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Motivation

● Lack of privacy and anonymity in decentralized ledger-based currencies

● ZCash and Monero have strong privacy guarantees for permissionless
ledgers

● But private payment systems offer no built-in auditing mechanisms to 
protect from illegal transactions

Can we offer privacy while allowing for auditability?



Related Works
● Provisions (CCS15) - Proofs of solvency for bitcoin exchanges

● “Accountable Privacy for Decentralized Anonymous Payments” (FC16) -
Accountability extensions proposed to Zcash - centralized authorities

● PRCash (FC19) – Permissionless, accountable w.r.t. transaction value, 
centralized authorities

● PGC (ESORICS20) – Permissionless, auditable, no tx graph hiding

● zkLedger (NSDI18) – Permissioned, fully anonymous, ledger grows 
linearly with # of participants and # transactions



Our work - MiniLedger
● Ledger-based payment system in the permissioned setting

● Fully private and auditable, without the need of centralized authorities

● Near-constant size of ledger in terms of transactions 

● Inspired from zkLedger, but addressing vulnerabilities and shortcomings

● Linear in terms of participants (Banks), but can be extended to 
accommodate an arbitrary number clients



Building Blocks – Commitment Scheme

● Digital equivalent of a sealed box

● Hiding + binding

● Homomorphic commitments:
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Building Blocks – Cryptographic Accumulators
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Overview of zkLedger



Intuition for zkLedger

● Account-based payment system

● Semi-homomorphic commitments (Pedersen 
commitments)



zkLedger
overview

• cm: Pedersen commitment 
• Token, Token’: used in audits
• pk = hsk

• πA: disjunctive NIZK proof that (Bank has 
assets to spend and authorizes transfer) or 
receives funds, with range proofs

• πB: No funds created or destroyed (Σvi=0)
• πC: NIZK proof of equality for r between cm 

and Token 

cm’: recommitment to v or to Σvj. Used to combine range proofs in πΑ into a single proof.
v>0: Bank receives
v<0: Bank spends
v=0: Bank does not participate in transaction



Audits in zkLedger

● Auditor asks for the value of the Bank’s total assets

● Bank replies with a value and a ZKP πAud : Π cmj/gj
v = Π Tokenj

sk

● Can audit single transaction or do more complex audits (e.g. statistical queries)
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Vulnerabilities – shortcomings in zkLedger

● “Unknown value” attack:
○ zkLedger mechanism for unknown randomness (Token)
○ But no mechanism for unknown values..
○ Affected Bank won't be able to pass audits

● Out of band communication → Why not open commitment?

● “Always online” assumption defeats whole scheme and trivializes it!

Fix: semi-homomorphic encrypt instead of commit



Linear storage of public ledger in the number 
of transactions (maintained by everyone!)

• A ledger with 100 Banks and just 5000 transactions needs 32GB of storage!
• Computational performance also degrades



MiniLedger

Goal: Private, auditable transactions in the permissioned setting without
public linear storage requirements

High level idea:

● Consensus: agreement among participating parties

● Compact Data Structures 



MiniLedger main building blocks

● Pedersen commitments

● NIZK proofs (Σ-protocols) + AND-OR compositions

● Ledger Consensus

● Accumulators (additive – positive or universal – trapdoorless
– no upper bound)

● Additive ElGamal encryption variant



Additive ElGamal variant

● Variant can homomorphically add ciphertexts c2 generated under different public keys
● c2 x c2’ contains encryption of (m + m’) → if c2 x c2’ = 1 then m = - m’

Normal additive ElGamal: pp: (G, g, p)
pk = gsk (c1, c2)  = (gr, gmpkr)

ElGamal variant: pp: (G, g, h, p)
pk = hsk (c1, c2)  = (pkr, gmhr)

Dec: gm = c2 / c1
1/sk → recover m from lookup table



Assumptions (similar to zkLedger)

● Network: no eclipse attacks, transactions sent using 
anonymous broadcast

● Consensus: no dishonest majority, no forks

● No “race conditions” when creating transactions

● Set of Banks is static (dynamic set can trivially still be 
supported)

● Incentives orthogonal to our setting

● RO model for NIZKs



MiniLedger overview

• ElGamal variant is 
equivalent to Pedersen 
commitment + Token

• πC : ensures correct 
decryption

• No extra Token’
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Transaction pruning
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Transaction pruning
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Transaction pruning

D1 inc ludes  c m = Πc 2
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Ideal Public Ledger
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Audits on pruned transactions
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Concrete efficiency improvements vs zkLedger

● Token’ is redundant → reduced ledger storage cost

● Combine NIZKs πA, πC → reduce proof size and computation 
cost



Asymptotic efficiency improvements vs 
zkLedger

● zkLedger: O(mn), n: #Banks, m: #txs

● miniLedger: O(n)



MiniLedger Extensions

● Audits without consent ( → non-interactive)
○ Enforce inclusion of NIZK πAud in the output of a 

transaction - encrypt claimed value under trusted 
auditor’s pk

● Trusted auditor can be substituted by a threshold 
encryption protocol (t out of n Banks can audit)



Adding clients for fine-grained auditing
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Client to client transactions
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Auditing users and aggregating transactions

● Banks can aggregate many of their clients’ transactions into a single 
MiniLedger transaction

● Auditors reactively check Banks’ honest behavior
○ Auditor requests private table from Bank
○ Check that sum of private table always matches sum of assets on 

MiniLedger
○ Audits in a client level similar to MiniLedger
○ Bank is accountable for any inconsistencies between private table 

and main Ledger 
● Extension maintains indistinguishability properties of the ledger, fully 

compatible with pruning



Additional audit types

● Transaction exceeding some amount (e.g. v > 
$10K)

● Client exceeding threshold over a period of time

● Has sent assets to a specific client (proofs on 
non-membership)



Implementation

● Prototype in python using petlib (secp256k1 curve) and 
zksk (Schoenmakers range proofs) libraries

● Bulletproof compatible → further optimizations possible

● Implementation options for Accumulator (depending on 
use-case):
○ Merkle Trees 
○ Batched-RSA accumulators



Merkle Trees and batched-RSA accumulators

● Merkle Trees: straightforward, naturally support order 
binding, cheap Merkle proofs but over-linear complexity for 
many transactions, no support for non-membership proofs

● RSA Accumulators: need a deterministic prime mapping 
function, trapdoor can be computed (and later discarded) by 
a TP or MPC, more efficient in large “batch” operations (e.g. 
auditing sums)

● VC more expensive overall and offer unneeded properties 
(cannot commit to same index)



Evaluation – Transaction creation, verification 
and auditing



Evaluation overview – Pruning operation



Evaluation overview – Single transaction audit



Evaluation overview – Multi transaction audit



Evaluation highlights

● zkLedger size 512nm bits, MiniLedger lower bound at 256n bits (all n Banks 
have pruned, single-line Ledger)

● Same computation costs for a single transaction creation/verification 
(without optimizations)

● Pruning costs independent to # of banks 

● Pruning 100k txs need ~1.5 minutes with RSA, ~1ms for Merkle Trees

● Auditing costs same with zkLedger if transaction is not pruned

● Additional costs when transaction is pruned (as in previous Figures)



Conclusions

● Based on zkLedger, we construct an auditable payment 
system without linear public storage requirements

● Choice of compact data structure is based on use-case

● Given a (nearly) constant public ledger, we can add clients 
for fine-grained auditability and accommodate a large user 
base.



Questions?
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