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Introduction Backgound on Lattices Attacks on (EC)DSA Attack Results

(EC)DSA background

• Digital Signature Algorithm (DSA) is a public-key signature
scheme developed by NSA (the U.S. National Security Agency). It
was proposed by NIST (the U.S. National Institute of Standards and
Technology) back in 1991 and has become a FIPS 186 (U.S.Federal
Information Processing Standard) called DSS (Digital Signature
Standard).

• In 1998, an elliptic curve analogue called Elliptic Curve Digital
Signature Algorithm (ECDSA) was proposed and standarized.
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(EC)DSA background

• Discrete Logarithm Problem for a group G

Let G = 〈g〉 be a cyclic (multiplicative) group of order a prime p.
Then the Discrete Logarithm Problem (DLP) is defined as follows:
given (G , p, g , g x) for a uniform random x ← Zp, find out x .

• For DSA we use G = Z∗p and for the Elliptic Curve DSA we use the
group G = E (F) for some elliptic curve E defined over a finite group
F.
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(EC)DSA background

• Parameters of DSA.
1. (p, q) primes in {1024, 2048, 3072} × {160, 224, 256} with q|p − 1.
2. g : a generator of the prime order q subgroup G of the
multiplicative group F∗p.

3. a
$←− {1, . . . , q − 1}.

4. R = ga mod p.
5. Public key : (p, q, g ,R).
6. Private key : a.
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(EC)DSA background

• Signing
To sign a message m ∈ {0, 1}∗,a user perform following these steps
1. Publishes a hash function h : {0, 1}∗ → {0, . . . , q − 1}
2. k

$←− {1, . . . , q − 1} which is the ephemeral key
3. Computes r = (gk mod p) mod q and

s = k−1(h(m) + ar) mod q

4. The signature of m is the pair (r , s).
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(EC)DSA background

• Verification
The signature is valid if and only if we have:

r = ((g s−1h(m)modqRs−1r mod q) mod p) mod q.
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(EC)DSA background

• Parameters of ECDSA
1. Let E be an elliptic curve over Fp

2. P ∈ E (Fp) with order a prime q of size at least 160 bits and with
q|p − 1.

3. a
$←− {1, . . . , q − 1}.

4. Q = aP.
5. Public key : (E , p, q,P,Q).
6. Private key : a.
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(EC)DSA background

• Signing
To sign a message m ∈ {0, 1}∗, follow these steps:

• 1. Publish a hash function h : {0, 1}∗ → {0, . . . , q − 1}.

• 2. k
$←− {1, . . . , q − 1} which is the ephemeral key.

• 3. Compute kP = (x , y) (where x and y are regarded as integers
between 0 and p − 1).

• 4. Compute r = x mod q and

s = k−1(h(m) + ar) mod q

The signature of m is (r , s).
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(EC)DSA background

• Verification
For the verification procedure we calculate,

u1 = s−1h(m) mod q, u2 = s−1r mod q, u1P + u2Q = (x0, y0).

We accept the signature if and only if r = x0 mod q.
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(EC)DSA background

• (EC)DSA attacks in discrete logarithm
1. For classic DSA we have subexponential algorithm (e.g. Index
Calculus method,General Number Field Sieve).
2. For ECDSA we have only exponential algorithms (e.g. Pollard Rho,
Shank’s Algorithm).
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(EC)DSA background

• (EC)DSA attacks on signing equation

s = k−1(h(m) + ar) mod q.

• These attacks work for both classic DSA and ECDSA.

• Attacks on signing equation are based on lattice theory and the goal is
to solve a linear system of congruences where unknown variables are
the private key a and the ephemeral keys (or some multiples of them).

• To apply these attacks we need some (polynomial) number of
signatures (ri , si ).
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(EC)DSA background

There are many papers that apply attacks to signing equation using lattice
based methods.
1. 2001, Howgrave-Graham and Smart,Lattice Attacks on Digital Signature
Schemes.
2. 2002, Blake and Garefalakis, On the security of the digital signature algorithm.
3. 2002, Nguyen and Shparlinski, The Insecurity of the Digital Signature
Algorithm with Partially Known Nonces.
4. 2003, Nguyen and Shparlinski, The Insecurity of the Elliptic Curve Digital
Signature Algorithm with Partially Known Nonces.
5. 2013, Liu and Nguyen, Solving BDD by Enumeration: An Update.
6. 2013, Draziotis and Poulakis, Lattice attacks on DSA schemes based on
Lagrange’s algorithm.
7. 2014, Faugere, Goyet and Renault, Attacking (EC)DSA Given Only an Implicit
Hint, Selected Area of Cryptography.
8. 2016, Poulakis, New lattice attacks on DSA schemes.
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Lattices

• Lattices
Let b1,b2, . . . ,bn linearly independent vectors of Rm. The set

L =

{ n∑
j=1

αjbj : αj ∈ Z, 1 ≤ j ≤ n

}

is called a lattice and the set B = {b1, . . . ,bn} a basis of L.
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Lattices

• Approximate Closest Vector Problem
We define the approximate Closest Vector Problem (CVPγn(L)) as
follows: Given a lattice L ⊂ Zm of rank n and a vector t ∈ Rm, find a
vector u ∈ L such that, for every u′ ∈ L we have:

‖u− t‖ ≤ γn‖u′ − t‖ (for some real number γn ≥ 1).

• We say that we have a CVP oracle, if we have an efficient
probabilistic algorithm that solves CVPγn for γn = 1.

M.Adamoudis, K.A. Draziotis and D. Poulakis ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIPLES OF NONCES14 / 30



Introduction Backgound on Lattices Attacks on (EC)DSA Attack Results

Lattices

• Approximate Closest Vector Problem
We define the approximate Closest Vector Problem (CVPγn(L)) as
follows: Given a lattice L ⊂ Zm of rank n and a vector t ∈ Rm, find a
vector u ∈ L such that, for every u′ ∈ L we have:

‖u− t‖ ≤ γn‖u′ − t‖ (for some real number γn ≥ 1).

• We say that we have a CVP oracle, if we have an efficient
probabilistic algorithm that solves CVPγn for γn = 1.

M.Adamoudis, K.A. Draziotis and D. Poulakis ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIPLES OF NONCES14 / 30



Introduction Backgound on Lattices Attacks on (EC)DSA Attack Results

Babai’s Algorithm

• Is a polynomial bit-operations algorithm that given a lattice and a
target vector not in lattice, provides a lattice vector that is quite close
to the target vector.

• On input a lattice L and a vector t ∈ Rm the algorithms provides a
lattice vector x ∈ L such that

||x− t|| ≤ 2n/2dist(L, t).
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Construction of a (EC)DSA system

• Say we have n messages mi (i = 1, . . . , n) signed with (EC)DSA
system and (ri , si ) their signatures. So we have the n signing
equations:

si = k−1i (h(mi ) + ari ) mod q,

where ki are the ephemeral keys and a is the secret key.
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Construction of a (EC)DSA system

• We choose integers

Ai
$←−
(q i

n+1
+fq(n)

2
,
q

i
n+1

+fq(n)

1.5

)
,

for a suitable sequence fq(n) < 1 and we set Ci = −ri s−1i mod q,
and

Bi = −AiC
−1
i s−1i h(mi ) mod q.

• Further we set s = (a, k ′1, . . . , k
′
n), where k ′i = AiC

−1
i ki mod q and

we call them derivative ephemeral keys (these are multiples of the
unknown ephemeral keys).
• After simple manipulations we get that s satisfies the n × (n + 1)

linear system

yi + Aix + Bi ≡ 0 (mod q) (i = 1, . . . , n).
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Conditional Babai Attack

• Definition 1
Let q be a prime with `−bits and x , c ∈ Zq. Let A be a probabilistic
polynomial algorithm which accepts (c , x , `,PK ), where PK is the
public key of (EC)DSA-scheme, and returns

• 0, if the binary length of cx mod q is ` bits,

• 1, if the binary length of cx mod q is `− 1 bits,

• 2, if the binary length of cx mod q is < `− 1 bits.
We call such an oracle, length DSA oracle
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Conditional Babai Attack

• Definition 2
Let B be a probabilistic polynomial algorithm which accepts a pair
(x , `,PK ), where PK is the public key of (EC)DSA-scheme and
x ∈ Zq, and returns

• True, if the binary length of q − x is `− 1 bits

• False, otherwise.
We call such an oracle binary length DSA oracle
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Conditional Babai Attack

• Attack
Input : A public key (p, q, g ,R) of a DSA scheme or a public key
(E , p, q,P,Q) of a ECDSA scheme. Further, n signed messages are
given.
Output : The secret key a or Fail.
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Conditional Babai Attack

• 1. construct the system

yi + Aix + Bi ≡ 0 (mod q) (i = 1, . . . , n).

• 2 Let k ′i as previously the derivative ephemeral key corresponding to
the nonce ki .
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Conditional Babai Attack

• For i = 1, . . . , n,
3a. if A(k ′i ) = 0, then

if B(k ′i ) = True, consider the congruence,

(−yi ) + (−Ai )x + (−Bi ) ≡ 0 (mod q).

else, consider the congruence,

(2`−2 − yi ) + (−Ai )x + (−2`−2 − Bi ) ≡ 0 (mod q).

3b. if A(k ′i ) = 1, then do not modify the i− equation.
3c. if A(k ′i ) = 2, then consider the congruence,

(2`−2 + yi ) + Aix + (−2`−2 + Bi ) ≡ 0 (mod q).
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Conditional Babai Attack

• 3d.Let A′1, . . . ,A
′
n and B ′1, . . . ,B

′
n be the coefficients of variable x

and the constant terms, respectively, of the congruences constructed
in steps 3a, 3b and 3c. Thus, we have the following system:

yi + A′ix + B ′i ≡ 0 (mod q) (i = 1, . . . , n).
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Conditional Babai Attack

• 4. Construct the lattice generated by the rows of the DSA matrix

A =


−1 A′1 A′2 . . . A′n
0 q 0 . . . 0
0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q


Further, set b = (0,B ′1, . . . ,B

′
n) and

e = (2`−2 + 2`−3, . . . , 2`−2 + 2`−3).

M.Adamoudis, K.A. Draziotis and D. Poulakis ATTACKING (EC)DSA WITH PARTIALLY KNOWN MULTIPLES OF NONCES24 / 30



Introduction Backgound on Lattices Attacks on (EC)DSA Attack Results

Conditional Babai Attack

• 5. Apply LLL on the rows of A, B ← LLL(A).

• 6. w = (w1, ...,wn+1)← Babai(B,b + e).

• 7. If the first coordinate w1 of w satisfy gw1 = R, (respectively
Q = w1P) in F∗p, return w1, else return fail.
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• 6. w = (w1, ...,wn+1)← Babai(B,b + e).

• 7. If the first coordinate w1 of w satisfy gw1 = R, (respectively
Q = w1P) in F∗p, return w1, else return fail.
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Conditional Babai Attack

• The case A(k ′i ) = 0. Assume without loss of generality that ` = 160.
We consider the following assumption:
Assumption-1. All the derivative ephemeral keys have 160−bits.
Then, we can exploit the fact that q − a and q − k ′i have at most
159−bits.

• Construct the DSA-system as follows:
3a. if B(k ′i ) = True, consider the congruence,

(−yi ) + Ai (−x) + (−Bi ) ≡ 0 (mod q).

else, consider the congruence,

(2`−2 − yi ) + Ai (−x) + (−2`−2 − Bi ) ≡ 0 (mod q).
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Conditional Babai Attack

• The previous attack is based on the following Theorem.

• Theorem.
Let s = (a,A′1C

−1
1 k1 mod q, . . . ,A′nC

−1
n kn mod q) the solution of

the DSA system. If

‖s− e‖ < 1

4
q

n
n+1

+fq(n)

for some e ∈ Rn+1 then, s = w − b, where w = CVP(B,b + e).

• In our attack we used Babai, which behaves as a CVP oracle for
moderate dimension.
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Experimental Results

• We consider n = 204 messages. We generated 100 random DSA
systems, with secret key 160 bits and derivative ephemeral keys are
< q.

• For preprocessing we used BKZ with blocksize 70.The time execution
per example was about 1 minute in an I3 Intel CPU.

• fq(n) = min

{
1

n+1 ,
ln

(
−3q−

1
n+1+

√
96+9q

− 2
n+1

)
−ln 8

ln q

}
− 10−10.

• bits:Skey suc.rate

160 64%
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Experimental Results

• All the derivative ephemeral keys have 160− bits.

bits:(Skey, Der.Ep.keys) suc.rate

(160, 160) 83%

The (wall) time execution per example was about 2 minutes in an I3
Intel CPU (this time is dominated by the preprocessing step). So,
having a binary length oracle we can find the secret key.
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Thank you!
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