GOMORY-HU TREES: THEORY AND APPLICATIONS

Koutris Paraschos and Vasileios Syrgkanis
OUTLINE

• Basic definitions
• Why needed?
• Gomory-Hu Construction Algorithm
• A Complete GH Tree Construction Example
• Proof Of Correctness
• Minimum K-Cut Problem
• Implementation
Basic Definitions
Cut Definition

- Let $G = (V,E)$ denote a graph and $c(e)$ a weight function on its edges.
- A cut is a partition of the vertices V into two sets S and T.
- Any edge $(u,v) \in E$ with $u \in S$ and $v \in T$ is said to be crossing the cut and is a cut edge.
- The capacity of a cut is the sum of weights of the edges crossing the cut.
U-V Cut

- A *u-v cut* is a split of the nodes into two disjoint sets U and V, such that \(u \in U, v \in V \).

- **MINIMUM WEIGHT U-V CUT**
 Given a graph \(G = (V,E) \) and two terminals \(u,v \in V \), find the minimum u-v cut.
FLOW DEFINITION

- Given a directed graph $G(V,E)$ in which every edge $(u,v) \in E$ has a non-negative, real-valued capacity $c(u,v)$.
- We distinguish two vertices: a source s and a sink t.
- A flow network is a real function $f: V \times V \rightarrow \mathbb{R}$ with the following properties for all nodes u and v:

1. **Capacity constraints**: $f(u,v) \leq c(u,v)$
2. **Skew symmetry**: $f(u,v) = -f(v,u)$
3. **Flow conservation**: , unless $u=s$ or $u=t$
MAX-FLOW

- The maximum flow problem is to find a feasible flow through a single-source, single-sink flow network that is maximum.
- Max-Flow can be computed in polynomial time (e.g. Edmonds-Karp algorithm).

MAX-FLOW MIN-CUT THEOREM
- The maximum amount of flow is equal to the capacity of the minimal cut.
- Thus, the min s-t cut is also computed in polynomial time.
IMPORTANT PUBLICATIONS ON MAX-FLOW MIN-CUT PROBLEMS

 Introduction of basic concepts of flow and cut. Max flow min-cut theorem.
 Multiterminal problem.
 Synthesis of multiterminal flow network.
WHY NEEDED?
Basic Properties of Cuts

• We are interested in finding maximal flow/minimal cut values between all pairs of nodes in a graph $G = (V,E)$, where $n = |V|$. Any pair of nodes can serve as the source and the sink.

• How many min-cut computations are needed?

• You would think

• But in fact, $n-1$ computations are enough!! why? (PROOF #1)
Flow Equivalent Graphs

- Two graphs $G = (V, E)$ and $G' = (V, E')$ are said to be flow equivalent iff for each pair of vertices $u, v \in V$, the minimum u-v cut (maximal u-v flow) in G is the same as in G'.

- It turns out that there always exist a G' which is a tree (Gomory Hu Tree)!!

- Notice that the $n-1$ edges of the tree correspond to the $n-1$ distinct min-cuts in G.
GOMORY-HU (GH) TREE

- Given a graph $G = (V,E)$ with a capacity function c, a cut-tree $T = (V,F)$ obtained from G is a tree having the same set of vertices V and an edge set F with a capacity function c' verifying the following properties:

 1. **Equivalent flow tree**: for any pair of vertices s and t, $f_{s,t}$ in G is equal to $f_{s,t}$ in T, i.e., the smallest capacity of the edges on the path between s and t in T.

 2. **Cut property**: a minimum cut $C_{s,t}$ in T is also a minimum cut in G.

Gomory-Hu Construction Algorithm
• The algorithm maintains a partition of V, (S_1, S_2, \ldots, S_t) and a spanning tree T on the vertex set \{ S_1, S_2, \ldots, S_t \}.

• Let w' be the function assigning weights to the edges of T.

• On each iteration, T satisfies the following invariant:

 For any edge (S_i, S_j) in T, there are vertices a and b in S_i and S_j respectively such that $w'(S_i, S_j) = f(a,b)$ and the cut defined by edge (S_i, S_j) is a minimum a-b cut in G.
Initial Step

- The algorithm starts with a trivial partition V.
- Proceeds in $n-1$ iterations.

Initial Partition = $(V=\{a,b,c,d,e,f\})$
Iteration (1)

- Select a set S_i in the partition such that $|S_i| \geq 2$.
- Let u and v be two distinct vertices of S_i.

Partition $_3 = (\{a\}, \{b\}, \{c,d,e\}, \{f\})$
Iteration (2)

- Root the current tree at S_i and consider the subtrees rooted at the children of S_i.
- Collapse each of the subtrees into a single vertex to obtain graph G' (G' also contains all vertices of S_i).

Collapsing all other sub-trees to supernodes.
Iteration (3)

- Find a minimum u-v cut in G'.
- Let (A, B) the partition of the vertices of G' defining the cut, with $u \in A$, $v \in B$.

Compute min d-e cut
Iteration (4)

- Compute $S_i^u = S_i \cap A$ and $S_i^v = S_i \cap B$.
- Refine the current partition by replacing S_i with the two sets S_i^u and S_i^v.
- The new tree has an edge (S_i^u, S_i^v) with weight equal to the weight of the cut.

Create new Gomory-Hu edge.
ITERATION (5)

- How are the other nodes arranged at the tree after the splitting?

- Consider a subtree T' incident at S_i in T. Assume that the collapsed node corresponding to T' lies in A.
 - We connect T' by an edge with S_i^u.
 - The weight of the edge is the same as the weight of the edge connecting T' to S_i.
 - All the other edges retain their weights.
Iteration (6)

Attach the previous sub-tree to the cut that it belongs
The algorithm terminates when the partition consists of singleton vertices.
Thus, after exactly $n-1$ iterations!
A COMPLETE GH TREE CONSTRUCTION EXAMPLE
INITIALIZATION

Initial Partition = ($V=${a,b,c,d,e,f})
Iteration 1

Select b and f
Iteration 1

\[\text{Partition}_1 = (\{a, b\}, \{c, d, e, f\}) \]
ITERATION 2

Select a, b

\[\text{Partition}_1 = (\{a, b\}, \{c, d, e, f\}) \]
Iteration 2

Partition_2 = ({a}, {b}, {c,d,e,f})
Iteration 3

Select c and f

Partition$_2 = (\{a\}, \{b\}, \{c,d,e,f\})$
Iteration 3

Partition_3 = ({a}, {b}, {c,d,e}, {f})
Iteration 4

Select d and e

Partition₃ = ({a}, {b}, {c,d,e}, {f})
Partition_4 = (\{a\}, \{b\}, \{c, e\}, \{d\}, \{f\})
Iteration 5

Select c and e

Partition$_4$ = (\{a\}, \{b\}, \{c, e\}, \{d\}, \{f\})
Iteration 5

$\text{Partition}_5 = (\{a\}, \{b\}, \{c\}, \{e\}, \{d\}, \{f\})$
Final GH Tree

Final Gomory-Hu Tree
Proof Of Correctness
Basic Lemmas (1)

- Let $f(u,v)$ denote the weight of a minimum **u-v cut** in G.
- For $u, v, w \in V$, the following inequality holds:
 \[f(u,v) \geq \min \{ f(u,w), f(w,v) \} \]
- Generalization:
 For $u, v, w_1, w_2, \ldots, w_r \in V$:
 \[f(u,v) \geq \min \{ f(u, w_1), f(w_1, w_2), \ldots, f(w_r, v) \} \]

Proof #2
Basic Lemmas (2)

- Let \((A, A')\) be a minimum \(s-t\) cut, \(s \in A\).
- Choose any two vertices \(x, y \in A\).
- Obtain graph \(G'\) by **collapsing** all vertices of \(A'\) to a single vertex \(v_{A'}\).
- The weight of an edge \((a, v_{A'})\) is defined to be the sum of the weights of \((a, b)\), where \(b \in A'\).
- A minimum \(x-y\) cut in \(G'\) defines a minimum \(x-y\) cut in \(G\) !!
- Thus, condensing \(A'\) to a single node does not affect the value of a minimum cut from \(x\) to \(y\).

PROOF #3
PROOF

• **INVARIANT (PROOF #4):**
 • For any edge \((S_i, S_j)\) in \(T\), there are vertices \(a\) and \(b\) in \(S_i\) and \(S_j\) respectively such that
 1. \(w'(S_i, S_j) = f(a,b)\)
 2. The cut defined by edge \((S_i, S_j)\) is a minimum a-b cut in \(G\).
• The first property satisfies the first GH condition (equivalent flow tree).
• The second property satisfies the second GH condition (cut property).
Minimum K-Cut Problem
Definition

- Let $G = (V,E)$ an undirected weighted graph.
- A set of edges of E whose removal leaves k connected components is called a k-cut.

- The **MINIMUM** k-**CUT** problem asks for a minimum weight k-cut.
Algorithm

• **Step 1**
 Compute a GH tree for graph G.

• **Step 2**
 Output the union of the lightest $k-1$ cuts of the $n-1$ cuts associated with edges of T in G. Let C be this union.
Analysis

• **Lemma**: Let S be the union of cuts in G associated with l edges of T. Then, the removal of S from G leaves a graph with at least $l+1$ components.

• Hence, the union of $k-1$ cuts picked from T will form a k-cut in G.

• We will prove that the previous algorithm obtains an approximation ratio of $2 - 2/k$.

Proof #5
Other Interesting Properties of GH Trees (1)

- If the GH tree for a graph G contains all n-1 distinct weights, then G can have only one minimum weight cut!

- We can improve the performance of the GH algorithm by picking vertices for each set which after the min-cut computation will partition the set in equally sized subsets.
Other Interesting Properties of GH Trees (2)

- Let G be a network having an edge $e = [i, j]$ with parametric capacity $c(e) = \lambda$.
- Let GH^α be a cut-tree obtained when $c(e) = \alpha$.
- Let $P_{i,j}^\alpha$ be the path in GH^α between i and j.
- For $\lambda > \alpha$ it is sufficient to compute $|P_{i,j}^\alpha| - 1$ minimum cuts in G^λ in order to obtain a cut-tree GH^λ.
IMPLEMENTATION
IMPLEMENTATION IN C++ (1)

- To solve the undirected max-flow problem, we used linear programming (GNU LP API).
- Faster algorithms could be used!
- Based on the above max-flow algorithm, we implemented an algorithm for the min s-t cut problem (max-flow and reachability in residue graph).
IMPLEMENTATION IN C++ (2)

- We implemented the GH algorithm using the above functions, as well as some basic STL classes (e.g. set and map).
- A quite fast method for computing the collapsed graph was used.
- The final GH tree is represented as a collection of weighted edges.
IMPLEMENTATION IN C++ (3)

- The current implementation is only console-based.
- A graphical version is on the road. Damn it, you linux library dependencies!!
THANK YOU FOR YOUR ATTENTION!