behavioral form...

™



Counterfactual Regret Minimization

ldea: Minimize regret globally on the tree
by thinking locally at each decision point

g CFR updates strategies in behavioral form...

™ ...but is a no-external-regret algorithm for
sequence-form strategies



Big Picture Idea:

Local Local
Learne Learner
chk

bet

.
/Chk bet
X g %
chk. bet chk bet chk bet
Er.' : Local Local Local
Learner Learner A Learner
fold ca fold caII fold call

£ £

Each local

learner is
responsible for
refining the
behavior at their
decision point

Can locally use
regret matching,
multiplicative
weights update,



Local Training Feedback

Each local learner receives as feedback what is known as a
counterfactual utility vector

This is constructed starting from the u(%)



Recall: Learning in Normal-Form Games

Learning

Algorithm
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Recall: Learning in Normal-Form Games

[

0.6
Learning
Algorithm ‘ - @
0.1 @

Utility vector Strategy



Recall: Learning in Normal-Form Games

CFR

Learning
Algorithm

Probabilities of actions chosen
by local learners



Recall: Learning in Normal-Form Games

Probabilities of actions chosen
by local learners

by
W ) b
Learning
Algorithm b1b3
b1b4

Strategy
(in sequence form)



Recall: Learning in Normal-Form Games

Local
Learner i
/Y

bl b2 +1.4
¥ 2.0
X
cbk bet - CER
=l ‘R Learning
-0.7 b b4 -0.4 Algorithm

e



Recall: Learning in Normal-Form Games

Local .
Learner PRI
Y

b, b,
¥ 2.0 e -2.0
¥
chk'. bg‘t o ' CFR
] R Learning

0.7 bz by -04 ' Algorithm

£

.......................................................................................................... Strategy

Utility vector
(for sequence-form
strategy)



Recall: Learning in Normal-Form Games

Local et
Learner PRI
A

@/lgo by 414 2.0 bq
chk.  bet +1.4 CFR b,
S e ‘ ‘
= R 0 Learning b.b
07 b3 by-04 0.7 Algorithm 1o

.......................................................................................................... -0.4 b1b4

Strategy

Utility vector _
(in sequence form)

(for sequence-form
strategy)



Recall: Learning in Normal-Form Games

Local et
Learner e
N

/lgo b2 +1.4 2.0 bl
¥
chk.  bet +1.4 CFR b,
g mn) TSN mm)
R Learner 0.7 earr.ung b1b3
0.7 bz by -04 ' Algorithm
D}l __________________ \D ____________________________________ -0.4 b1b,
Main question: what utility Utility vector Strategy

(for sequence-form (in sequence form)

to pass to the local learners?
strategy)



Counterfactual Utilities

Local
Learner P
bl b2 +1.4
&l 2.0

chk. bet
Er" 4 Local
R Learner

0.7 by by -04

£




Counterfactual Utilities

Local
Learner P
bl b2 +1.4
8/ 2.0

Give to each local learner the expected utility in the subtree
rooted at each action:

chk. bet
Er: 4 Local
R Learner

0.7 by by -04

£




Counterfactual Utilities

Local e
Learner <

an Give to each local learner the expected utility in the subtree
b4 by .14 rooted at each action:
¥ 2.0 .
& Uz = —0.7
chk. bet u, =—04

D’ « Local
R Learner

-0.7 b3 b4_ -0.4

£




Counterfactual Utilities

Local e
Learner <

£ N

Give to each local learner the expected utility in the subtree

b4 by .14 rooted at each action:
¥ 2.0 | .
.8. Uz = —0.7
chk. ‘bgt u, =—0.4
SO i

Local
B o

0.7 by by -04

£




Counterfactual Utilities

Local e
Learner <

an Give to each local learner the expected utility in the subtree
b4 by .14 rooted at each action:
¥ 2.0

Us

® —0.7
chk'.. ‘bgt u, =—0.4
; 4 Local P

S T = +14

-0.7;3 b, 0.4 ity =—2.0+b3:-(—0.7)+ by - (—0.4)




Regret bound

* Theorem: the regret cumulated by CFR can be bounded as

Rg?R < z max {O, RJ.(T)}
-~ \

Decision points Local regret cumulated by learner at j



Regret bound

* Theorem: the regret cumulated by CFR can be bounded as

(T) (T)
Repp < max 30, Rj
/ﬁj '\
Decision points Local regret cumulated by learner at j

» Therefore: if the local regret minimizers all have regret 0(V/T),

then CFR has regret O(+/T) (where the O hides game-dependent
constants)



Regret bound

* Theorem: the regret cumulated by CFR can be bounded as
Rg?R < Zmax O R( )

\

Decision pomts Local regret cumulated by learner at j

» Therefore: if the local regret minimizers all have regret 0(V/T),

then CFR has regret O(+/T) (where the O hides game-dependent
constants)

Therefore: if both players in a zero-sum extensive-form

game play according to CFR, the average strategy
converges to Nash equilibrium at rate 0(1/\/7)




Further pushing performance

CFR+: CFR with the following settings:

* Regret Matching+ at each decision point (see Lecture 5)
 Use alternation

e} A %
Rx [© ﬁ Rx |© I i yi Rx |2 :
R R — R R —
~y 2 ” y? £y ~y £, ” y'
* When computing average strategy, weigh strategy at time t by t:

T

(1) o z £y ®



Advantages of CFR

Compared to linear programming, CFR is significantly more
scalable

...0n the other hand, it converges to equilibrium at a 1/sqrt(T) rate,
rather than e”(-T)

CFR uses an approach local to each decision point (easier to
parallelize, warm-start, etc.)

- [Brown & Sandholm, Reduced Space and Faster Convergence in Imperfect-Information Games via Pruning. ICML-17]
- [Brown & Sandholm, Strategy-based warm starting for regret minimization in games, AAAI 2016]



CFR Lends itself to further extensions

 Using utility estimators

— Similar idea as stochastic gradient descent vs gradient
descent

— Instead of exactly computing the green numbers
(gradients of the utility function), we use cheap unbiased
estimators

— Popular estimator: sample a trajectory in the game tree
and use importance sampling

— “Monte Carlo CFR"” [Monte Carlo Sampling for Regret
Minimization in Extensive Games; Lanctot, Waugh,
Zinkevich, Bowling NIPS 2009]

— Even better algorithm, ESCHER, does not use importance
sampling [McAleer, Farina, Lanctot & Sandholm /ICLR-23]



FTRL In Extensive-Form Games



Follow-the-Regularized-Leader

1
() = () 5y — =
X arg Teaé( (U\Y, x) ; Y(x)

Depending on the choice of strongly convex regularizer v,
solving the step above might be impractical



Follow-the-Regularized-Leader

1
() = () 5y — —
X arg r)gleaé( (U\*, x) ; Y(x)

Depending on the choice of strongly convex regularizer v,
solving the step above might be impractical

Example: if Y is the squared Euclidean distance, then the solution can
be found in polynomial time but it is complicated and expensive in
practice!



Efficient Regularizers

ldea: construct regularizers that mimic the structure of the
tree-form decision problem

Then is strongly convex, and the solution to the FTRL

Strategy problem can be computed in a bottom-up fashion

(in sequence form)




Efficient Regularizers

ldea: construct regularizers that mimic the structure of the
tree-form decision problem

by
b,
X =
byb3
b1b,
Strategy

(in sequence form)

Then is strongly convex, and the solution to the FTRL
problem can be computed in a bottom-up fashion



Efficient Regularizers

ldea: construct regularizers that mimic the structure of the
tree-form decision problem

by
b,
X =
byb3
b1b,
Strategy

(in sequence form)

Dilated regularizers

Y(x) :=11(by,by) + by - P, (b3, by)

Where f; and f, are local strongly convex regularizers
(e.g., negative entropy)

Then is strongly convex, and the solution to the FTRL
problem can be computed in a bottom-up fashion



No-Regret Algorithms for EFGs

Different conceptual approaches exist:

Exploits structure

f problem and ' ' ' i o :
SR Conversion to a single simplex of Overall: kernelization gives better theoretical
. ° convex combinations of vertices bounds on the regret

algorithm

Decomposition into local decision , ..
CFR gives better empirical performance

problem over actions at each
decision point

For large games, learning-based methods (+ function
approximation) are today the scalable state of the art

Use general convex optimization

Less specialized; tools (e.g., FTRL)
general tool




