Sumcheck Arguments and
Lattice-based Succinct arguments

Jonathan Bootle (IBM Research — Zurich)
Alessandro Chiesa (EPFL)
Katerina Sotiraki (Yale University)
https://ia.cr/2021/333
https://ia.cr/2023/930

Slides by Jonathan Bootle

https://ia.cr/2021/333
https://ia.cr/2023/

Succinct arguments

10
4

Common @
input Q Q
(x) () @

Succinct arguments

it Qir,,,
x) x @

Succinct arguments

10
4

Witness Common @
input Q Q
1 (x) () @

Succinct arguments

10
4

Witness Common @
input Q Q
1 (x) () @

Succinct arguments

10
4

Witness Common @
input Q"@
1 (x) () @

Succinct arguments

Witness

Completeness: if the
witness is valid, the
verifier accepts

10
4

Common @
input

@egeﬁ

A

v

A

v

\ 4

Succinct arguments

Witness

Completeness: if the
witness is valid, the
verifier accepts

10
4

Common @
input

A

v

v

A

Soundness: if there is
no witness, the verifier
rejects

Knowledge soundness:
if the prover does not
know a witness, the
verifier rejects

\ 4

v/

Succinct arguments

Witness

Completeness: if the
witness is valid, the
verifier accepts

1*0
Common @

input Q Q

v

A

v

A

Soundness: if there is
no witness, the verifier
rejects

Knowledge soundness:
if the prover does not
know a witness, the
verifier rejects

Succinctness: the messages are much
smaller than the witness

\ 4

v/

Building post-quantum succinct arguments

Building post-quantum succinct arguments

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]
Large proofs (~1MB)
Transparent

11

Building post-quantum succinct arguments

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]
Large proofs (~1MB)
Transparent

Building post-quantum succinct arguments

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Pre-quantum, standard
assumptions

e.g. Dory [Lee21]

Small proofs (~20KB)
Transparent

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]
Large proofs (~1MB)
Transparent

13

Building post-quantum succinct arguments

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Pre-quantum, standard
assumptions

e.g. Dory [Lee21]

Small proofs (~20KB)
Transparent

Lattice-based, non-standard
assumptions

e.g. [ACLMT22],
[FLV23],[CLM23]
Large proofs (~1MB)***
Trusted setup

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]
Large proofs (~1MB)
Transparent

14

Building post-quantum succinct arguments

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Pre-quantum, standard
assumptions

e.g. Dory [Lee21]

Small proofs (~20KB)
Transparent

Lattice-based, non-standard
assumptions

e.g. [ACLMT22],
[FLV23],[CLM23]
Large proofs (~1MB)***
Trusted setup

Lattice-based, standard
assumptions

?

Small proofs
Transparent

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]
Large proofs (~1MB)
Transparent

15

Building post-quantum succinct arguments

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Pre-quantum, standard
assumptions

e.g. Dory [Lee21]

Small proofs (~20KB)
Transparent

Without succinct verification
e.g. Labrador [BS23]

Quite small proofs (~50KB)

/ Transparent

Lattice-based, non-standard
assumptions

e.g. [ACLMT22],
[FLV23],[CLM23]
Large proofs (~1MB)***
Trusted setup

Lattice-based, standard
assumptions

?

Small proofs
Transparent

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]
Large proofs (~1MB)
Transparent

16

Building post-quantum succinct arguments

Pre-quantum, non-standard
assumptions

e.g. [Groth16]

Tiny proofs (~1KB)
Trusted setup

Pre-quantum, standard
assumptions

e.g. Dory [Lee21]

Small proofs (~20KB)
Transparent

Without succinct verification
e.g. Labrador [BS23]

Quite small proofs (~50KB)

/ Transparent

Lattice-based, non-standard
assumptions

e.g. [ACLMT22],
[FLV23],[CLM23]
Large proofs (~1MB)***
Trusted setup

Lattice-based, standard
assumptions

?

Small proofs
Transparent

Hash-based

e.g. Aurora [BSCRSVW19]
Orion [XZS22]
Large proofs (~1MB)
Transparent

Homomorphic cryptography

17

Question: can we construct
transparent, succinct arguments
from standard lattice assumptions?

The sumcheck protocol [LFKN92]

The sumcheck protocol [LFKN92]

Given a polynomial p(X4, ..., Xp) over a field F and a value u € F,
prove that), . p(wy,...,wp) = U

The sumcheck protocol [LFKN92]

Given a polynomial p(X4, ..., Xp) over a field F and a value u € F,
prove that), . p(wy,...,wp) = U

The sumcheck protocol [LFKN92]

Given a polynomial p(X4, ..., Xp) over a field F and a value u € F,
prove that), . p(wy,...,wp) = U

q1 € F[Xq] .
r1 < F
Computes polynomials «
qi(X;) = P 5 V
—i yr lj— ,Xi, i+1r-+
dem’ p(r, ., Ti—1 Wiyt Wp) qp € [F[X{;]

v

Tp « [F

A

The sumcheck protocol [LFKN92]

Given a polynomial p(X4, ..., Xp) over a field F and a value u € F,

prove that }, .. p(wy,

...,a)g) = Uu

q1 € F[Xq] .
r1 < F
Computes polynomials «
qi(X;) = P
—i yr lj— ,Xi, i+1r-+
ZQEH{’ Py, Ti—1, Xiy Wiv1, .., Wp) qp € [F[Xg]

Tp « [F

v

A

Checks that
Za)leH q1(w1) =u
Za)ZEH q2 (w2) = q1(11)

Za)gEH qe (wy) = qe—1(Te-1)

The sumcheck protocol [LFKN92]

Given a polynomial p(X4, ..., Xp) over a field F and a value u € F,

...,a)g) = Uu

prove that }, .. p(wy,
q1 € F[Xq] .
r1 < F
Computes polynomials «
qi(X;) = P
—i yr lj— ,Xi, i+1r-+
ZQEH{’ p(ry - Tie1, Xy Wig1, -, Wp) g, € F[X,] ‘
) Tp « [F

Checks that
Za)leH q1(w1) =u
Za)ZEH q2 (w2) = q1(11)

Za)gEH qe (wy) = qe—1(Te-1)

Evaluates p to check that
p(ry, ..., 7p) = qp(1p)

The sumcheck protocol [LFKN92]

Given a polynomial p(X4, ..., Xp) over a field F and a value u € F,
prove that), . p(wy,...,wp) = U

q1 € F|X,] R Checks that

rq « F —
Computes polynomials « L gwleH q1 EZ))% _ u)
qi(X;) = P : V w,eH 42 (W2 . qd1("1
deH{’—ip(rly--;ri—1;Xi;wi+1;--;w€) q €]F[X] .

i i > Za)gEH qe (We) = qp—1(Tp-1)

) Tp « [F
Evaluates p to check that

P11, 1) = qo(ry)

Soundness: If), ... p(wq, ..., wp) # u thenV accepts with probability at most {)'dﬁfl(p).

The sumcheck protocol is everywhere!

Sumcheck
protocol

The sumcheck protocol is everywhere!

— Sumcheck

Probabilistic proofs protocol
[BFL91,BFLS91,GKRO8]

The sumcheck protocol is everywhere!

— Sumcheck

Probabilistic proofs protocol

[BFL91,BFLS91,GKR08]/

Sumcheck-based
succinct arguments
[Thaler13]

[CMT13], [VSBW13],
[W+17], [ZGKPP17],
[WTSTW18],
[XZZPS19], [Set20]

The sumcheck protocol is everywhere!

— Sumcheck

Probabilistic proofs protocol
[BFL91,BFLS91,GKRO8]

Sumcheck-based Univariate-sumcheck-
succinct arguments based arguments
[Thaler13] [BCRSVS19]
[CMT13], [VSBW13], [BCGGRS19], [2XZS20],
[W+17], [ZGKPP17], [CHMVW20], [COS20],
[WTSTW18], [CFQR20], [BFHVXZ20]

[XZZPS19], [Set20]

The sumcheck protocol is everywhere!

— Sumcheck

Probabilistic proofs protocol
[BFL91,BFLS91,GKRO8]

Sumcheck-based Univariate-sumcheck- Sumchecks for

succinct arguments based arguments tensor codes
[Thaler13] [BCRSVS19] [Meirl3]
[CMT13], [VSBW13], [BCGGRS19], [ZXZS20], [RR20],
[W+17], [ZGKPP17], [CHMVW20], [COS20], [BCG20],
[WTSTW18], [CFQR20], [BFHVXZ20] [BCL20]

[XZZPS19], [Set20]

The sumcheck protocol is everywhere!

— Sumcheck

Probabilistic proofs protocol

[BFL91,BFLS91,GKR08]/ \

The Unreg s,,91jable Power of the

\\
) | k P
MARCH 16, 2020 | INTHE ARTO O N%QWLEDGE | BY JUSTIN THALER
b N

https://zkproof.org/2020/03/16/sum-checkprotocol/

31

https://zkproof.org/2020/03/16/sum-checkprotocol/

Folding technique based on homomorphic enc:
a separate body of work?

Folding
[BCCGP16]

Folding technique based on homomorphic enc:
a separate body of work?

— Folding

Discrete-log arguments [BCCGP16]
[BBBPWM18], [PLS19],
[HKR19], [BHRRS20]

Folding technique based on homomorphic enc:
a separate body of work?

— Folding

Discrete-log arguments [BCCGP16]

[BBBPWM18], [PLS19],
[HKR19L[BHRRSZi1////////

Pairing-group
arguments

[LMR19], [ZGKPP17],
[XZZPS19]

Folding technique based on homomorphic enc:
a separate body of work?

Discrete-log arguments [BCCGP16]
[BBBPWM18], [PLS19],
[HKR19L[BHRRSZi1//////// l
Pairing-group Unknown-order-group
arguments arguments
[LMR19], [ZGKPP17], [BFS20],

[XZZPS19] [BHRRS21]

Folding technique based on homomorphic enc:
a separate body of work?

Discrete-log arguments [BCCGP16]
[BBBPWM18], [PLS19],
[HKR19], [BHRRSZV l \
Pairing-group Unknown-order-group Lattice
arguments arguments arguments
[LMR19], [ZGKPP17], [BFS20], [BLNS20],

[XZZPS19] [BHRRS21] [ACK21], [LA20]

Folding technique based on homomorphic enc:
a separate body of work?

Discrete-log arguments [BCCGP16]
[BBBPWM18], [PLS19],
[HKR19], [BHRRSZV l \
Pairing-group Unknown-order-group Lattice
arguments arguments arguments
[LMR19], [ZGKPP17], [BFS20], [BLNS20],
[XZZPS19] [BHRRS21] [ACK21], [LA20]

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

Folding technique based on homomorphic enc:
a separate body of work?\

\ [BCCGP16] |

[BBBPWM18] implemented in Rust, Haskell, Javascript, and deployed by
Blockstream, and in Monero, Mimblewimble and more...

Discrete-log arguments
[BBBPWM18], [PLS19],
[HKR19], [BHRRS20]

Aim, Fire: Bulletproofs Is a Crypto

Privacy Breakthrough

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

Some unifying abstractions: [BMMTV19,AC20,BDFG21]

38

https://www.coindesk.com/aim-fire-bulletproofs-breakthrough-privacy-blockchains

Results

From two bodies of work...

Sumcheck
protocol

40

..to a unified perspective

Sumcheck
protocol

41

..to a unified perspective

Sumcheck
protocol

Latt
succin

42

General goal:
succinct arguments for commitment openings

General goal:
succinct arguments for commitment openings

Common input:
e commitment C
« commitment key ck

General goal:
succinct arguments for commitment openings

Common input:
e commitment C
« commitment key ck

Claim: 3 m such that
C = Com(ck,m)
[

General goal:
succinct arguments for commitment openings

Common input:
e commitment C
« commitment key ck

Claim: 3 m such that
C = Com(ck,m)
[

Succinctness goal:
communication <« |m|

General goal:
succinct arg

Claim: 3 m such that
C = Com(ck,m)

N

Common input:
e commitment C
« commitment key ck

Succinctness goal:
communication <« |m|

uments for commitment openings

Focus: commitments
with special structure

A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com(ck,m) = > fom(@1, s 00), Per (@1, -, 0)

(1)1,...,(1){61‘1

A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com(Ck, m) — z f(pm(wL ey (l)g), Pck (0)1, ey (1){))
w1i,..,.WpEH

evaluation
points from

HC R,Raring

A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com(Ck; m) — f(pm(w1; ---,(Ug), pck(wlr '"wa))
J\ (1)1,...,(1)361'1
VAN
commitment evaluation
space Cis an points from
R-module HC R,Raring

A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com(Ck; m) — f(p”m(wl' ...,(l)g), pck(wlr '"wa))
J\ (1)1,...,(1)361'1 J\
/N message
commitment evaluation polynomial
space C is an points from in M[X4, ..., X¢],
R-module H < R,Raring | | M an R-module

A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

Com(Ck; m) — f(p”m(wl' ...,(l)g), pck(wl: ---;(U{))
J\ (1)1,...,(1)361'1 J\ /\

AN message key polynomial
commitment evaluation polynomial in K[X4, ..., Xp],
space Cis an points from in M[Xq, ..., Xp], K an R-module

R-module H < R,Raring | | M an R-module

A new notion :
sumcheck-friendly commitments

Definition: A commitment scheme CM is sumcheck friendly if

combiner function f : MXK — C

Com(Ck; m) — f(p”m(wl' ...,(l)g), pck(wl: ---;wf))
J\ (1)1,...,(1)361'1 J\ /\

AN message key polynomial
commitment evaluation polynomial in K[X4, ..., Xp],
space Cis an points from in M[Xq, ..., Xp], K an R-module

R-module H < R,Raring | | M an R-module

Main result: sumcheck arguments

Theorem 1:

If CM is sumcheck-friendly and invertible. The sumcheck protocol
applied to

p(Xl' ""Xf) — f(p’m(Xl; "'rXf)r pck(Xl; ;Xﬁ)) S (C[Xli ""Xf]

(with one extra verifier check) is a succinct argument of knowledge
with communication € - deg(p)

Application: succinct arguments for NP

Sumcheck
protocol

Application: succinct arguments for NP

Sumcheck
protocol

Step 1: reduce NP
statements to
scalar products

Application: succinct arguments for NP

Sumcheck
protocol

Step 1: reduce NP Step 2: build ®
statements to succinct argument
scalar products for scalar-product

commitments

57

Application: succinct arguments for NP

Sumcheck
protocol

SA for scalar-product

commitments @

Step 1: reduce NP
statements to
scalar products

Step 2: build @
succinct argument
for scalar-product

commitments

58

Lattice-based succinct arguments for NP

[Bootle Chiesa Sotiraki ‘21]

Corollary: Assuming SIS is hard over R, = Z, [X]/(Xd + 1) and p K< q

primes, there is a zero-knowledge succinct argument of knowledge for NP
with

R1CS Ring Prover time Verifier time
R

Proof size
P O(n)opsinR,, R, | O(n) opsin Ry, R, | O(logn) elems of R,

Lattice-based succinct arguments for NP

[Bootle Chiesa Sotiraki ‘21]

Corollary: Assuming SIS is hard over R, = Z, [X]/(Xd + 1) and p K< q

primes, there is a zero-knowledge succinct argument of knowledge for NP
with

R1CS Ring Prover time Verifier time
R

Proof size
P O(n)opsinR,, R, | O(n) opsin Ry, R, | O(logn) elems of R,

Concurrent work:

e [LA21] gives impossibility results and improvements for lattice POKs
* [ACK21] gives lattice-based succinct arguments for NP

Lattice-based succinct arguments for NP

[Bootle Chiesa Sotiraki ‘21]

Corollary: Assuming SIS is hard over R, = Z, [X]/(Xd + 1) and p K< q

primes, there is a zero-knowledge succinct argument of knowledge for NP
with

R1CS Ring Prover time
R, O(n) opsin Ry, R,

Proof size

O(logn) elems of R,

Concurrent work:

e [LA21] gives impossibility results and improvements for lattice POKs
* [ACK21] gives lattice-based succinct arguments for NP

Lattice-based succinct arguments for NP

[Bootle Chiesa Sotiraki ‘23]

Corollary: Assuming SIS is hard over R, :=Z, [X]/(Xd + 1) and p K q
primes, there is a zero-knowledge succinct argument of knowledge for NP
with preprocessing such that

R1CS Ring Prover time Verifier time Proof size

R, O(n) opsin Ry, R, polylog(n)opsin Ry, R, | polylog(n) elems of R,

Concurrent work:
e [LA21] gives impossibility results and improvements for lattice POKs
* [ACK21] gives lattice-based succinct arguments for NP

Technigues

Sumcheck argument for Pedersen

Common input:

e commitment C € @

ekey G € G

Claim:da € F"*s.t. C = (a, G)

Sumcheck argument for Pedersen

Common input:

e commitment C € @

ekey G € G

Claim:da € F"*s.t. C = (a, G)

Opening:
a € F"?

Sumcheck argument for Pedersen

Common input:

e commitment C € @

ekey G € G

Claim:da € F"*s.t. C = (a, G)

Opening:
a € F"?

» sumcheck protocol for <

pa(w)ps(w) =nC
< w € {—1,1}l08(1)

Sumcheck argument for Pedersen

Common input:

e commitment C € @

ekey G € G

Claim:da € F"*s.t. C = (a, G)

Opening:
a € F"?

» sumcheck protocol for <

pa(w)ps(w) =nC
< w € {—1,1}l08(1)

Pa (1)

Sumcheck argument for Pedersen

Common input:

e commitment C € @

ekey G € G

Claim:da € F"*s.t. C = (a, G)

Opening:
a € F"?

» sumcheck protocol for

pa(w)ps(w) =nC
< w € {-1,1}lo8(M)

Pa (1)

V

Consistency check:
pg(f)pg(f) = Qlog(n) (rlog(n))?

Sumcheck argument for Pedersen

Common input:

e commitment C € @

ekey G € G

Claim:da € F"*s.t. C = (a, G)

Opening:
a € F"?

» sumcheck protocol for

pa(w)ps(w) =nC
< w € {—1,1}l08(1)

Pa (1)

Communication: O(log(n))
Verifier computation: O(n)

V

Consistency check:
pg(f)pg(f) = Qlog(n) (rlog(n))?

Sumcheck argument for Pedersen

Common input:

e commitment C € @

ekey G € G

Claim:da € F"*s.t. C = (a, G)

Opening:
a € F"?

» sumcheck protocol for

Pa(@pg(w) =nC
< w € {—1,1}l08(1)

Pa(r)

Communication: O(log(n))
Verifier computation: O(n)

Consistency check:
pg(f qlog(n) (rlog(n))?

V

Succinct veritication via delegation Bootle chiesa sotiraki 23]

length N

length N /2

o =

length 1

71

Succinct veritication via delegation Bootle chiesa sotiraki 23]

—1
Witness: p Instance: @ﬁ =
length N
O(log(N))
ops

length N /2

o =

length 1

Succinct veritication via delegation Bootle chiesa sotiraki 23]

. ' '
Witness: P Instance: @ﬁ =

length N

p [TV

—— O (log(N))

New Witness: P, New Instance: @ﬁ/z = ops
engt
P | 1V | 0Qsw2
ops

o =

length 1

Succinct veritication via delegation Bootle chiesa sotiraki 23]

—1
Witness: P Instance: @ﬁ =

length N

p [TV

—— O (log(N))

New Witness: P, New Instance: @ﬁ/z = ops
engt
P : \V/ 0(log(N/2))
ops
—1
New Witness: D New Instance: @ﬁ =
length 1

P : V 0(1)

ops

Succinct veritication via delegation Bootle chiesa sotiraki 23]

—
Instance: @ﬁ —
length N
—
New Instance: @ﬁ =
length N /2
Generalises approach P : V

from [Lee21], [Thaler]
beyond pairings

——
New Instance: @ﬁ =

length 1

Pl TV

Soundness

What kind of soundness?

Knowledge soundness

76

Soundness

What kind of soundness? Knowledge soundness

There exists an extractor that given a suitable tree of accepting transcripts for a
commitment key ck and commitment C, finds an opening m such that C = Com(ck, m).

Soundness

What kind of soundness? Knowledge soundness

There exists an extractor that given a suitable tree of accepting transcripts for a
commitment key ck and commitment C, finds an opening m such that C = Com(ck, m).

A

C

There exists an extractor that given a suitable tree of accepting transcripts for a

What kind of soundness?

Soundness

Knowledge soundness

commitment key ck and commitment C, finds an opening m such that C = Com(ck, m).

A

\ 4

q1

A

&[] & [1?] @[

@

/NN /N

message

m

From groups to rings

From groups to rings

Everything so far extends to general [F-vector spaces, e.g., bilinear groups [BMMTV19].

From groups to rings

Everything so far extends to general [F-vector spaces, e.g., bilinear groups [BMMTV19].

Pedersen commitments for bilinear groups: (a, G1) € G

G, G,

From groups to rings

Everything so far extends to general [F-vector spaces, e.g., bilinear groups [BMMTV19].

Pedersen commitments for bilinear groups: (a, G1) € G

G
Lattices and groups of unknown order? 1 G

83

From groups to rings

Everything so far extends to general [F-vector spaces, e.g., bilinear groups [BMMTV19].

Pedersen commitments for bilinear groups: (a, G1) € G

G
Lattices and groups of unknown order? 1 G

Solution: an abstraction for mathematical structures where folding techniques can work

84

From groups to rings:
bilinear modules

From groups to rings:
bilinear modules

R-module M: generalization of vector space over rings

From groups to rings:
bilinear modules

R-module M: generalization of vector space over rings

Assumption Messages | Keys | Commitments |deal
BRA small M; | Mp My I
DLOG [Fy G G {0}
DPAIR[AFGHO10] Gy G- G {0}
UO [BFS20] small Z G G nZ. for suitable small n
RSIS [Ajtaio4] smallR; | R R nZ for suitable small n

87

Takeaways

* There are lattice-based transparent,
succinct arguments

* Many commitment schemes are
sumcheck friendly

* We can recast many different
cryptographic settings as bilinear modules

\ '
" $%% ¢

88

Takeaways

* There are lattice-based transparent,
succinct arguments

* Many commitment schemes are
sumcheck friendly

* We can recast many different
cryptographic settings as bilinear modules

Thanks!

N &
" $%% ¢

89

