Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack 0000000000	Results

ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIPLES OF NONCES

M.Adamoudis, K.A. Draziotis and D. Poulakis

Athecrypt January 23, 2021 Athens, Greece

M.Adamoudis, K.A. Draziotis and D. Poulakis ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIP

Introduction •0000000000	Backgound on Lattices	Attacks on (EC)DSA	Attack 0000000000	Results

• Digital Signature Algorithm (DSA) is a public-key signature scheme developed by NSA (the U.S. National Security Agency). It was proposed by NIST (the U.S. National Institute of Standards and Technology) back in 1991 and has become a FIPS 186 (U.S.Federal Information Processing Standard) called DSS (Digital Signature Standard).

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
●000000000	000	00	000000000	000

- Digital Signature Algorithm (DSA) is a public-key signature scheme developed by NSA (the U.S. National Security Agency). It was proposed by NIST (the U.S. National Institute of Standards and Technology) back in 1991 and has become a FIPS 186 (U.S.Federal Information Processing Standard) called DSS (Digital Signature Standard).
- In 1998, an elliptic curve analogue called Elliptic Curve Digital Signature Algorithm (ECDSA) was proposed and standarized.

Introduction ○●○○○○○○○○○	Backgound on Lattices	Attacks on (EC)DSA	Attack 000000000	Results

• Discrete Logarithm Problem for a group G

Let $G = \langle g \rangle$ be a cyclic (multiplicative) group of order a prime p. Then the Discrete Logarithm Problem (DLP) is defined as follows: given (G, p, g, g^x) for a uniform random $x \leftarrow \mathbb{Z}_p$, find out x.

Introduction ○●○○○○○○○○○	Backgound on Lattices	Attacks on (EC)DSA	Attack 000000000	Results

• Discrete Logarithm Problem for a group G

Let $G = \langle g \rangle$ be a cyclic (multiplicative) group of order a prime p. Then the Discrete Logarithm Problem (DLP) is defined as follows: given (G, p, g, g^x) for a uniform random $x \leftarrow \mathbb{Z}_p$, find out x.

For DSA we use G = Z^{*}_p and for the Elliptic Curve DSA we use the group G = E(F) for some elliptic curve E defined over a finite group F.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
0000000000				

- PARAMETERS OF DSA.
 - 1. (p,q) primes in $\{1024, 2048, 3072\} \times \{160, 224, 256\}$ with q|p-1. 2. g: a generator of the prime order q subgroup G of the multiplicative group \mathbb{F}_p^* .

3.
$$a \xleftarrow{\$} \{1, \ldots, q-1\}.$$

- 4. $R = g^a \mod p$.
- 5. Public key (p, q, g, R).
- 6. Private key : a.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
000000000				

• Signing

To sign a message $m \in \{0,1\}^*$, a user perform following these steps

- 1. Publishes a hash function $h: \{0,1\}^* \to \{0,\ldots,q-1\}$
- 2. $k \xleftarrow{\$} \{1, \dots, q-1\}$ which is the ephemeral key
- 3. Computes $r = (g^k \mod p) \mod q$ and

$$s = k^{-1}(h(m) + ar) \mod q$$

4. The signature of m is the pair (r, s).

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
000000000				

• VERIFICATION

The signature is valid if and only if we have:

$$r = \left(\left(g^{s^{-1}h(m) \mod q} R^{s^{-1}r \mod q} \right) \mod p \right) \mod q.$$

M.Adamoudis, K.A. Draziotis and D. Poulakis ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIP

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
0000000000				

PARAMETERS OF ECDSA
1. Let *E* be an elliptic curve over F_p
2. *P* ∈ *E*(F_p) with order a prime *q* of size at least 160 bits and with *q*|*p* − 1.
3. *a* ^{\$} {1,..., *q* − 1}.
4. *Q* = *a*P.
5. Public key : (*E*, *p*, *q*, *P*, *Q*).
6. Private key : *a*.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
0000000000				

• Signing

To sign a message $m \in \{0,1\}^*$, follow these steps:

• 1. Publish a hash function $h: \{0,1\}^* \rightarrow \{0,\ldots,q-1\}$.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
0000000000				

• Signing

To sign a message $m \in \{0,1\}^*$, follow these steps:

- 1. Publish a hash function $h: \{0,1\}^* \rightarrow \{0,\ldots,q-1\}$.
- 2. $k \stackrel{\$}{\leftarrow} \{1, \ldots, q-1\}$ which is the ephemeral key.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
0000000000				

• Signing

To sign a message $m \in \{0, 1\}^*$, follow these steps:

- 1. Publish a hash function $h: \{0,1\}^* \rightarrow \{0,\ldots,q-1\}$.
- 2. $k \xleftarrow{\$} \{1, \ldots, q-1\}$ which is the ephemeral key.
- 3. Compute kP = (x, y) (where x and y are regarded as integers between 0 and p 1).

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
0000000000				

• Signing

To sign a message $m \in \{0, 1\}^*$, follow these steps:

- 1. Publish a hash function $h: \{0,1\}^* \rightarrow \{0,\ldots,q-1\}$.
- 2. $k \xleftarrow{\$} \{1, \dots, q-1\}$ which is the ephemeral key.
- 3. Compute kP = (x, y) (where x and y are regarded as integers between 0 and p 1).
- 4. Compute $r = x \mod q$ and

$$s = k^{-1}(h(m) + ar) \mod q$$

The signature of m is (r, s).

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
00000000000				

• VERIFICATION

For the verification procedure we calculate,

$$u_1 = s^{-1}h(m) \mod q, \ u_2 = s^{-1}r \mod q, \ u_1P + u_2Q = (x_0, y_0).$$

We accept the signature if and only if $r = x_0 \mod q$.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
00000000000				

(EC)DSA ATTACKS IN DISCRETE LOGARITHM
1. For classic DSA we have subexponential algorithm (e.g. Index Calculus method,General Number Field Sieve).
2. For ECDSA we have only exponential algorithms (e.g. Pollard Rho, Shank's Algorithm).

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
0000000000				

• (EC)DSA ATTACKS ON SIGNING EQUATION

$$s = k^{-1}(h(m) + ar) \mod q.$$

M.Adamoudis, K.A. Draziotis and D. Poulakis ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIP

Image: A Image: A

Introduction ○○○○○○○○●○	Backgound on Lattices	Attacks on (EC)DSA	Attack 0000000000	Results

• (EC)DSA ATTACKS ON SIGNING EQUATION

$$s = k^{-1}(h(m) + ar) \mod q.$$

• These attacks work for both classic DSA and ECDSA.

イヨトイヨト

Introduction ○○○○○○○○●○	Backgound on Lattices	Attacks on (EC)DSA	Attack 0000000000	Results

• (EC)DSA ATTACKS ON SIGNING EQUATION

$$s = k^{-1}(h(m) + ar) \mod q.$$

- These attacks work for both classic DSA and ECDSA.
- Attacks on signing equation are based on lattice theory and the goal is to solve a linear system of congruences where unknown variables are the private key a and the ephemeral keys (or some multiples of them).

Introduction ○○○○○○○○●○	Backgound on Lattices	Attacks on (EC)DSA	Attack 0000000000	Results

• (EC)DSA ATTACKS ON SIGNING EQUATION

$$s = k^{-1}(h(m) + ar) \mod q.$$

- These attacks work for both classic DSA and ECDSA.
- Attacks on signing equation are based on lattice theory and the goal is to solve a linear system of congruences where unknown variables are the private key *a* and the ephemeral keys (or some multiples of them).
- To apply these attacks we need some (polynomial) number of signatures (*r_i*, *s_i*).

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
0000000000				

There are many papers that apply attacks to signing equation using lattice based methods.

1. 2001, Howgrave-Graham and Smart, *Lattice Attacks on Digital Signature Schemes.*

2. 2002, Blake and Garefalakis, *On the security of the digital signature algorithm.*

3. 2002, Nguyen and Shparlinski, *The Insecurity of the Digital Signature Algorithm with Partially Known Nonces.*

4. 2003, Nguyen and Shparlinski, *The Insecurity of the Elliptic Curve Digital Signature Algorithm with Partially Known Nonces.*

5. 2013, Liu and Nguyen, Solving BDD by Enumeration: An Update.

6. 2013, Draziotis and Poulakis, *Lattice attacks on DSA schemes based on Lagrange's algorithm.*

7. 2014, Faugere, Goyet and Renault, *Attacking (EC)DSA Given Only an Implicit Hint, Selected Area of Cryptography.*

8. 2016, Poulakis, New lattice attacks on DSA schemes.

(日) (日) (日)

Э

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
	•00 ⁻			

Lattices

Lattices

Let $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$ linearly independent vectors of \mathbb{R}^m . The set

$$\mathcal{L} = \left\{ \sum_{j=1}^{n} \alpha_j \mathbf{b}_j : \alpha_j \in \mathbb{Z}, 1 \le j \le n \right\}$$

is called a *lattice* and the set $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ a basis of \mathcal{L} .

向下 イヨト イヨト

na a

Introduction	Backgound on Lattices ○●○	Attacks on (EC)DSA	Attack 0000000000	Results 000

Lattices

Approximate Closest Vector Problem

We define the approximate Closest Vector Problem $(CVP_{\gamma_n}(L))$ as follows: Given a lattice $\mathcal{L} \subset \mathbb{Z}^m$ of rank *n* and a vector $\mathbf{t} \in \mathbb{R}^m$, find a vector $\mathbf{u} \in \mathcal{L}$ such that, for every $\mathbf{u}' \in \mathcal{L}$ we have:

 $\|\mathbf{u} - \mathbf{t}\| \le \gamma_n \|\mathbf{u}' - \mathbf{t}\|$ (for some real number $\gamma_n \ge 1$).

Introduction	Backgound on Lattices ○●○	Attacks on (EC)DSA	Attack 0000000000	Results

Lattices

• Approximate Closest Vector Problem

We define the approximate Closest Vector Problem $(CVP_{\gamma_n}(L))$ as follows: Given a lattice $\mathcal{L} \subset \mathbb{Z}^m$ of rank *n* and a vector $\mathbf{t} \in \mathbb{R}^m$, find a vector $\mathbf{u} \in \mathcal{L}$ such that, for every $\mathbf{u}' \in \mathcal{L}$ we have:

 $\|\mathbf{u} - \mathbf{t}\| \leq \gamma_n \|\mathbf{u}' - \mathbf{t}\|$ (for some real number $\gamma_n \geq 1$).

 We say that we have a CVP oracle, if we have an efficient probabilistic algorithm that solves CVP_{γn} for γ_n = 1.

向下 イヨト イヨト

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
	000			

Babai's Algorithm

• Is a polynomial bit-operations algorithm that given a lattice and a target vector not in lattice, provides a lattice vector that is quite *close* to the target vector.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
	000			

Babai's Algorithm

- Is a polynomial bit-operations algorithm that given a lattice and a target vector not in lattice, provides a lattice vector that is quite *close* to the target vector.
- On input a lattice \mathcal{L} and a vector $\mathbf{t} \in \mathbb{R}^m$ the algorithms provides a lattice vector $\mathbf{x} \in L$ such that

$$||\mathbf{x} - \mathbf{t}|| \leq 2^{n/2} dist(L, \mathbf{t}).$$

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
		••		

• Say we have *n* messages m_i (i = 1, ..., n) signed with (EC)DSA system and (r_i, s_i) their signatures. So we have the *n* signing equations:

$$s_i = k_i^{-1}(h(m_i) + ar_i) \mod q,$$

where k_i are the ephemeral keys and a is the secret key.

0000000000 000	00	

• We choose integers

$$A_i \stackrel{\$}{\leftarrow} \Big(\frac{q^{\frac{i}{n+1}+f_q(n)}}{2}, \frac{q^{\frac{i}{n+1}+f_q(n)}}{1.5}\Big),$$

for a suitable sequence $f_q(n) < 1$ and we set $C_i = -r_i s_i^{-1} \mod q$, and

$$B_i = -A_i C_i^{-1} s_i^{-1} h(m_i) \mod q.$$

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
		0•		

We choose integers

$$A_i \stackrel{\$}{\leftarrow} \Big(\frac{q^{\frac{i}{n+1}+f_q(n)}}{2}, \frac{q^{\frac{i}{n+1}+f_q(n)}}{1.5}\Big),$$

for a suitable sequence $f_q(n) < 1$ and we set $C_i = -r_i s_i^{-1} \mod q$, and

$$B_i = -A_i C_i^{-1} s_i^{-1} h(m_i) \mod q.$$

• Further we set $\mathbf{s} = (a, k'_1, \dots, k'_n)$, where $k'_i = A_i C_i^{-1} k_i \mod q$ and we call them *derivative ephemeral keys* (these are multiples of the unknown ephemeral keys).

Introduction Bac	ckgound on Lattices	Attacks on (EC)DSA	Attack	Results
		0●		

We choose integers

$$A_i \stackrel{\$}{\leftarrow} \Big(\frac{q^{\frac{i}{n+1}+f_q(n)}}{2}, \frac{q^{\frac{i}{n+1}+f_q(n)}}{1.5}\Big),$$

for a suitable sequence $f_q(n) < 1$ and we set $C_i = -r_i s_i^{-1} \mod q$, and

$$B_i = -A_i C_i^{-1} s_i^{-1} h(m_i) \mod q.$$

- Further we set $\mathbf{s} = (a, k'_1, \dots, k'_n)$, where $k'_i = A_i C_i^{-1} k_i \mod q$ and we call them *derivative ephemeral keys* (these are multiples of the unknown ephemeral keys).
- After simple manipulations we get that s satisfies the n × (n + 1) linear system

$$y_i + A_i x + B_i \equiv 0 \pmod{q}$$
 $(i = 1, \dots, n).$

向下 イヨト イヨト

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			•00000000	

• Definition 1

Let q be a prime with ℓ -bits and $x, c \in \mathbb{Z}_q$. Let \mathcal{A} be a probabilistic polynomial algorithm which accepts (c, x, ℓ, PK) , where PK is the public key of (EC)DSA-scheme, and returns

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			•00000000	

• Definition 1

Let q be a prime with ℓ -bits and $x, c \in \mathbb{Z}_q$. Let \mathcal{A} be a probabilistic polynomial algorithm which accepts (c, x, ℓ, PK) , where PK is the public key of (EC)DSA-scheme, and returns

• 0, if the binary length of $cx \mod q$ is ℓ bits,

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			•00000000	

Definition 1

Let q be a prime with ℓ -bits and $x, c \in \mathbb{Z}_q$. Let \mathcal{A} be a probabilistic polynomial algorithm which accepts (c, x, ℓ, PK) , where PK is the public key of (EC)DSA-scheme, and returns

- 0, if the binary length of $cx \mod q$ is ℓ bits,
- 1, if the binary length of $cx \mod q$ is $\ell 1$ bits,
- 2, if the binary length of *cx* mod *q* is < ℓ − 1 bits.
 We call such an oracle, length DSA oracle

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			000000000	

Definition 2

Let \mathcal{B} be a probabilistic polynomial algorithm which accepts a pair (x, ℓ, PK) , where PK is the public key of (EC)DSA-scheme and $x \in \mathbb{Z}_q$, and returns

• True, if the binary length of q - x is $\ell - 1$ bits

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			000000000	

Definition 2

Let \mathcal{B} be a probabilistic polynomial algorithm which accepts a pair (x, ℓ, PK) , where PK is the public key of (EC)DSA-scheme and $x \in \mathbb{Z}_q$, and returns

• True, if the binary length of q - x is $\ell - 1$ bits

• False, otherwise.

We call such an oracle binary length DSA oracle

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			000000000	

• Attack

Input : A public key (p, q, g, R) of a DSA scheme or a public key (E, p, q, P, Q) of a ECDSA scheme. Further, *n* signed messages are given.

Output : The secret key *a* or Fail.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			000000000	

• 1. construct the system

$$y_i + A_i x + B_i \equiv 0 \pmod{q}$$
 $(i = 1, \dots, n).$

M.Adamoudis, K.A. Draziotis and D. Poulakis ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIP

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			000000000	

• 1. construct the system

$$y_i + A_i x + B_i \equiv 0 \pmod{q}$$
 $(i = 1, \ldots, n).$

• 2 Let k'_i as previously the derivative ephemeral key corresponding to the nonce k_i .

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			000000000	

• For i = 1, ..., n, **3a.** if $\mathcal{A}(k'_i) = 0$, then if $\mathcal{B}(k'_i) = \text{True}$, consider the congruence,

$$(-y_i)+(-A_i)x+(-B_i)\equiv 0\,(\bmod\, q).$$

else, consider the congruence,

$$(2^{\ell-2}-y_i)+(-A_i)x+(-2^{\ell-2}-B_i)\equiv 0 \pmod{q}.$$

3b. if $\mathcal{A}(k'_i) = 1$, then do not modify the *i*- equation. **3c.** if $\mathcal{A}(k'_i) = 2$, then consider the congruence,

$$(2^{\ell-2}+y_i)+A_ix+(-2^{\ell-2}+B_i)\equiv 0 \pmod{q}.$$

向下 イヨト イヨト

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			000000000	

• **3d.**Let A'_1, \ldots, A'_n and B'_1, \ldots, B'_n be the coefficients of variable x and the constant terms, respectively, of the congruences constructed in steps **3a**, **3b** and **3c**. Thus, we have the following system:

$$y_i + A'_i x + B'_i \equiv 0 \pmod{q} \quad (i = 1, \dots, n).$$

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Results

• 4. Construct the lattice generated by the rows of the DSA matrix

$$A = \begin{bmatrix} -1 & A'_1 & A'_2 & \dots & A'_n \\ 0 & q & 0 & \dots & 0 \\ 0 & 0 & q & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & q \end{bmatrix}$$

Further, set $\mathbf{b} = (0, B'_1, \dots, B'_n)$ and $\mathbf{e} = (2^{\ell-2} + 2^{\ell-3}, \dots, 2^{\ell-2} + 2^{\ell-3}).$

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			0000000000	

• 5. Apply LLL on the rows of A, $B \leftarrow LLL(A)$.

A B K A B K

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			0000000000	

- 5. Apply LLL on the rows of A, $B \leftarrow LLL(A)$.
- 6. $\mathbf{w} = (w_1, ..., w_{n+1}) \leftarrow Babai(B, \mathbf{b} + \mathbf{e}).$

.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			0000000000	

- 5. Apply LLL on the rows of A, $B \leftarrow LLL(A)$.
- 6. $\mathbf{w} = (w_1, ..., w_{n+1}) \leftarrow Babai(B, \mathbf{b} + \mathbf{e}).$
- 7. If the first coordinate w_1 of **w** satisfy $g^{w_1} = R$, (respectively $Q = w_1 P$) in \mathbb{F}_p^* , return w_1 , else return fail.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
0000000000	000	00	0000000000	000

 The case A(k'_i) = 0. Assume without loss of generality that ℓ = 160. We consider the following assumption: Assumption-1. All the derivative ephemeral keys have 160-bits. Then, we can exploit the fact that q - a and q - k'_i have at most 159-bits.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack 00000000●0	Results

- The case A(k'_i) = 0. Assume without loss of generality that ℓ = 160. We consider the following assumption: Assumption-1. All the derivative ephemeral keys have 160-bits. Then, we can exploit the fact that q - a and q - k'_i have at most 159-bits.
- Construct the DSA-system as follows:
 3a. if B(k'_i) = True, consider the congruence,

$$(-y_i) + A_i(-x) + (-B_i) \equiv 0 \pmod{q}.$$

else, consider the congruence,

$$(2^{\ell-2}-y_i)+A_i(-x)+(-2^{\ell-2}-B_i)\equiv 0 \pmod{q}.$$

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack 00000000●	Results

• The previous attack is based on the following Theorem.

M.Adamoudis, K.A. Draziotis and D. Poulakis ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIP

글 네 ㅋ ㅋ

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			000000000	

- The previous attack is based on the following Theorem.
- Theorem.

Let $\mathbf{s} = (a, A'_1 C_1^{-1} k_1 \mod q, \dots, A'_n C_n^{-1} k_n \mod q)$ the solution of the DSA system. If

$$\|\mathbf{s}-\mathbf{e}\| < rac{1}{4} q^{rac{n}{n+1}+f_q(n)}$$

for some $\mathbf{e} \in \mathbb{R}^{n+1}$ then, $\mathbf{s} = \mathbf{w} - \mathbf{b}$, where $\mathbf{w} = CVP(B, \mathbf{b} + \mathbf{e})$.

b) a (B) b) a (B) b)

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
			000000000	

- The previous attack is based on the following Theorem.
- Theorem.

Let $\mathbf{s} = (a, A_1' C_1^{-1} k_1 \mod q, \dots, A_n' C_n^{-1} k_n \mod q)$ the solution of the DSA system. If

$$\|\mathbf{s}-\mathbf{e}\| < rac{1}{4} q^{rac{n}{n+1}+f_q(n)}$$

for some $\mathbf{e} \in \mathbb{R}^{n+1}$ then, $\mathbf{s} = \mathbf{w} - \mathbf{b}$, where $\mathbf{w} = CVP(B, \mathbf{b} + \mathbf{e})$.

 In our attack we used Babai, which behaves as a CVP oracle for moderate dimension.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack 0000000000	Results ●○○

• We consider *n* = 204 messages. We generated 100 random DSA systems, with secret key 160 bits and derivative ephemeral keys are < *q*.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
				000

- We consider *n* = 204 messages. We generated 100 random DSA systems, with secret key 160 bits and derivative ephemeral keys are < *q*.
- For preprocessing we used BKZ with blocksize 70. The time execution per example was about 1 minute in an I3 Intel CPU.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack	Results
				000

- We consider *n* = 204 messages. We generated 100 random DSA systems, with secret key 160 bits and derivative ephemeral keys are < *q*.
- For preprocessing we used BKZ with blocksize 70. The time execution per example was about 1 minute in an I3 Intel CPU.

•
$$f_q(n) = \min\left\{\frac{1}{n+1}, \frac{\ln\left(-3q^{-\frac{1}{n+1}} + \sqrt{96+9q^{-\frac{2}{n+1}}}\right) - \ln 8}{\ln q}\right\} - 10^{-10}$$

M.Adamoudis, K.A. Draziotis and D. Poulakis ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIP

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack 000000000	Results ●○○

- We consider *n* = 204 messages. We generated 100 random DSA systems, with secret key 160 bits and derivative ephemeral keys are < *q*.
- For preprocessing we used BKZ with blocksize 70. The time execution per example was about 1 minute in an I3 Intel CPU.

•
$$f_q(n) = \min\left\{\frac{1}{n+1}, \frac{\ln\left(-3q^{-\frac{1}{n+1}} + \sqrt{96 + 9q^{-\frac{2}{n+1}}}\right) - \ln 8}{\ln q}\right\} - 10^{-10}$$

bits:Skey	suc.rate
160	64%

1

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack 0000000000	Results ○●○

• All the derivative ephemeral keys have 160- bits.

bits:(Skey, Der.Ep.keys)	suc.rate
(160, 160)	83%

The (wall) time execution per example was about 2 minutes in an I3 Intel CPU (this time is dominated by the preprocessing step). So, having a binary length oracle we can find the secret key.

Introduction	Backgound on Lattices	Attacks on (EC)DSA	Attack 0000000000	Results ○○●

Thank you!

M.Adamoudis, K.A. Draziotis and D. Poulakis ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIP

DQC