
Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Fundamental Properties of
Cryptocurrency in

Distributed Systems
Lewis Tseng

Boston College

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Google search, 01/21/2021

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Decentralized
Fault-tolerant
Secure

ways of sharing and storing information

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Decentralized
Fault-tolerant
Secure
… many other

ways of sharing and storing information

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Fundamental Questions
Blockchains and the Future of Distributed Computing

[Herlihy PODC 17]

● No formal abstraction of these objects has been proposed

Formalizing and Implementing Distributed Ledger Objects
[Anta et al. NETYS 18]

● What is the service that must be provided by a distributed ledger?
● What properties a distributed ledger must satisfy?
● What are the assumptions made by the protocols and algorithms on the

underlying system?
● Does a distributed ledger require a linked cryptocurrency?

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Fundamental Questions
Blockchains and the Future of Distributed Computing

[Herlihy PODC 17]

● No formal abstraction of these objects has been proposed

Formalizing and Implementing Distributed Ledger Objects
[Anta et al. NETYS 18]

● What is the service that must be provided by a distributed ledger?
● What properties a distributed ledger must satisfy?
● What are the assumptions made by the protocols and algorithms on the

underlying system?
● Does a distributed ledger require a linked cryptocurrency?

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Why Blockchain is Hard?

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Blockchain?

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Blockchain?

X

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Blockchain? Block + Chain!

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Blockchain? Block + Chain!

In this talk, no crypto detail
● What Block?
● How to link?
● How secure?
● How to mine?

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Block + Chain! [in Distributed Computing]

Bitcoin on a high-level:
In each round,
● Nodes exchange blocks

(mining)
● Nodes “agree on” a block

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Block + Chain! [in Distributed Computing]

Bitcoin on a high-level:
In each round,
● Nodes exchange blocks

(mining)
● Nodes “agree on” a block

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Block + Chain! [in Distributed Computing]

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Block + Chain! [in Distributed Computing]

disagreement ⇒
double-spending
attack

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Block + Chain! [in Distributed Computing]

disagreement ⇒
double-spending
attack

FLP Result
[JACM 85]:
Fault + Async. +
Consensus
= Impossible

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Most common approach:
Proof-of-XXX

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Is Consensus necessary?

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Is Consensus necessary?
No

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

The Consensus Number of a Cryptocurrency
Rachid Guerraoui, Petr Kuznetsov, Matteo Monti, Matej Pavlovic, Dragos-Adrian
Seredinschi [PODC 2019]

https://arxiv.org/pdf/1906.05574.pdf

https://arxiv.org/pdf/1906.05574.pdf

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Model

Asynchronous network: arbitrary message delay

Permissioned, static system: a fixed set of nodes [1, …, n]

Crash fault: up to f fail-stop failures

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Cryptocurrency: Working Definition
A cryptocurrency is a virtual asset that relies on cryptography tools to prevent
counterfeit or double-spend.

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Cryptocurrency: Abstraction
A cryptocurrency is a virtual asset that relies on cryptography tools to prevent
counterfeit or double-spend.

Node A

Node B

Node C

Init(A) = {c} Tran(A,B,{c})

Init(B) = {}

Init(C) = {}

Recv(A,B,{c})

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Cryptocurrency: Counterfeit
A cryptocurrency is a virtual asset that relies on cryptography tools to prevent
counterfeit or double-spend.

Node A

Node B

Node C

Init(A) = {c} Tran(A,B,{c’})

Init(B) = {}

Init(C) = {}

Recv(A,B,{c’})

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Cryptocurrency: Double-spend
A cryptocurrency is a virtual asset that relies on cryptography tools to prevent
counterfeit or double-spend.

Node A

Node B

Node C

Init(A) = {c} Tran(A,B,{c})

Init(B) = {}

Init(C) = {}

Recv(A,B,{c})

Tran(A,C,{c})

Recv(A,B,{c})

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

What is the (concurrent) data structure?
Asset transfer object [PODC 2019]

● Each node has an account
● ATO state: balance of each account
● Transfer(A,B,x):

○ Decrease A’s account by x
○ Increase B’s account by x

● Read(A): return A’s balance

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

What is the (concurrent) data structure?
Asset transfer object [PODC 2019]

● Each node has an account
● ATO state: balance of each account
● Transfer(A,B,x):

○ Decrease A’s account by x
○ Increase B’s account by x

● Read(A): return A’s balance

Valid transfer/transaction: Transfer(A,B,x)

● Invoked by A
● balance(A) ≥ x

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

What is the (concurrent) data structure?
Asset transfer object [PODC 2019]

● Each node has an account
● ATO state: balance of each account
● Transfer(A,B,x):

○ Decrease A’s account by x
○ Increase B’s account by x

● Read(A): return A’s balance

Valid transfer/transaction: Transfer(A,B,x)

● Invoked by A
● balance(A) ≥ x No overdraft

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Atomic Snapshot Object [Afek et al. JACM 93]
Object partitioned into n segments

Each segment is “owned” by a node (single-writer)

Update: write a value to own segment

Scan: read values from all segments -- take a snapshot

Operations linearizable -- a total order that follows the real-time order

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Atomic Snapshot Object [Afek et al. JACM 93]
Object partitioned into n segments

Each segment is “owned” by a node (single-writer)

Update: write a value to own segment

Scan: read values from all segments -- take a snapshot

Operations linearizable -- a total order that follows the real-time order

ID 1 2 3

Value

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO-based Cryptocurrency [PODC 2019]

Intuition:
● i’s entry = all outgoing

transfers at node i

ID 1 2 3

Value {(1, 2, 100)}

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

Intuition:
● i’s entry = all outgoing

transfers at node i

ID 1 2 3

Value {(1, 2, 100)}

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

Intuition:
● i’s entry = all outgoing

transfers at node i

ID 1 2 3

Value {(1, 2, 100)}

Balance

1 0

2 100

3 0

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

Intuition:
● i’s entry = all outgoing

transfers at node i

ID 1 2 3

Value {(1, 2, 100)} {(2, 3, 50)}

Balance

1 0

2 50

3 50

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

ID 1 2 3

Value {(1, 2, 100)} {(2, 3, 50)}

Balance

1 0

2 50

3 50

Transfer(A,B,x):

● S ← AS.scan
● If valid transaction:

OP[A] ← OP[A] U {(A,B,x)}
 AS.update(OP[A])

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

ID 1 2 3

Value {(1, 2, 100)} {(2, 3, 50)}

Balance

1 0

2 50

3 50

Transfer(A,B,x):

● S ← AS.scan
● If valid transaction:

OP[A] ← OP[A] U {(A,B,x)}
 AS.update(OP[A])

learn new incoming tx’s

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Example

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2) Read(2) Read(2)

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Example

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2) Read(2) Read(2)

Balance

1 100

2 0

3 0

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Example

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2) Read(2) Read(2)

Balance

1 0

2 100

3 0

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

ID 1 2 3

Value {(1, 2, 100)} {(2, 3, 50)}

Balance

1 0

2 50

3 50

Transfer(A,B,x):

● S ← AS.scan
● If valid transaction:

OP[A] ← OP[A] U {(A,B,x)}
 AS.update(OP[A])

no overdraft

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO-based Cryptocurrency [PODC 2019]
Read(A):

● S ← AS.scan
● Return A’s balance in S

ID 1 2 3

Value {(1, 2, 100)} {(2, 3, 50)}

Balance

1 0

2 50

3 50

Transfer(A,B,x):

● S ← AS.scan
● If valid transaction:

OP[A] ← OP[A] U {(A,B,x)}
 AS.update(OP[A])

Update A’s outgoing tx’s

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Example

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2)

Balance

1 0

2 100

3 0

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Example

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2)

Balance

1 0

2 50

3 50

Tran(2,3,50)

Read(3)

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Is this possible?

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2)

Balance

1 100

2 0

3 0

Balance

1 0

2 100

3 0Read(2)

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Linearizability:
Total order + Real-time order

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2)

Balance

1 0

2 100

3 0

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Linearizability:
Total order + Real-time order

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(2)

Balance

1 0

2 50

3 50

Tran(2,3,50)

Read(*)

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

So what?

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO can be implemented in
asynchronous systems!

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

It’s all good, but ...

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Is it scalable and highly available?

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

CAP Theorem [Brewer PODC 00, Gilbert/Lynch 02]

Consistency: right response to each request

Availability: termination eventually

Partition tolerance:

unreliable comm. network

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

CAP Theorem [Brewer PODC 00, Gilbert/Lynch 02]

Consistency: right response to each request

Availability: termination eventually

Partition tolerance:

unreliable comm. network

Impossible to have all three!

When there is a partition,
choose consistency or
availability

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO-Crypto: Incorrect

Node 1

Node 2

Tran(1,2,100)

Read(2)

Balance

1 100

2 0

3 0

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

ASO-Crypto: Slow

Node 1

Node 2

Tran(1,2,100)

Read(2)

Balance

1 0

2 100

3 0

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Cryptocurrency in a Partitioned Network?
(under submission)

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Key observation:
Pending transactions

(Delivered but not applied)

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Modern Bank

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(*)

Balance

1 100

2 0

3 0

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Modern Bank

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(*)

Read(*)

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Modern Bank

Node 1

Node 2

Node 3

Tran(1,2,100)

Read(*)

Balance

1 0

2 100

3 0

Read(*)

Balance

1 100

2 0

3 0

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Key tool:
abstracting consistency guarantees

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Operations

Transfer

Read

Audit: return the “validity proof” of all the outgoing
transactions

Valid transaction: no double-spend, no counterfeit,
no overdraft

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Properties
Eventual delivery: Tx from the same partition is eventually applied

Local operation: No communication needed to complete an operation

Read-my-write: Read reflects the effect of all the prior outgoing transfers

Auditability: One is able to present validity proof

Validity: All applied transactions are valid

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Properties under CAP framework
Eventual delivery: Tx from the same partition is eventually applied

Local operation: No communication needed to complete an operation

Read-my-write: Read reflects the effect of all the prior outgoing transfers

Auditability: One is able to present validity proof

Validity: All applied transactions are valid

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Properties under CAP framework
Eventual delivery: Tx from the same partition is eventually applied

Local operation: No communication needed to complete an operation

Read-my-write: Read reflects the effect of all the prior outgoing transfers

Auditability: One is able to present validity proof

Validity: All applied transactions are valid

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Properties under CAP framework
Eventual delivery: Tx from the same partition is eventually applied

Local operation: No communication needed to complete an operation

Read-my-write: Read reflects the effect of all the prior outgoing transfers

Auditability: One is able to present validity proof

Validity: All applied transactions are valid

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Thm1: Byzantine node + Eventual delivery +
Partition-tolerance = impossible

B

C

A

A

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Thm1: Byzantine node + Eventual delivery +
Partition-tolerance = impossible

B

C

A

A

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Thm1: Byzantine node + Eventual delivery +
Partition-tolerance = impossible

B

C

A

A

Tran(A,B,1)

Tran(A,C,1)

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Thm1: Byzantine node + Eventual delivery +
Partition-tolerance = impossible

B

C

A

A

Tran(A,B,1)

Tran(A,C,1)

Don’t apply:
violating eventual
delivery

Apply:
double-spend

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Causal consistency [Ahamad et al. DC 95]
On a high-level, causal consistency lets each node observe the entire causal
history (happens-before relation)

Node A

Node B

Node C

Write1

Read1

Write1 → Read1

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Causal consistency [Ahamad et al. DC 95]
On a high-level, causal consistency lets each node observe the entire causal
history (happens-before relation)

Node A

Node B

Node C

Write1

Write2Read1

Read2

Write1 → Read1 → Write2 → Read2
⇒ Write1 → Read2

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Thm2: Causal consistency is necessary

Node A

Node B

Node C

Tran(A,B,1)

Tran(B,C,1)Read()

Read() Audit()

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Thm2: Causal consistency is necessary

Audit() does NOT contain Tran(A,B,1)

⇒ Node C violates auditability!

Node A

Node B

Node C

Tran(A,B,1)

Tran(B,C,1)Read()

Read() Audit()

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Positive Results
CCC: Causal Cryptocurrency under Crash faults

● Similar to ASO-Crypto, but use causal memory underneath

CCB: Causal Cryptocurrency under Byzantine faults

● Byzantine causal memory [Tseng et al. NCA 19]
● Reliable broadcast [Bracha and Toueg JACM 85]
● Sequence number to stop double-spending
● PKI and digital signature
● A weaker form of eventual delivery:

one needs to be able to talk to n-f correct nodes

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Summary
ASO-Crypto: consensus not necessary

Our work: total order and strong consistency not necessary

causal consistency necessary

an inherent challenge of Byzantine crypto in partition

two implementations

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Future Works

Implementation and evaluation

Permission-less systems

Probabilistic guarantees

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Advice

Know fundamentals

● FLP
● CAP

Reach out to other communities

Be comfortable with formalism

Lewis Tseng (BC) AtheCrypt 2021 Jan. 2021

Thanks!
Questions?

lewis.tseng@bc.edu

mailto:lewis.tseng@bc.edu

