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Decentralized
Fault-tolerant
Secure

ways of sharing and storing information
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Decentralized
Fault-tolerant
Secure
… many other

ways of sharing and storing information
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Fundamental Questions
Blockchains and the Future of Distributed Computing 

[Herlihy PODC 17]

● No formal abstraction of these objects has been proposed

Formalizing and Implementing Distributed Ledger Objects 
[Anta et al.  NETYS 18]

● What is the service that must be provided by a distributed ledger?  
● What properties a distributed ledger must satisfy?  
● What are the assumptions made by the protocols and algorithms on the 

underlying system?  
● Does a distributed ledger require a linked cryptocurrency?
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Why Blockchain is Hard?
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Blockchain?
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Blockchain?

X
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Blockchain? Block + Chain!
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Blockchain? Block + Chain!

In this talk, no crypto detail
● What Block?
● How to link?
● How secure?
● How to mine?
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Block + Chain!    [in Distributed Computing]

Bitcoin on a high-level:
In each round, 
● Nodes exchange blocks 

(mining)
● Nodes “agree on” a block
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Block + Chain!    [in Distributed Computing]



Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Block + Chain!    [in Distributed Computing]

disagreement ⇒ 
double-spending 
attack
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Block + Chain!    [in Distributed Computing]

disagreement ⇒ 
double-spending 
attack

FLP Result 
[JACM 85]:
Fault + Async. + 
Consensus
= Impossible
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Most common approach:
Proof-of-XXX
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Is Consensus necessary?
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Is Consensus necessary?
No
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The Consensus Number of a Cryptocurrency
Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian 
Seredinschi [PODC 2019]

https://arxiv.org/pdf/1906.05574.pdf 

https://arxiv.org/pdf/1906.05574.pdf
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Model

Asynchronous network: arbitrary message delay

Permissioned, static system: a fixed set of nodes [1, …, n]

Crash fault: up to f fail-stop failures
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Cryptocurrency: Working Definition
A cryptocurrency is a virtual asset that relies on cryptography tools to prevent 
counterfeit or double-spend.
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Cryptocurrency: Abstraction
A cryptocurrency is a virtual asset that relies on cryptography tools to prevent 
counterfeit or double-spend.

Node A

Node B

Node C

Init(A) = {c} Tran(A,B,{c})

Init(B) = {}

Init(C) = {}

Recv(A,B,{c})



Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Cryptocurrency: Counterfeit
A cryptocurrency is a virtual asset that relies on cryptography tools to prevent 
counterfeit or double-spend.

Node A

Node B

Node C

Init(A) = {c} Tran(A,B,{c’})

Init(B) = {}

Init(C) = {}

Recv(A,B,{c’})
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Cryptocurrency: Double-spend
A cryptocurrency is a virtual asset that relies on cryptography tools to prevent 
counterfeit or double-spend.

Node A

Node B

Node C

Init(A) = {c} Tran(A,B,{c})

Init(B) = {}

Init(C) = {}

Recv(A,B,{c})

Tran(A,C,{c})

Recv(A,B,{c})
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What is the (concurrent) data structure?
Asset transfer object [PODC 2019]

● Each node has an account
● ATO state: balance of each account
● Transfer(A,B,x):

○ Decrease A’s account by x
○ Increase B’s account by x

● Read(A): return A’s balance
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What is the (concurrent) data structure?
Asset transfer object [PODC 2019]

● Each node has an account
● ATO state: balance of each account
● Transfer(A,B,x):

○ Decrease A’s account by x
○ Increase B’s account by x

● Read(A): return A’s balance

Valid transfer/transaction: Transfer(A,B,x)

● Invoked by A
● balance(A) ≥ x
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What is the (concurrent) data structure?
Asset transfer object [PODC 2019]

● Each node has an account
● ATO state: balance of each account
● Transfer(A,B,x):

○ Decrease A’s account by x
○ Increase B’s account by x

● Read(A): return A’s balance

Valid transfer/transaction: Transfer(A,B,x)

● Invoked by A
● balance(A) ≥ x No overdraft
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Atomic Snapshot Object [Afek et al. JACM 93]
Object partitioned into n segments

Each segment is “owned” by a node (single-writer)

Update: write a value to own segment  

Scan: read values from all segments -- take a snapshot

Operations linearizable -- a total order that follows the real-time order
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Atomic Snapshot Object [Afek et al. JACM 93]
Object partitioned into n segments

Each segment is “owned” by a node (single-writer)

Update: write a value to own segment  

Scan: read values from all segments -- take a snapshot

Operations linearizable -- a total order that follows the real-time order

ID 1 2 3

Value
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ASO-based Cryptocurrency [PODC 2019]

Intuition: 
● i’s entry = all outgoing 

transfers at node i

ID 1 2 3

Value {(1, 2, 100)}
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ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

Intuition: 
● i’s entry = all outgoing 

transfers at node i

ID 1 2 3

Value {(1, 2, 100)}
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ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

Intuition: 
● i’s entry = all outgoing 

transfers at node i

ID 1 2 3

Value {(1, 2, 100)}

Balance

1 0

2 100

3 0
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ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

Intuition: 
● i’s entry = all outgoing 

transfers at node i

ID 1 2 3

Value {(1, 2, 100)} {(2, 3, 50)}

Balance

1 0

2 50

3 50
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ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

ID 1 2 3

Value {(1, 2, 100)} {(2, 3, 50)}

Balance

1 0

2 50

3 50

Transfer(A,B,x):

● S ← AS.scan
● If valid transaction:

OP[A] ← OP[A] U {(A,B,x)}
 AS.update(OP[A])
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ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

ID 1 2 3

Value {(1, 2, 100)} {(2, 3, 50)}

Balance

1 0

2 50

3 50

Transfer(A,B,x):

● S ← AS.scan
● If valid transaction:

OP[A] ← OP[A] U {(A,B,x)}
 AS.update(OP[A])

learn new incoming tx’s
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Example

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2) Read(2) Read(2)
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Example

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2) Read(2) Read(2)

Balance

1 100

2 0

3 0
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Example

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2) Read(2) Read(2)

Balance

1 0

2 100

3 0
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ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

ID 1 2 3

Value {(1, 2, 100)} {(2, 3, 50)}

Balance

1 0

2 50

3 50

Transfer(A,B,x):

● S ← AS.scan
● If valid transaction:

OP[A] ← OP[A] U {(A,B,x)}
 AS.update(OP[A])

no overdraft
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ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

ID 1 2 3

Value {(1, 2, 100)} {(2, 3, 50)}

Balance

1 0

2 50

3 50

Transfer(A,B,x):

● S ← AS.scan
● If valid transaction:

OP[A] ← OP[A] U {(A,B,x)}
 AS.update(OP[A])

Update A’s outgoing tx’s
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Example

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2)

Balance

1 0

2 100

3 0
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Example

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2)

Balance

1 0

2 50

3 50

Tran(2,3,50)

Read(3)
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Is this possible?

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2)

Balance

1 100

2 0

3 0

Balance

1 0

2 100

3 0Read(2)
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Linearizability: 
Total order + Real-time order

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2)

Balance

1 0

2 100

3 0
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Linearizability: 
Total order + Real-time order

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2)

Balance

1 0

2 50

3 50

Tran(2,3,50)

Read(*)
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So what?
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ASO can be implemented in 
asynchronous systems!
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It’s all good, but ...
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Is it scalable and highly available?
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CAP Theorem   [Brewer PODC 00, Gilbert/Lynch 02]

Consistency: right response to each request

Availability: termination eventually

Partition tolerance: 

unreliable comm. network
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CAP Theorem   [Brewer PODC 00, Gilbert/Lynch 02]

Consistency: right response to each request

Availability: termination eventually

Partition tolerance: 

unreliable comm. network

Impossible to have all three!

When there is a partition, 
choose consistency or 
availability
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ASO-Crypto: Incorrect

Node 1

Node 2

Tran(1,2,100)

Read(2)

Balance

1 100

2 0

3 0
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ASO-Crypto: Slow

Node 1

Node 2

Tran(1,2,100)

Read(2)

Balance

1 0

2 100

3 0
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Cryptocurrency in a Partitioned Network?
(under submission)
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Key observation: 
Pending transactions

(Delivered but not applied)
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Modern Bank

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(*)

Balance

1 100

2 0

3 0
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Modern Bank

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(*)

Read(*)
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Modern Bank

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(*)

Balance

1 0

2 100

3 0

Read(*)

Balance

1 100

2 0

3 0
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Key tool: 
abstracting consistency guarantees
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Operations

Transfer

Read

Audit: return the “validity proof” of all the outgoing 
transactions

Valid transaction: no double-spend, no counterfeit, 
no overdraft
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Properties
Eventual delivery: Tx from the same partition is eventually applied

Local operation: No communication needed to complete an operation

Read-my-write: Read reflects the effect of all the prior outgoing transfers

Auditability: One is able to present validity proof

Validity: All applied transactions are valid
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Properties under CAP framework
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Read-my-write: Read reflects the effect of all the prior outgoing transfers

Auditability: One is able to present validity proof

Validity: All applied transactions are valid
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Properties under CAP framework
Eventual delivery: Tx from the same partition is eventually applied

Local operation: No communication needed to complete an operation

Read-my-write: Read reflects the effect of all the prior outgoing transfers

Auditability: One is able to present validity proof

Validity: All applied transactions are valid
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Thm1: Byzantine node + Eventual delivery + 
Partition-tolerance = impossible

B

C

A

A
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Thm1: Byzantine node + Eventual delivery + 
Partition-tolerance = impossible

B

C

A

A

Tran(A,B,1)

Tran(A,C,1)
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Thm1: Byzantine node + Eventual delivery + 
Partition-tolerance = impossible

B

C

A

A

Tran(A,B,1)

Tran(A,C,1)

Don’t apply:
violating eventual 
delivery

Apply:
double-spend
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Causal consistency [Ahamad et al. DC 95]
On a high-level, causal consistency lets each node observe the entire causal 
history (happens-before relation)

Node A

Node B

Node C

Write1

Read1

Write1 → Read1
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Causal consistency [Ahamad et al. DC 95]
On a high-level, causal consistency lets each node observe the entire causal 
history (happens-before relation)

Node A

Node B

Node C

Write1

Write2Read1

Read2

Write1 → Read1 → Write2 → Read2
⇒ Write1 → Read2
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Thm2: Causal consistency is necessary

Node A

Node B

Node C

Tran(A,B,1)

Tran(B,C,1)Read()

Read() Audit()
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Thm2: Causal consistency is necessary

Audit() does NOT contain Tran(A,B,1)

⇒ Node C violates auditability!

Node A

Node B

Node C

Tran(A,B,1)

Tran(B,C,1)Read()

Read() Audit()
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Positive Results
CCC: Causal Cryptocurrency under Crash faults

● Similar to ASO-Crypto, but use causal memory underneath

CCB: Causal Cryptocurrency under Byzantine faults

● Byzantine causal memory [Tseng et al. NCA 19]
● Reliable broadcast [Bracha and Toueg JACM 85]
● Sequence number to stop double-spending
● PKI and digital signature
● A weaker form of eventual delivery: 

one needs to be able to talk to n-f correct nodes
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Summary
ASO-Crypto: consensus not necessary

Our work: total order and strong consistency not necessary

causal consistency necessary

an inherent challenge of Byzantine crypto in partition

two implementations
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Future Works

Implementation and evaluation 

Permission-less systems

Probabilistic guarantees
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Advice

Know fundamentals

● FLP
● CAP

Reach out to other communities

Be comfortable with formalism
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Thanks!
Questions?

lewis.tseng@bc.edu 

mailto:lewis.tseng@bc.edu

