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Learning-Augmented Algorithms

* Tension between classic analysis of algorithms and machine learning:

Worst-Case Analysis Machine Learning

of Algorithms Algorithms

* Worst-case analysis provides robust guarantees, but often too pessimistic

* Machine learning algorithms work well, but lack robustness

Problem _
Instance ‘ Algorithm ‘ Output

T

Machine- Learned Advice (Predictions)



Learning-Augmented Algorithms

* |ldeal algorithm with predictions:

* Achieve optimal performance guarantees when predictions are accurate,
without sacrificing worst-case guarantees when they are arbitrarily bad

* Framework originally proposed by Mahdian, Nazerzadeh, and Saberi [EC ‘07]

* Evaluation measures proposed by Lykouris and Vassilvitskii [ICML 18, JACM "21]:

* Robustness: worst-case performance guarantee
* Consistency: worst-case performance for instances with accurate prediction

* This provides a natural refinement of worst-case analysis
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https://algorithms-with-predictions.github.io/
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Learning-Augmented Mechanism Design

E.g., auctions, network
protocols, voting procedures,

fair division, etc.
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Online Auctions for a Single Good

v, = 300 v, = 500
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Each bidder announces their arrival and departure and reports their bid

A bidder can receive the good only during their true active interval

Bidders can announce a delayed arrival time and an earlier departure time

Bidders can also arbitrarily misreport their value when they bid

* The auctioneer must make irrevocable decisions based only on bids from agents that

have already arrived, aiming to maximize revenue
[Hajiaghayi-Kleinberg-Parkes EC '04]



Connection to Secretary Problem

v, = 300 v, = 500
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* |f the arrival-departure intervals are disjoint, this closely resembles secretary problem

* The goal there is to maximize the probability of choosing maximum value agent

* Two crucial differences for secretary problem mechanismes:

 The mechanism only benefits if the highest value agent is selected
* The decisions of the mechanism depend only on the ranking of agent values

* The design space for online auctions is richer (so, harder to prove impossibility results)



Online Auctions for a Single Good

* The "type” 0; of each bidder i is determined by:
* an arrival time a; and departure time d; = q;
* avalue v; for the good being sold

* The utility of bidder i is equal to:
 v; —p, ifthey receive the good at price p within |a;, d;]
e <0, otherwise
* The bidder can announce a later arrival, an earlier departure, and bid b; + v;
* Value-strategyproofness: it is a dominant strategy to report true value
* Time-strategyproofness: it is a dominant strategy to report true arrival/departure

 Adversary chooses active intervals I = {(a4,d¢), (ay,d>),...(a,,d,)} and aset V of
n bidder values. Each value is then assigned to a time interval uniformly at random

* Objective is to maximize expected revenue over the random arrival



Online Auctions for a Single Good

* |n the offline setting, where all bidders are present at the same time:
* itisimpossible to extract a revenue approximating the highest value, v 4,
* But, second-price auction revenue is equal to the second highest value, v ;)

* Can we approximate second highest value, v 3, in online setting [HKP ‘04]?
* There exists a strategyproof auction that achieves a 0.25-approximation
* No strategyproof auction can achieve better than 0.66-approximation
* We prove a tight lower bound of 0.25 for a large family of auctions

* [HKP ‘04] also considered value (social welfare) maximization, w.r.t., v(q,
* There exists a strategyproof auction that achieves a 1/e-approximation
* No strategyproof auction can achieve better than 0.5-approximation
* Correa, Duetting, Fischer, and Schewior [EC’19] recently showed 1/e is tight



Online Auctions with Predictions for a Single Good

* We are provided with a prediction, (1), regarding the highest value, v (4,
* Goal: design an online revenue-maximizing auction using this prediction
* An auction is S-robust if its expected revenue is always at least 8 - v ()

Eg-~ Rev (M (0O, D
robustness(M) = min © “(V'I)[ ( ( (1)))]
V’I’v(l) U(Z)

* An auction is a-consistent if its expected revenue is at least & - v (1) whenever
the prediction is accurate, i.e., V(1) = V(q)

Eg-~ Rev(M(0O,v
consistency(M) = min O~u) [ ( ( (1)))]
v V(1)

What are the best (a, ) pairs achievable by strategyproof online auctions
augmented with a prediction v (qy regarding the highest bidder value?



Online Auctions with Predictions for a Single Good

1—a?

- robustness

* We propose an auction that guarantees a-consistency and

* The designer can choose the value of the confidence parameter a € [0, 1]

* We show that this tradeoff is optimal within a large family of auctions
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Three-Phase Auction for Disjoint Intervals

00 max(¥(1y, Vmax) Umax

Simple case: if all active intervals are disjoint, we get a threshold-price auction
The phases:
1. Learning phase: only observe bids, never allocate item

2. Prediction phase: post maximum of prediction and highest bid so far
3. Highest-so-far phase: post highest bid so far

Phase 2 is skipped if prediction is shown to be inaccurate during phase 1



Three-Phase Auction for Disjoint Intervals

00 max(¥(1y, Vmax) Umax
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Phase lengths depend on the choice of confidence parameter a € [0,1]

Bidders are ordered by their departure time

- . 1—
The transition to the second phase takes place after i; = Tan departures

. . . 1
The transition to the third phase takes place after i, = ?n departures



Three-Phase Auction with Suaasmmimgntervals

departed bidder values

- °
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Allocation rule:
* Like before, there are three phases, each with a threshold price T
* The winner is determined as soon as an active bidder has value at least T

* |f there are multiple such active bidders, higher priority is given to bidders
with an earlier arrival time (ties broken arbitrarily)

* The good is always allocated to the winner at the time of their departure



Three-Phase Auction with Overlapping Intervals

00 max(¥(1y, Vmax) Umax
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Payment rule:
* The winning bidder, i*, pays at most T, but may end up paying less

* If winner i secures item during Phase 2 and remains active in Phase 3:
 Simulate allocation rule with i* removed to get winner i’ and price '

e If i’ is inactive in Phase 3 or has lower priority than i*, i*pays price T’
* Else i* pays price T



Impossibility Result (with Predictions)

* The robustness-consistency trade-off that we achieve is optimal over any
auction in the Prediction-or-Previously-Seen family

* The price posted can be the prediction, a previously seen bid, or infinite
* The proof uses an interchange argument reducing any such auction to ours
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Impossibility Result (without Predictions)

* The 0.25 approximation is optimal for Up-To-Max-Previously-Seen auctions
* The price posted can be at most the maximum bid seen so far or infinite

* The proof uses tools from Correa, Duetting, Fischer, and Schewior [EC '19]

* Unlike their impossibility result, ours needs to use strategyproofness
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Open Problems and Future Directions

* General lower bounds for the single-good case
 What about online auctions for multiple goods?
 Many other open problems in learning-augmented mechanism design
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Other Recent Learning-Augmented Work

* Online Algorithms:

Allocating items that arrive over time, aiming to maximize fairness, with S. Banerjee, A. Gorokh, and B. Jin (SODA 2022)
Allocating a fixed budget on public goods in a dynamic fashion, with S. Banerjee, S. Hossain, B. Jin, E. Micha, and N. Shah (IJCAI 2023)

* Mechanisms in Strategic Settings:

Strategyproof mechanisms for facility location problems, with P. Agrawal, E. Balkanski, T. Ou, and X. Tan (EC 2022)
Improved price of anarchy bounds in decentralized systems, with K. Kollias, A. Sgouritsa, and X. Tan (EC 2022)
Strategyproof mechanisms for scheduling to minimize makespan, with E. Balkanksi and X. Tan (ITCS 2023)

Online mechanism design with predictions, with E. Balkanski, X. Tan, and C. Zhu (EC 2024)

Randomized strategic facility location with predictions, with E. Balkanski and G. Shahkarami (Submitted 2024)
Clock auctions augmented with unreliable advice, with D. Schoepflin and X. Tan (Submitted 2024)

* Distortion in Voting:

Optimal metric distortion with predictions, with B. Berger, M. Feldman, and X. Tan (EC 2024)

* Robust Algorithmic Recourse in Machine Learning:

Learning-augmented robust algorithmic recourse, with K. Kayastha and S. Jabbari (Submitted 2024)




