SECURITY MODELS FOR EVERLASTING PRIVACY ATHECRYPT 2020

Panagiotis Grontas Aris Pagourtzis Alexandros Zacharakis

NATIONAL TECHNICAL UNIVERSITY OF ATHENS LO PLANE TO BY

07.01.2020

https://eprint.iacr.org/2019/1193

TL;DR

- Game-based definitions for everlasting privacy
- A new adversarial model
 - Powerful computational capabilities in the future
 - Extensive data collection in the present
- Contemporary adversary (privacy)
 - Corrupt voters
 - Monitor & store communications
 - Computationally bounded
- Future adversary
 - Examine past public data
 - Potentially has insider access to past private data (surveillance - breaking of trust assumptions)
 - Computationally powerful
- Everlasting privacy variations

ELECTRONIC VOTING PROPERTIES: VERIFIABILITY

Aleksander Essex @aleksessex · Nov 4, 2019

Electronic voting is like betting on a coin toss where you can't inspect the coin, you can't toss the coin, you can't call it in the air, and you most certainly can't see how it landed. I tell you when you lose, and you hand over the money. What? Don't you trust me? e

- Voters vote in an adversarial environment (bugs, malice)
- Election authorities and voter devices are not trusted

Checks:

- Cast as intended
- Recorded as cast
- Tallied as recorded

Verifiability: voters and auditors check the process

- Individual
- Universal
- Eligibility

Accountability: a stronger from of verifiability

ELECTRONIC VOTING PROPERTIES: PRIVACY

Standard feature of elections since the 19th century encoded into law

Privacy is not absolute: The result reveals information but no more should leak

- Secrecy: Encryption & Commitment schemes [CFSY96, Adio8, KZZ15]
- Anonymity: Mixnets [Cha81] & Blind signatures [Cha82]
- Computational & trust assumptions
- Flavors:
 - Receipt Freeness [BT94]
 - Coercion Resistance [JCJ05]
 - Perfect Ballot Secrecy [KY02]
 - Everlasting Privacy [MN06]

RELATION OF PRIVACY AND VERIFIABILITY

To enable verifiability the system must generate evidence

- without compromising secrecy
- without functioning as a receipt
- Does verifiability without privacy make sense?
 - Does it really matter if the vote is dictated by a coercer or changed by a corrupted authority?
- You can't have (computational) privacy without individual verifiability [CL18]
 - Replace votes in order to learn how a targeted voter voted
 - Voters that check their votes protect the privacy of others
- Integrity is ephemeral, privacy should be everlasting [MNO6]
 - integrity matters until the loser is convinced

EVERLASTING PRIVACY = POST SNOWDEN PRIVACY

Encryption becomes obsolete

- Gradually (e.g. Moore's Law, better attacks)
- Spectacularly (e.g. practical quantum computing)
- Verifiability —> election data widely available
- Voting data can be valuable to a future authoritarian regime
- Resources in Snowden's world:
 - Advanced computational power
 - Collected data (e.g. mass surveillance)
 - Insider data (e.g. political parties)
- Indirect coercion attempt

EVERLASTING PRIVACY: PREVIOUS WORK I

Formal study initiated in [MNO6]

Receipt-Free Universally-Verifiable Voting with Everlasting Privacy^{*}

Tal Moran and Moni Naor**

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

More concrete in [MN10]

Split-Ballot Voting: Everlasting Privacy With Distributed Trust

TAL MORAN Weizmann Institute of Science, Israel and MONI NAOR Weizmann Institute of Science, Israel Previously hinted in: [CFSY96]: Perfectly hiding

Pedersen commitments & verifiable secret sharing through private channels [FOO92]

Theorem 3 (Privacy). Even if the administrator and the counter conspire, they cannot detect the relation between vote v_i and voter V_i .

Stetch of Proof. The relation between the voter's identity D_i and the ballot x_i is hidden by the blind signature scheme. The ballot x_i and the key k_i are sent through the **anonymous communication channel**. So no one can trace the communication and violet the privacy of the voters. It is unconditionally secure against tracing the **voting**.

Made practical in [HG19]

Blind signatures & anonymous channels

EVERLASTING PRIVACY: PREVIOUS WORK II

Split ballot voting [MN10]

- Two election authorities
- Votes cast protected using a perfectly hiding commitment scheme
- To tally, the openings are required
- Exchanged computationally protected
- Tallying: Parallel shuffling of commitments and openings between the authorities
- Casting is not anonymous

- Everlasting privacy
 - the authorities are honest
 - they do not collaborate
 - the openings are not made public
- One corrupted authority: computational privacy
- Two corrupted authorities: correctness

Everlasting privacy = information theoretic security against the public view

- [DGA12] Replace Helios exp. ElGamal with Pedersen commitments (openings sent through private channels)
- [CPP13] Commitment Consistent Encryption - use of public/private Bulleting Boards
- [BDV13] Encapsulate as a mixnet
- [ACKR13] Formalization as practical everlasting privacy in the applied pi-calculus

Revisiting the anonymous channel idea [FOO92] for casting

[LH15] & [LHK16]:

- Public credentials to the Bulletin Board
- (Un)encrypted vote to the Bulletin Board
- Commitment to 1 out of n voting credentials with ZKPoK

Anonymous channel: helps with coercion resistance by thwarting forced abstention attack

[GPZZ19]

- Coercion resistance using real-fake credentials
- All valid credentials posted to BB
- During voting attach a (fake) credential to a blinded ballot
- Election authority marks validity by signing
- All checks are embedded into a variation of blind signatures (PACBS)
- Include ZKPoK for EA's actions provide verifiability

All voting interactions are auditable in the BB

Participants:

- Election Authority
- n voters
- m candidates
- Bulletin Board to store all voting related data in a publicly accessible manner

A GENERIC VOTING SYSTEM - FUNCTIONALITIES

- (params, $sk_{\mathcal{E}\mathcal{A}}, pk_{\mathcal{E}\mathcal{A}}$) := Setup(1^{λ})
- $\blacksquare (\mathsf{pk}_i, (\mathsf{sk}_i, \mathsf{pk}_i)) := \mathsf{Register} \langle \mathcal{EA}(\mathsf{sk}_{\mathcal{EA}}), \mathcal{V}_i() \rangle$
- (I, C) := SetupElection(sk_{EA}, n, m, params, Election-information)
- $(\bot, (b_i, \pi_{b_i})) :=$ $Vote \langle \mathcal{E}\mathcal{A}(\mathsf{sk}_{\mathcal{E}\mathcal{A}}), \mathcal{V}_i(c_i, \mathsf{sk}_i), \mathsf{params}, \mathsf{pk}_{\mathcal{E}\mathcal{A}}, \mathsf{pk}_i, \mathrm{I}, \mathrm{C}, \mathcal{BB} \rangle$

$$\blacksquare \mathcal{BB} \Leftarrow \mathsf{Cast} \langle \mathcal{BB}(), \mathcal{V}_i(\mathbf{b}_i, \pi_{\mathbf{b}_i}) \rangle$$

- $\{0,1\} = Valid(\mathcal{BB}, b)$
- $\blacksquare (\mathbf{T}, \pi_{\mathbf{T}}) := \mathsf{Tally}(\mathsf{sk}_{\mathcal{E}\mathcal{A}}, \mathsf{params}, \mathsf{C}, \mathcal{BB})$
- $\{0,1\} = Verify(\mathbf{T}, params, pk_{\mathcal{EA}}, \mathcal{BB}, C, I, b_i, \pi_{b_i}, \pi_{\mathbf{T}})$

$$(\mathsf{params}, sk_{\mathcal{EA}}, pk_{\mathcal{EA}}) :=$$
Setup(1 $^{\lambda}$)

 The EA generates the cryptographic parameters and its credentials

Setup

(I, C) :=SetupElection $(sk_{\mathcal{EA}}, n, m,$ params, Election-information)

EA creates the election by publishing the list of eligible voters and candidates

OPERATION-IV

Voting: Vote and Cast functionalities

 $(\bot, (\mathbf{b}_i, \pi_{\mathbf{b}_i})) := \mathsf{Vote} \langle \mathcal{EA}(\mathsf{sk}_{\mathcal{EA}}), \mathcal{V}_i(\mathbf{c}_i, \mathsf{sk}_i), \mathsf{params}, \mathsf{pk}_{\mathcal{EA}}, \mathsf{pk}_i, \mathrm{I}, \mathrm{C}, \mathcal{BB} \rangle \\ \mathcal{BB} \Leftarrow \mathsf{Cast} \langle \mathcal{BB}(), \mathcal{V}_i(\mathbf{b}_i, \pi_{\mathbf{b}_i}) \rangle$

- The voter presents a credential and commits to a voting choice
- The EA verifies the right to vote
- The voter casts the ballot
- The validity of the ballot is checked

Vote

 $(\textbf{T}, \pi_{\textbf{T}}) := \textbf{Tally}(\mathsf{sk}_{\mathcal{E}\mathcal{A}}, \textsf{params}, \mathrm{C}, \mathcal{BB})$

- The EA tallies the votes
- Releases the result along with a proof of correctness
- Verification takes place

Tally

ADVERSARIAL CAPABILITIES

Motivation

The everlasting privacy adversary is not only confined to the public view of the election. It also has access to 'insider' information.

Contemporary Adversary $\mathcal A$

- Computationally Constrained
- Active participation (through voter corruption)

Future Adversary \mathcal{A}'

- Computationally Unbounded
- Weak Everlasting Privacy: Public protocol transcript
- Everlasting Privacy: Cooperate with A
- Strong Everlasting Privacy: communication and 'insider' data

THE SECURITY GAME

- An extension of [BCG⁺15] for privacy
- \blacksquare \mathcal{A} sees two Bulletin Boards
- \blacksquare C executes Setup, Register in both Boards
- A chooses the eligible voters and candidates to setup the election
- A dynamically corrupts voters and schedules voting
- Corrupted ballots go to both BBs
- Challenge phase: A chooses two options c₀, c₁ for honest in BB₀, BB₁
- C performs tally
- \mathcal{A} must guess board

Algorithm 1: Privacy Experiment $\text{Exp}_{\mathcal{A},\Pi,t}^{\text{priv},\beta}(1^{\lambda}, n, m)$

```
(\text{params}, \text{sk}_{\mathcal{E}\mathcal{A}}, \text{pk}_{\mathcal{E}\mathcal{A}}) \leftarrow \Pi. \textbf{Setup}(1^{\lambda})
\mathcal{BB}_{b} \leftarrow (\text{params}, \text{pk}_{\mathcal{E}, A}) \quad b \in \{0, 1\}
for i \in [n] do
             (sk_i, pk_i) \leftarrow \Pi. Register \langle \mathcal{EA}(sk_{\mathcal{EA}}), \mathcal{V}_i \rangle
              \mathcal{BB}_{h} \leftarrow \mathsf{pk}_{i} \quad b \in \{0,1\}
             Aux ← Aux<sub>Register</sub>
end
(I, C) \leftarrow \mathcal{A}^{\prod \text{SetupElection}}(n, m, \mathcal{BB}_b) \quad b \in \{0, 1\}
V_c \leftarrow \mathcal{A}(l, \text{ corrupt})
V_h := I \setminus V_c
for i \in I do
             if i \in V_c then
                            c_i \leftarrow \mathcal{A}(choose)
                            (\mathbf{b}_i, \pi_{\mathbf{b}_i}) \leftarrow \mathcal{A}^{\Pi.\mathsf{Vote}}(\mathbf{c}_i, \mathsf{sk}_i, \mathcal{BB}_b) \quad b \in
                                {0,1}
             else
                            (c_0, c_1) \leftarrow \mathcal{A}(choose)
                           (b_{i0}, \pi_{b_{i0}}) \leftarrow
                                Vote \langle (\mathcal{EA}(\mathsf{sk}_{\mathcal{E}} \land A), \mathcal{V}_i(\mathsf{c}_0, \mathsf{sk}_i), \mathcal{BB}_0 \rangle
                            (b_{i1}, \pi_{b_{i2}}) \leftarrow
                                Vote \langle (\mathcal{EA}(\mathsf{sk}_{\mathcal{EA}}), \mathcal{V}_i(c_1, \mathsf{sk}_i), \mathcal{BB}_1 \rangle
             end
end
```

```
view_A \leftarrow view_{Vote}
Aux \Leftarrow Aux<sub>Vote</sub>
for i \in I do
             if i \in V_{C} then
                           \mathcal{BB}_{b} \leftarrow \mathcal{A}^{\Pi.Cast}(\mathbf{b}'_{i}, \mathcal{BB}_{b}) \quad b \in \{0, 1\}
              else
                           \mathcal{BB}_{0} \leftarrow \Pi. \mathbf{Cast}(\mathbf{b}'_{i0}, \mathcal{BB}_{0})
                           \mathcal{BB}_1 \leftarrow \Pi. \mathbf{Cast}(\mathbf{b'}_{i_1}, \mathcal{BB}_1)
             end
end
view_{\mathcal{A}} \leftarrow view_{Cast}
Aux \leftarrow Aux<sub>Cast</sub>
(\mathbf{T}, \pi_{\mathbf{T}}) \leftarrow \mathcal{A}^{\prod.\mathsf{Tally}}()
\beta' \leftarrow \mathcal{A}(\mathbf{T}, \pi_{\mathbf{T}}, \mathcal{BB}_{\beta}, \mathbf{guess})
if \beta = \beta' \wedge |V_c| < t then
             return 1
else
             return o
end
```

Algorithm 2: $\operatorname{Exp}_{\mathcal{A}',\Pi,t}^{\text{w-ever-priv},\beta}(1^{\lambda}, n, m)$

 $\begin{array}{l} (c_{o},c_{1})\leftarrow\mathcal{A}'()\\ (\mathcal{B}\mathcal{B}_{\beta},T)\leftarrow\mathcal{A}'^{\Pi}()\\ \beta'\leftarrow\mathcal{A}'(T,\pi_{T},\mathcal{B}\mathcal{B}_{\beta},\textbf{guess})\\ \text{if }\beta=\beta'\textbf{ then}\\ +\text{ return 1}\\ \textbf{else}\\ +\text{ return 0}\\ \end{array}$

Weak Everlasting Privacy for **Π**

 $\begin{aligned} &\forall \mathcal{A}', \exists \text{ negligible function } \mu : \forall n, m : \\ & \mathsf{Pr}[\mathsf{Exp}_{\mathcal{A}',\Pi,t}^{\mathsf{w}\text{-}\mathsf{ever-priv},\mathsf{o}}(\mathsf{1}^{\lambda},n,m)] - \\ & \mathsf{Pr}[\mathsf{Exp}_{\mathcal{A}',\Pi,t}^{\mathsf{w}\text{-}\mathsf{ever-priv},\mathsf{1}}(\mathsf{1}^{\lambda},n,m)] \leq \mu(\lambda) \end{aligned}$

- Parameterization by voting scheme Π and future adversary A'
- A' selects the voting choices
- A' uses only the public view (BB) to distinguish voting behaviour
- Game-based version of practical everlasting privacy of [ACKR13]

Algorithm 3: $Exp_{\mathcal{A}',\mathcal{A},\Pi,t}^{ever-priv,\beta}(1^{\lambda}, n, m)$

 $\begin{array}{l} (c_{o}, c_{1}, V_{c}) \leftarrow \mathcal{A}'() \\ (\mathcal{B}\mathcal{B}_{\beta}, view_{\mathcal{A}}, T) \leftarrow \mathcal{A}'^{\Pi, \mathcal{A}}() \\ \beta' \leftarrow \mathcal{A}'(\mathbf{T}, \pi_{\mathbf{T}}, \mathcal{B}\mathcal{B}_{\beta}, view_{\mathcal{A}}, \textbf{guess}) \\ \text{if } \beta = \beta' \land |V_{c}| \leq t \text{ then} \\ + \text{ return 1} \\ \text{else} \\ + \text{ return 0} \\ \text{end} \end{array}$

Everlasting Privacy for П

 $\begin{aligned} &\forall \mathcal{A}, \mathcal{A}', \exists \text{ negligible function } \mu : \forall n, m : \\ & \mathsf{Pr}[\mathsf{Exp}_{\mathcal{A}', \Pi, t}^{\mathsf{ever-priv}, \mathsf{o}}(\mathsf{1}^{\lambda}, n, m)] - \\ & \mathsf{Pr}[\mathsf{Exp}_{\mathcal{A}', \Pi, t}^{\mathsf{ever-priv}, \mathsf{1}}(\mathsf{1}^{\lambda}, n, m)] \leq \mu(\lambda) \end{aligned}$

- Parameterization by voting scheme Π and current and future adversaries A, A'
- A' selects the voting choices and corruption strategies
- A' uses the public view (BB) and A corruption information view_A to distinguish voting behaviour

Algorithm 4: $\operatorname{Exp}_{\mathcal{A}',\Pi,t}^{s-\operatorname{ever-priv},\beta}(1^{\lambda},n,m)$

 $\begin{array}{l} (c_{o},c_{1},V_{c}) \leftarrow \mathcal{A}'() \\ (\mathcal{B}\mathcal{B}_{\beta},\text{view}_{\mathcal{A}},\text{Aux},T) \leftarrow \mathcal{A}'^{\Pi,\mathcal{A}}(c_{o},c_{1}) \\ \beta' \leftarrow \mathcal{A}'(\mathbf{T},\pi_{T},\mathcal{B}\mathcal{B}_{\beta},\text{view}_{\mathcal{A}},\text{Aux},\textbf{guess}) \\ \text{if } \beta = \beta' \land |V_{c}| \leq t \text{ then} \\ | \text{ return 1} \\ \text{else} \\ | \text{ return 0} \\ \text{end} \end{array}$

Strong Everlasting Privacy for Π

 $\begin{aligned} &\forall \mathcal{A}, \mathcal{A}', \exists \text{ negligible function } \mu : \forall n, m : \\ & \mathsf{Pr}[\mathsf{Exp}_{\mathcal{A}', \Pi, t}^{\mathsf{s-ever-priv}, \mathsf{o}}(1^{\lambda}, n, m)] - \\ & \mathsf{Pr}[\mathsf{Exp}_{\mathcal{A}', \Pi, t}^{\mathsf{s-ever-priv}, \mathsf{1}}(1^{\lambda}, n, m)] \leq \mu(\lambda) \end{aligned}$

- Parameterization by voting scheme Π and current and future adversaries A, A'
- A' selects the voting choices and corruption strategy
- A' uses the public view (BB) and A corruption information view_A to distinguish voting behaviour
- combines comms insider information Aux

EVERLASTING PRIVACY WITH PERFECTLY HIDING COMMITMENTS

- The problem: decommitments exchanged through private channels
- An insider will have access to them
- Commitment opening exchanged through private channel = encrypted ballot
- Strong everlasting privacy cannot be attained (in principle)
- At most weak everlasting privacy

The anonymous channel can:

- Nullify leaked information & casting order
- by disconnecting votes from voters
- can help achieve strong everlasting privacy
- must maintain other voting properties (verifiability, eligibility)
- Are we trading a problem for a different one?
- Information theoretical anonymity vs lack of central control
- Implementation on a large scale with such compromises

DISCUSSION

REFERENCES

MYRTO

ARAPINIS. VÉRONIQUE CORTIER. STEVE KREMER, AND MARK RYAN PRACTICAL **EVERIASTING** PRIVACY. 2013.

HELIOS: WEB-BASED OPEN-AUDIT VOTING. 2008.

BEN ADIDA.

DAVID BERNHARD. VÉRONIQUE CORTIER. David GALINDO. OLIVIER PEREIRA, AND BOGDAN WARINSCHI. SOK: A COM-PREHENSIVE ANALYSIS OF GAME-BASED BALLOT

IOSH BENALOH AND DWIGHT TUINSTRA. RECEIPT-FREE SECRET-BALLOT ELECTIONS (EXTENDED ABSTRACT). 1994. RONALD

CRAMER. MATTHEW FRANKLIN. BERRY SCHOENMAK-ERS. AND MOTI YUNG MULTI-AUTHORITY SECRET-BALLOT ELECTIONS WITH LINEAR WORK. 1996.

DAVID CHAUM.

UNTRACEABLE ELECTRONIC MAIL. RETURN

ZACHARAKIS. AND BINGSHENG ZHANG. TOWARDS EVERI ASTING PRIVACY AND EFFICIENT COERCION RESISTANCE IN REMOTE ELECTRONIC VOTING. 2019. THOMAS

> HAINES AND CIÉMENTINE GRITTI. IMPROVEMENTS IN EVERLASTING PRIVACY: FEEICIENT AND SECURE ZERO KNOWLEDGE PROOFS.

ARI JUELS, DARIO CATALANO. AND MARKUS IAKOBSSON.

2019.

ZACHARIAS, AND BINGSHENG 7HANG END-TO-END VERIFIARI F FLECTIONS IN THE STANDARD MODEL. 2015.

PHILIPP LOCHER AND ROLE HAENNI VERIFIABLE INTERNET **FLECTIONS** WITH EVERLASTING PRIVACY AND MINIMAL TRUST. 2015.

PHILIPP LOCHER, ROLE HAENNI, AND Reto F KOENIG COERCION-RESISTANT INTERNET VOTING WITH EVERLASTING