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Question: can we construct
transparent, succinct arguments
from standard lattice assumptions?
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Given a polynomial p(X4, ..., Xp) over a field F and a value u € F,
prove that ), . p(wy,...,wp) = U
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— Sumcheck

Probabilistic proofs protocol
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https://zkproof.org/2020/03/16/sum-checkprotocol/
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Folding technique based on homomorphic enc:
a separate body of work?\

\ [BCCGP16] |

[BBBPWM18] implemented in Rust, Haskell, Javascript, and deployed by
Blockstream, and in Monero, Mimblewimble and more...

Discrete-log arguments
[BBBPWM18], [PLS19],
[HKR19], [BHRRS20]

Aim, Fire: Bulletproofs Is a Crypto

Privacy Breakthrough

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

38


https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

Results



From two bodies of work...

Sumcheck
protocol

40



..to a unified perspective

Sumcheck
protocol

41



..to a unified perspective

Sumcheck
protocol

Latt
succin

42



General goal:
succinct arguments for commitment openings




General goal:
succinct arguments for commitment openings

Common input:
e commitment C
« commitment key ck




General goal:
succinct arguments for commitment openings

Common input:
e commitment C
« commitment key ck

Claim: 3 m such that
C = Com(ck,m)
[




General goal:
succinct arguments for commitment openings

Common input:
e commitment C
« commitment key ck

Claim: 3 m such that
C = Com(ck,m)
[

Succinctness goal:
communication <« |m|



General goal:
succinct arg

Claim: 3 m such that
C = Com(ck,m)

N

Common input:
e commitment C
« commitment key ck

Succinctness goal:
communication <« |m|

uments for commitment openings

Focus: commitments
with special structure




A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com(ck,m) = > fom(@1, s 00), Per (@1, -, 0)

(1)1,...,(1){61‘1



A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com(Ck, m) — z f(pm(wL ey (l)g), Pck (0)1, ey (1){))
w1i,..,.WpEH

evaluation
points from

HC R,Raring




A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com(Ck; m) — f(pm(w1; ---,(Ug), pck(wlr '"wa))
J\ (1)1,...,(1)361'1
VAN
commitment evaluation
space Cis an points from
R-module HC R,Raring




A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com(Ck; m) — f(p”m(wl' ...,(l)g), pck(wlr '"wa))
J\ (1)1,...,(1)361'1 J\
/N message
commitment evaluation polynomial
space C is an points from in M[X4, ..., X¢],
R-module H < R,Raring | | M an R-module




A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com(Ck; m) — f(p”m(wl' ...,(l)g), pck(wl: ---;(U{))
J\ (1)1,...,(1)361'1 J\ /\

AN message key polynomial
commitment evaluation polynomial in K[ X4, ..., Xp],
space Cis an points from in M[Xq, ..., Xp], K an R-module

R-module H < R,Raring | | M an R-module
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Main result: sumcheck arguments

Theorem 1:

If CM is sumcheck-friendly and invertible. The sumcheck protocol
applied to

p(Xl' ""Xf) — f(p’m(Xl; "'rXf)r pck(Xl; ;Xﬁ)) S (C[Xli ""Xf]

(with one extra verifier check) is a succinct argument of knowledge
with communication € - deg(p)
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Lattice-based succinct arguments for NP

[Bootle Chiesa Sotiraki ‘23]

Corollary: Assuming SIS is hard over R, :=Z, [X]/(Xd + 1) and p K q
primes, there is a zero-knowledge succinct argument of knowledge for NP
with preprocessing such that

R1CS Ring Prover time Verifier time Proof size

R, O(n) opsin Ry, R, polylog(n)opsin Ry, R, | polylog(n) elems of R,

Concurrent work:
e [LA21] gives impossibility results and improvements for lattice POKs
* [ACK21] gives lattice-based succinct arguments for NP
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—1
Witness: P Instance: @ﬁ =

length N

p [TV

—— O (log(N))

New Witness: P, New Instance: @ﬁ/z = ops
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P : \V/ 0(log(N/2))
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—1
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Succinct veritication via delegation Bootle chiesa sotiraki 23]

—
Instance: @ﬁ —
length N
—
New Instance: @ﬁ =
length N /2
Generalises approach P : V

from [Lee21], [Thaler]
beyond pairings

——
New Instance: @ﬁ =

length 1
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There exists an extractor that given a suitable tree of accepting transcripts for a

What kind of soundness?

Soundness

Knowledge soundness

commitment key ck and commitment C, finds an opening m such that C = Com(ck, m).
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From groups to rings

Everything so far extends to general [F-vector spaces, e.g., bilinear groups [BMMTV19].

Pedersen commitments for bilinear groups: (a, G1) € G

G
Lattices and groups of unknown order? 1 G

Solution: an abstraction for mathematical structures where folding techniques can work
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From groups to rings:
bilinear modules

R-module M: generalization of vector space over rings

Assumption Messages | Keys | Commitments |deal
BRA small M; | Mp My I
DLOG [Fy G G {0}
DPAIR[AFGHO10] Gy G- G {0}
UO [BFS20] small Z G G nZ. for suitable small n
RSIS [Ajtaio4] smallR; | R R nZ for suitable small n
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Takeaways

* There are lattice-based transparent,
succinct arguments

* Many commitment schemes are
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* We can recast many different
cryptographic settings as bilinear modules
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Takeaways

* There are lattice-based transparent,
succinct arguments

* Many commitment schemes are
sumcheck friendly

* We can recast many different
cryptographic settings as bilinear modules

Thanks!

N &
" $%% ¢

89



