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Classical Learning

We observe data (x,y), wherex ~ P and E[y x] = f(x)

Goal: Find f that minimizes

erry(f) 2 E,p | (f0) = f)?]
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Transfer Learning

We observe data (x,y), wherex ~ P and E[y x] = f(x)

Goal: Find f that minimizes

erro(f) 2 E,p [(f (x) — f (X))2]
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Transter Learning

We want to minimize VS We can minimize

err f ) Cr l'p(f )



Change of Measure
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This makes sense only when Q < P



Transfer Learning &

We want to minimize

erro(f)

VS

We can minimize

B+ ertp(f)
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Transfer Learning &

We want to minimize VS We can minimize

ert (f) B - errp(f)

[SSK12, SK12, SKMO07, Kpol7, QB13, KM18, CMM10, MPW23, PMW22]: Assume [ < oo
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Failure I: Truncation
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Failure I: Truncation

P(x) =0, Ox) >0
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Failure II: Shift




Failure II: Shift
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Transfer Learning

Observation.

1. Truncated Statistics [DGTZ18, KTZ19, Ple20, NP20, DKTZ21,...]
2. Some classification settings [KM18, HK19]

3. Linear regression with distribution shift [LHL21, GTF+23, ZBGS22, WZB+22]

dQ
dP

There are cases where

— 00 but transter is possible
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Our Result

Theorem (K, Zadik, Zampetakis '24|

Let f and f be degree-k polynomials and y a log-concave measure. Then:

dQ dP

errp(f) < h(k) ol R -errp(f)
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Our Result

Theorem (K, Zadik, Zampetakis '24|

Let f and f be degree-k polynomials and y a log-concave measure. Then:

errp(f) < h(k)

new measure of divergence
sufficient for transferability of polynomials




Comparison with Change of Measure

Theorem (K, Zadik, Zampetakis '24|

Let f and f be degree-k polynomials and Q a log-concave measure. Then:

k

0 - errp(f)

o0

errp(f) < h(k)

inverse density ratio




Our Result

Theorem (K, Zadik, Zampetakis '24|

Let f and f be degree-k polynomials and y a log-concave measure. Then:

d0 apr || -

errp(f) < h(k) vl B -errp(f)

o0

Can we have a similar result for neural networks?




Example: Target Function

f:R* - R, not a polynomial



Example: Polynomial Estimator

f:R? > R, polynomial estimator



Example: Neural Networks

f:R?2 > R, NN estimator trained from P with SGD



Our Result

Theorem (K, Zadik, Zampetakis '24|

Let f and f be degree-k polynomials and y a log-concave measure. Then:

d0 apr || -

errp(f) < h(k) vl B -errp(f)

o0

Polynomials seem to transfer better than NNs




Proof Idea

! Anti-concentration implies Extrapolation
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! Anti-concentration implies Extrapolation
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! Anti-concentration implies Extrapolation

E 8] vs Eplg]




Proof Idea

! Anti-concentration implies Extrapolation

E,lg] < - Eplg]




Comparison with Linear Regression (I)

[s polynomial regression with distribution shift hard?

k

“Tust learn n" coefficients and transfer without bounded ratios”

Vandermonde matrix in high-dimensions is poorly understood

How to bound the condition number?




Comparison with Linear Regression (II)

fox) =0"x

errp(0) = (0—0)T E [X"X] (6 - 6)

erry(0) = (0 — 0)T E [XTX] (0 - 0)




Comparison with Linear Regression (II)

']

2p = Ep[xx

fox) =0"x

errp(0) = (0—0)T E [X"X] (6 - 6)

erry(0) = (0 — 0)T E [XTX] (0 - 0)

Transfer is “related” to ZQZ;1

Rigorous for specific estimators in specific settings |[LHL21, GTF+23]



Comparison with Linear Regression (II)

fox) =0"x

errp(0) = (0

How to control the transfer cost in general?

AmaX(ZQ)
/lmin(zP)

eer(é’) = (6

: errp(é’)

eer(é’) <

Transfer is “r

Rigorous for specific estimators in specific settings [LHL21, GTF+23]



Our Result

Theorem (K, Zadik, Zampetakis "24]

Let f and f be degree-k polynomials and u a log-concave measure. Then:

. dO dP .
errg(N <htk)- || 2= ||+ o= || el

+ Arbitrary polynomials

+ Intuitive, not algebraic

+ Extends to Boolean domains
- Needs log-concave bridge




Future Work

1. Extensions to classification
2. Transferability is a property of
a. Model Class
b.B Q
c. Training Algorithm (Which algorithms could help transfer?)

3. Transfer Learning in Other Domains (Adaptive Environments)
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2. Transferability is a property of

a. Model Class Thank You!

b.BQ
c. Training Algorithm (Which algorithms could help transfer?)

3. Transfer Learning in Other Domains (Adaptive Environments)




