
MiniLedger: Compact-sized Anonymous
and Auditable Distributed Payments

P. Chatzigiannis and F. Baldimtsi

Motivation

● Lack of privacy and anonymity in decentralized ledger-based currencies

● ZCash and Monero have strong privacy guarantees for permissionless
ledgers

● But private payment systems offer no built-in auditing mechanisms to
protect from illegal transactions

Can we offer privacy while allowing for auditability?

Related Works
● Provisions (CCS15) - Proofs of solvency for bitcoin exchanges

● “Accountable Privacy for Decentralized Anonymous Payments” (FC16) -
Accountability extensions proposed to Zcash - centralized authorities

● PRCash (FC19) – Permissionless, accountable w.r.t. transaction value,
centralized authorities

● PGC (ESORICS20) – Permissionless, auditable, no tx graph hiding

● zkLedger (NSDI18) – Permissioned, fully anonymous, ledger grows
linearly with # of participants and # transactions

Our work - MiniLedger
● Ledger-based payment system in the permissioned setting

● Fully private and auditable, without the need of centralized authorities

● Near-constant size of ledger in terms of transactions

● Inspired from zkLedger, but addressing vulnerabilities and shortcomings

● Linear in terms of participants (Banks), but can be extended to
accommodate an arbitrary number clients

Building Blocks – Commitment Scheme

● Digital equivalent of a sealed box

● Hiding + binding

● Homomorphic commitments:

+ + =

$100

$100$20 $50 $30

Building Blocks – NIZKs

π

The
lockbox
has $100

Prover Verifier

Alice knows
how much
money is in

the box

Building Blocks – Cryptographic Accumulators

Prover Verifier

b27a492e1

∈ b27a492e1 , w

Overview of zkLedger

Intuition for zkLedger

● Account-based payment system

● Semi-homomorphic commitments (Pedersen
commitments)

zkLedger
overview

• cm: Pedersen commitment
• Token, Token’: used in audits
• pk = hsk

• πA: disjunctive NIZK proof that (Bank has
assets to spend and authorizes transfer) or
receives funds, with range proofs

• πB: No funds created or destroyed (Σvi=0)
• πC: NIZK proof of equality for r between cm

and Token

cm’: recommitment to v or to Σvj. Used to combine range proofs in πΑ into a single proof.
v>0: Bank receives
v<0: Bank spends
v=0: Bank does not participate in transaction

Audits in zkLedger

● Auditor asks for the value of the Bank’s total assets

● Bank replies with a value and a ZKP πAud : Π cmj/gj
v = Π Tokenj

sk

● Can audit single transaction or do more complex audits (e.g. statistical queries)

$?

Σv, πAud

B1 … Bj … Bn

tx1 … … cm, Token, πA, πC
,

c m’, Token’ … …

tx2 … … c m, Token, πA, πC
,

c m’, Token’ … …

tx3 … … c m, Token, πA, πC
,

c m’, Token’ … …

Auditor Bank j

Vulnerabilities – shortcomings in zkLedger

● “Unknown value” attack:
○ zkLedger mechanism for unknown randomness (Token)
○ But no mechanism for unknown values..
○ Affected Bank won't be able to pass audits

● Out of band communication → Why not open commitment?

● “Always online” assumption defeats whole scheme and trivializes it!

Fix: semi-homomorphic encrypt instead of commit

Linear storage of public ledger in the number
of transactions (maintained by everyone!)

• A ledger with 100 Banks and just 5000 transactions needs 32GB of storage!
• Computational performance also degrades

MiniLedger

Goal: Private, auditable transactions in the permissioned setting without
public linear storage requirements

High level idea:

● Consensus: agreement among participating parties

● Compact Data Structures

MiniLedger main building blocks

● Pedersen commitments

● NIZK proofs (Σ-protocols) + AND-OR compositions

● Ledger Consensus

● Accumulators (additive – positive or universal – trapdoorless
– no upper bound)

● Additive ElGamal encryption variant

Additive ElGamal variant

● Variant can homomorphically add ciphertexts c2 generated under different public keys
● c2 x c2’ contains encryption of (m + m’) → if c2 x c2’ = 1 then m = - m’

Normal additive ElGamal: pp: (G, g, p)
pk = gsk (c1, c2) = (gr, gmpkr)

ElGamal variant: pp: (G, g, h, p)
pk = hsk (c1, c2) = (pkr, gmhr)

Dec: gm = c2 / c1
1/sk → recover m from lookup table

Assumptions (similar to zkLedger)

● Network: no eclipse attacks, transactions sent using
anonymous broadcast

● Consensus: no dishonest majority, no forks

● No “race conditions” when creating transactions

● Set of Banks is static (dynamic set can trivially still be
supported)

● Incentives orthogonal to our setting

● RO model for NIZKs

MiniLedger overview

• ElGamal variant is
equivalent to Pedersen
commitment + Token

• πC : ensures correct
decryption

• No extra Token’

B1 … Bn

tx1
c1= pk1

r, c2=g10hr

πA, πC , c m
…

tx2
c 1= pk1

r, c 2=g- 5hr

πA, πC ,c m
c 1= pk1

r, c 2=g5hr

πA, πC ,c m

tx3
c 1= pk1

r, c 2=g0 hr

πA, πC ,c m

Transaction pruning
B1 … Bn

tx1
c1= pk1

r, c2=g10hr

πA, πC ,c m
…

tx2
c 1= pk1

r, c 2=g- 5hr

πA, πC ,c m

c 1= pk1
r,

c 2=g5hr

πA, πC ,c m

tx3
c 1= pk1

r, c 2=g0 hr

πA, πC ,c m
…

D1

B1

c 1= pk1
r,

c 2=g10 hr

c 1= pk1
r, c 2=g-

5hr

c 1= pk1
r, c 2=g0 hr

D1

Transaction pruning
B1 … Bn

tx1
c1= pk1

r, c2=g10hr

πA, πC ,c m
…

tx2
c 1= pk1

r, c 2=g- 5hr

πA, πC ,c m

c 1= pk1
r,

c 2=g5hr

πA, πC ,c m

tx3
c 1= pk1

r, c 2=g0 hr

πA, πC ,c m
…

D1

B1

P1

Pn

…
D1

c1= pk 1
r,

c2=g10hr

c 1= pk1
r,

c 2=g- 5hr

c 1= pk1
r,

c 2=g0 hr

D1

?

Transaction pruning

D1 inc ludes c m = Πc 2

B1 … Bn

tx1 …

tx2

c 1= pk1
r,

c 2=g5hr

πA, πC ,c m

tx3 …

D1

Ideal Public Ledger

B1 … Bn
D1 Dn

Audits on pruned transactions
B1 … Bn

tx1 …

tx2 …

tx3 …

D1

$? for tx1

(1||c1|| c2), w, 10, πAud

B1

c1= pk1
r, c2=g10hr

c1= pk1
r, c2=g-5hr

c1= pk1
r, c2=g0hr

Concrete efficiency improvements vs zkLedger

● Token’ is redundant → reduced ledger storage cost

● Combine NIZKs πA, πC → reduce proof size and computation
cost

Asymptotic efficiency improvements vs
zkLedger

● zkLedger: O(mn), n: #Banks, m: #txs

● miniLedger: O(n)

MiniLedger Extensions

● Audits without consent (→ non-interactive)
○ Enforce inclusion of NIZK πAud in the output of a

transaction - encrypt claimed value under trusted
auditor’s pk

● Trusted auditor can be substituted by a threshold
encryption protocol (t out of n Banks can audit)

Adding clients for fine-grained auditing

B1 … Bj Bn

…

C1

C2

C3

C1 C2 C3

tx tx tx

… … …

Client to client transactions

B1 … Bj Bn

…

C1

C8

C1 C2 C3

$10

C1 B1
tx: (id, C1, C2, C3, π1, π2, π3,σ)

C1 C2 C3

tx

B1 … Bj Bn

txi c1.. c1.. c1.. R, H c1.. c1..

C7 C8 C9C7 C8 C9

tx'
B1 … Bj Bn

txi c1. c1. c1.. R, H c1.. c1..

txi+1 H H H H H

Auditing users and aggregating transactions

● Banks can aggregate many of their clients’ transactions into a single
MiniLedger transaction

● Auditors reactively check Banks’ honest behavior
○ Auditor requests private table from Bank
○ Check that sum of private table always matches sum of assets on

MiniLedger
○ Audits in a client level similar to MiniLedger
○ Bank is accountable for any inconsistencies between private table

and main Ledger
● Extension maintains indistinguishability properties of the ledger, fully

compatible with pruning

Additional audit types

● Transaction exceeding some amount (e.g. v >
$10K)

● Client exceeding threshold over a period of time

● Has sent assets to a specific client (proofs on
non-membership)

Implementation

● Prototype in python using petlib (secp256k1 curve) and
zksk (Schoenmakers range proofs) libraries

● Bulletproof compatible → further optimizations possible

● Implementation options for Accumulator (depending on
use-case):
○ Merkle Trees
○ Batched-RSA accumulators

Merkle Trees and batched-RSA accumulators

● Merkle Trees: straightforward, naturally support order
binding, cheap Merkle proofs but over-linear complexity for
many transactions, no support for non-membership proofs

● RSA Accumulators: need a deterministic prime mapping
function, trapdoor can be computed (and later discarded) by
a TP or MPC, more efficient in large “batch” operations (e.g.
auditing sums)

● VC more expensive overall and offer unneeded properties
(cannot commit to same index)

Evaluation – Transaction creation, verification
and auditing

Evaluation overview – Pruning operation

Evaluation overview – Single transaction audit

Evaluation overview – Multi transaction audit

Evaluation highlights

● zkLedger size 512nm bits, MiniLedger lower bound at 256n bits (all n Banks
have pruned, single-line Ledger)

● Same computation costs for a single transaction creation/verification
(without optimizations)

● Pruning costs independent to # of banks

● Pruning 100k txs need ~1.5 minutes with RSA, ~1ms for Merkle Trees

● Auditing costs same with zkLedger if transaction is not pruned

● Additional costs when transaction is pruned (as in previous Figures)

Conclusions

● Based on zkLedger, we construct an auditable payment
system without linear public storage requirements

● Choice of compact data structure is based on use-case

● Given a (nearly) constant public ledger, we can add clients
for fine-grained auditability and accommodate a large user
base.

Questions?

	Slide Number 1
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Client to client transactions
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40

