CS 598: Spectral Graph Theory: Lecture 2

The Laplacian

Today

- More on evectors and evalues
- The Laplacian, revisited
- Properties of Laplacian spectra, PSD matrices.
- Spectra of common graphs.
- Start bounding Laplacian evalues

A Remark on Notation

For convenience, we will often use the bra-ket notation for vecotrs:

• We denote vector $v = \begin{pmatrix} v_1 \\ \cdots \\ v_n \end{pmatrix}$ with a "bra": $|v\rangle$

- We denote the transpose vector $v^T = (v_1 \dots v_n)$ with a "ket": $\langle v |$
- We denote the inner product $v^T u$ between two vectors v and u with a "braket": $\langle v | u \rangle = \langle v, u \rangle$

Evectors and Evalues

- Vector v is evector of matrix A with evalue μ if Av= μ v.
- We are interested (almost always) in symmetric matrices, for which the following special properties hold:
 - If v1,v2 are evectors of A with evalues μ1, μ2 and μ1≠ μ2, then v1 is orthogonal to v2.

Proof: $\mu_1 v_1^T v_2 = v_1^T A v_2 = v_1^T \mu_2 v_2 = \mu_2 v_1^T v_2$. Assuming $\mu_1 \neq \mu_2$ it implies $v_1^T v_2 = 0$.

- If v1,v2 are evectors of A with the same evalue μ, then v1+v2 is as well. The multiplicity of evalue μ is the dimension of the space of evectors with evalue μ.
- Every n-by-n symmetric matrix has n evalues {μ₁ ≤ ··· ≤ μ_n} counting multiplicities, and and orthonormal basis of corresponding evectors {v₁, ..., v_n}, so that Av_i = μ_iv_i
- If we let V be the matrix whose i-th column is v_i, and M the diagonal matrix whose i-th diagonal is μ_i, we can compactly write AV=VM. Multiplying by V^T on the right, we obtain the eigendecomposition of A:

$$A = AV V^T = VM V^T = \sum_i \mu_i v_i v_i^T$$

Where di is the degree of i-th vertex. For convenience, we have unweighted graphs

- DG = Diagonal matrix of degrees
- AG = Adjacency matrix of the graph

•
$$L_G = D_G - A_G$$

The Laplacian: Properties Refresher

- The constant vector **1** is an eigenvector with eigenvalue zero. $L_G \vec{1} = 0$
- Has n eigenvalues (spectrum) $0=\lambda_1\leq\lambda_2\leq\cdots\leq\lambda_n$
- Second eigenvalue is called "algebraic connectivity". G is connected if and only if $\lambda_2 > 0$
- We will see the further away from zero, the more connected G is.

Redefining the Laplacian

 Let Le be the Laplacian of the graph on n vertices consisting of just one edge e=(u,v).

$$L_{e}(i,j) = \begin{cases} 1 & \text{if } i = j, i \in u, v \\ -1 & \text{if } i = u, j = v, \text{ or vice versa} \\ 0 & \text{otherwise} \end{cases} \quad L_{e} = \begin{bmatrix} u & 1 & -1 \\ v & -1 & 1 \end{bmatrix} \otimes [\text{zeros}]$$

• For a graph G with edge set E we now define

$$L_G = \sum_{e \in E} L_e$$

 Many elementary properties of the Laplacian now follow from this definition as we will see next (prove facts for one edge and then add).

Laplacian of an edge, contd.

 Since evalues are zero and 2, we see that Le is P.S.D. Moreover,

$$x^{T}L_{e}x = (x_{1}x_{2}) \begin{pmatrix} 1 \\ -1 \end{pmatrix} (1 -1) \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = (x_{1} - x_{2})^{2}$$

Review of Positive Semidefiniteness

 Definition: A symmetric matrix M is positive semidefinite (PSD) if:

 $x^T M x \ge 0 \ \forall x \in \mathbb{R}^n$

Positive definite (PD) if inequality is strict for all $x \neq 0$.

- PSD iff all evalues are non-negative (exercise.)
- PSD iff M can be written as M = A^TA, where A can be n-by-k (not necessarily symmetric) and is not unique. Proof: see blackboard

Review of Positive Semidefiniteness

• **Definition:** A symmetric matrix M is positive semidefinite (PSD) if: $x^T M x \ge 0 \ \forall x \in \mathbb{R}^n$

Positive definite (PD) if inequality is strict for all $x \neq 0$.

- PSD iff all evalues are non-negative (exercise.)
- PSD iff M can be written as M = A^TA, where A can be n-by-k and not unique.

Proof

 $(\Rightarrow)~$ If M is positive semidefinite, recall that M can be diagonalized as

$$M = Q^T \Lambda Q,$$

thus

$$M = Q^T \Lambda^{1/2} \Lambda^{1/2} Q = \left(\Lambda^{1/2} Q\right)^T \left(\Lambda^{1/2} Q\right),$$

where $\Lambda^{1/2}$ has $\sqrt{\lambda_i}$ on the diagonal.

(
$$\Leftarrow$$
) If $M = A^T A$, then
 $x^T M x = x^T A^T A x = (Ax)^T (Ax)$

Letting $y = (Ax) \in \mathbb{R}^k$, we see that:

$$x^T M x = y^T y = ||y||^2 \ge 0. \quad \blacksquare$$

More Properties of Laplacian

From the definition using edge sums, we get:

• (PSD-ness) The Laplacian of any graph is PSD.

$$x^{T}L_{G}x = x^{T}(\sum_{e \in E} L_{e})x = \sum_{e \in E} x^{T}L_{e}x = \sum_{(i,j) \in E} (x_{i} - x_{j})^{2}$$

 (Connectivity) G is connected iff λ2 positive or alternatively, the null space is 1-d and spanned by the vector 1.

Proof Let $x \in \text{null}(L)$, i.e. $L_G x = 0$. This implies

$$x^{T}L_{G}x = \sum_{(i,j)\in E} (x_{i} - x_{j})^{2} = 0.$$

Thus, $x_i = x_j$ for every $(i, j) \in E$. As G is connected, this means that all x_i are equal. Thus every member of the null space is a multiple of 1.

• **Corollary:** The multiplicity of zero as an eigenvalue equals the number of connected components of the graph.

More Properties of Laplacian

- (Edge union)If G and H are two graphs on the same vertex set, with disjoint edge set then $L_{G\cup H} = L_G + L_H \text{ (additivity)}$
- If a vertex is isolated, the corresponding row and column of Laplacian are zero
- (Disjoint union) Together these imply that for the disjoint union of graphs G and H

$$L_{G\coprod H} = L_G \oplus L_H = \left(\begin{array}{cc} L_G & 0\\ 0 & L_H \end{array}\right)$$

More Properties of Laplacian

• (Edge union)If G and H are two graphs on the same vertex set, with disjoint edge set then

 $L_{G\cup H} = L_G + L_H$ (additivity)

- If a vertex is isolated, the corresponding row and column of Laplacian are zero
- (Disjoint union) Together these imply that for the disjoint union of graphs G and H

$$L_{G\coprod H} = L_G \oplus L_H = \left(\begin{array}{cc} L_G & 0\\ 0 & L_H \end{array}\right)$$

(Disjoint union spectrum) If L_G has evectors v₁,..., v_n with evalues λ₁,..., λ_n and L_H has evectors w₁,..., w_n with evalues μ₁,..., μ_n then ^{L_G ∐L_H} has evectors v₁,..., v_n ⊕ 0, 0 ⊕ w₁,..., 0 ⊕ w_n with evalues λ₁,..., λ_n, μ₁,..., μ_n.

The Incidence Matrix: Factoring the Laplacian

- We can factor L as $L = V^T V$ using evectors but also exists nicer factorization
- Define the incidence matrix B to be the m-by-n matrix $B(e,v) = \begin{cases}
 1, if \ e = (v,w) and \ v < w \\
 -1, if \ e = (v,w) and \ w < v \\
 0, otherwise
 \end{cases}$
- Example of incidence matrix

$$B = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \qquad L = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

- Claim: $L = B^T B$ (exercise)
- Gives another proof that L is PSD.

Spectra of Some Common Graphs

- The complete graph Kn on n vertices with edge set $\{(u, v): u \neq v\}$
- The path graph Pn on n vertices with edge set $\{(u, u + 1): 0 \le u < n\}$
- The ring graph R_n on n vertices with edge set $\{(u, u + 1): 0 \le u < n\} \cup (0, n 1)$
- The grid graph G_{nxm} on nxm vertices with edges from node (u_1, u_2) to nodes that differ by one in just one coordinate
- Product graphs in general

 $K_n: \{(u, v): u \neq v\}$

 The Laplacian of Kn has eigenvalue zero with multiplicity 1 (since it is connected) and n with multiplicity n-1.

Proof: see blackboard

The Complete Graph

 $K_n: \{(u, v): u \neq v\}$

 \square

 The Laplacian of Kn has eigenvalue zero with multiplicity 1 (since it is connected) and n with multiplicity n-1.

Proof. Let L be the Laplacian of K_n . Let x be any vector orthogonal to the all 1s vector. Consider the first coordinate of Lx. It will be n - 1 times x_1 , minus

$$\sum_{u>1} x_u = -x_1,$$

as x is orthogonal to 1. Thus, x is an eigenvector of eigenvalue n.

The Ring Graph

$$\mathbb{R}_{10}$$

 \mathbb{R}_{10}
 \mathbb{R}_{10}

The Laplacian of Rn has eigenvectors

$$x_k(u) = \sin(\frac{2\pi ku}{n})$$
 and
 $y_k(u) = \cos(\frac{2\pi ku}{n})$

for k≤n/2. Both have eigenvalue $2 - 2\cos(\frac{2\pi k}{n})$. Note x₀ should be ignored and y₀ is the all ones vector. If n is even, then x_{n/2} should be ignored.

Proof: By plotting the graph on the circle using these vectors as coordinates.

The Ring Graph

Spectral embedding for k=3

Let z(u) be the point $(x_k(u), y_k(u))$ on the plane.

Consider the vector z(u-1) - 2 z(u) + z(u+1). By the reflection symmetry of the picture, it is parallel to z(u)

Let $z(\upsilon-1) - 2 z(\upsilon) + z(\upsilon+1) = \lambda z(\upsilon)$. By rotational symmetry, the constant λ is independent of υ .

To compute λ consider the vertex u=1.

Verify details as excercise

The Path Graph

Pn:{ $(u, u + 1): 0 \le u < n$ }

• The Laplacian of Pn has the same eigenvalues as R_{2n} and eigenvectors $z_k(u) = \sin\left(\frac{\pi ku}{n} + \frac{\pi}{2n}\right)$, for k<n.

Proof: Treat Pn as a quotient of R2n. Use projection

$$f: R_{2n} \to P_n$$

$$f(u) = \begin{cases} u, if \ u < n \\ 2n - 1 - u, if \ u \ge n \end{cases}$$

The Path Graph

Proof: Treat Pn as a quotient of R_{2n}. Use projection $f: R_{2n} \rightarrow P_n$

$$f(u) = \begin{cases} u, if \ u < n\\ 2n - 1 - u, if \ u \ge n \end{cases}$$

- Let z be an eigenvector of the ring, with z(u)=z(2n-1-u) for all u.
- Take the first n components of z and call this vector v.
- To see that v is an eigenvector of Pn, verify that it satisfies for some λ: 2v(u)-v(u-1)-v(u+1)= λv(u), for o<u<n-1 v(o)-v(1)= λv(1) v(n-1)-v(n-2)= λv(n-1)
- Take z as claimed, i.e. $z_k(u) = \sin\left(\frac{\pi k u}{n} + \frac{\pi}{2n}\right)$, which is in the span of xk and yk.
- (verify details as exercise)

Graph Products

- (Definition): Let G(V,E) and H(W,F). The graph product GxH is a graph with vertex set VxW and edge set ((v₁,w),(v₂,w)) for (v₁,v₂)∈ E
 ((v,w₁),(v,w₂)) for (w₁,w₂)∈ F
- If G has evals λ₁,..., λ_n, evecs x₁,..., x_n H has evals μ₁,..., μ_m, evecs y₁,..., y_m
 Then GxH has for all i,j in range, an evector z_{ij}(v,w)=x_i(v)y_j(w) of evalue λ_i + μ_j
- Proof: see blackboard

Graph Products

Proof. To see that this eigenvector has the propper eigenvalue, let L denote the Laplacian of $G \times H$, d_v the degree of node v in G, and e_w the degree of node w in H. We can then verify that

$$\begin{split} (Lz)(v,w) &= (d_v + e_w)(x_i(v)y_j(w)) - \sum_{(v,v_2)\in E} (x_i(v_2)y_j(w)) - \sum_{(w,w_2)\in F} (x_i(v)y_j(w_2)) \\ &= (d_v)(x_i(v)y_j(w)) - \sum_{(v,v_2)\in E} (x_i(v_2)y_j(w)) + (e_w)(x_i(v)y_j(w)) - \sum_{(w,w_2)\in F} (x_i(v)y_j(w_2)) \\ &= y_j(w) \left(d_v x_i(v) - \sum_{(v,v_2)\in E} (x_i(v_2)) \right) + x_i(v) \left(e_w y_j(w) - \sum_{(w,w_2)\in F} (x_i(v)y_j) \right) \\ &= y_j(w)\lambda_i x_i)(v) + x_i(v)\mu_j y_j(w) \\ &= (\lambda_i + \mu_j)(x_i(v)y_j(w)). \end{split}$$

• Immediately get spectra from path.

Start Bounding Laplacian Eigenvalues

Sum of Eigenvalues, Extremal Eigenvalues

 Σ_i λ_i = Σ_i d_i ≤ d_{max}n where disthe degree of vertex i. Proof: take the trace of L
 λ₂ ≤ Σ_i d_i/n-1 and λ_n ≥ Σ_i d_i/n-1

Proof: previous inequality + $\lambda_1 = 0$.

 Courant-Fisher formula (for extreme evalues): For any nxn symmetric matrix A (eigenvalues in increasing order),

$$\lambda_{1} = \min_{\|x\|=1} x^{T} A x = \min_{x \neq 0} \frac{x^{T} A x}{x^{T} x} \qquad \lambda_{2} = \min_{\|x\|=1, x \perp v_{1}} x^{T} A x = \min_{x \perp v_{1}, x \neq 0} \frac{x^{T} A x}{x^{T} x}$$
$$\lambda_{\max} = \max_{\|x\|=1} x^{T} A x = \max_{x \neq 0} \frac{x^{T} A x}{x^{T} x}$$

Courant-Fischer.

• Courant-Fischer Formula: For any nxn symmetric matrix A,

$$\lambda_k = \min_{S \text{ of dim}k} \max_{x \in S} \frac{x^T A x}{x^T x}$$

$$\lambda_k = \max_{S \text{ of } \dim n-k-1} \min_{x \in S} \frac{x^T A x}{x^T x}$$

• Proof: see blackboard

Proof Let $A = Q^T \Lambda Q$ be the eigendecomposition of A. We observe that $x^T A x = x^T Q^T \Lambda Q x = (Qx)^T \Lambda (Qx)$, and since Q is orthogonal, ||Qx|| = ||x||. Thus it suffices to consider the case when $A = \Lambda$ is a diagonal matrix with the eigenvalues $\lambda_1, \ldots, \lambda_n$ in the diagonal. Then we can write

$$x^{T}Ax = \begin{pmatrix} x_{1} & \cdots & x_{n} \end{pmatrix} \begin{pmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = \sum_{i=1}^{n} \lambda_{i} x_{i}^{2}$$

We note that when A is diagonal, the eigenvectors of A are $v_k = e_k$, the standard basis vector in \mathbb{R}^n , i.e. $(e_k)_i = 1$ if i = k, and $(e_k)_i = 0$ otherwise. Then the condition $x \in S_{k-1}^{\perp}$ implies $x \perp e_i$ for $i = 1, \ldots, k-1$, so $x_i = \langle x, e_i \rangle = 0$. Therefore, for $x \in S_{k-1}^{\perp}$ with ||x|| = 1, we have

$$x^{T}Ax = \sum_{i=1}^{n} \lambda_{i}x_{i}^{2} = \sum_{i=k}^{n} \lambda_{i}x_{i}^{2} \ge \lambda_{k}\sum_{i=k}^{n} x_{i}^{2} = \lambda_{k}||x||^{2} = \lambda_{k}$$

• Courant-Fischer Formula: $\lambda_k = \max_{S \text{ of dim} n-k-1} \min_{x \in S} \frac{x^T A x}{x^T x}$

On the other hand, plugging in $x = e_k \in S_{k-1}^{\perp}$ yields $x^T A x = (e_k)^T A e_k = \lambda_k$. This shows that

$$\lambda_k = \min_{\substack{\|x\|=1\\x\in S_{k-1}^{\perp}}} x^T A x.$$

Similarly, for ||x|| = 1,

$$x^T A x = \sum_{i=1}^n \lambda_i x_i^2 \le \lambda_{\max} \sum_{i=1}^n x_i^2 = \lambda_{\max} ||x||^2 = \lambda_{\max}.$$

On the other hand, taking $x = e_n$ yields $x^T A x = (e_n)^T A e_n = \lambda_{\text{max}}$. Hence we conclude that

$$\lambda_{\max} = \max_{\|x\|=1} x^T A x.$$

Courant-Fischer.

• Courant-Fischer Formula: For any nxn symmetric matrix A,

$$\lambda_k = \min_{S \text{ of dim}k} \max_{x \in S} \frac{x^T A x}{x^T x}$$

$$\lambda_k = \max_{S \text{ of } \dim n-k-1} \min_{x \in S} \frac{x^T A x}{x^T x}$$

- Proof: see blackboard
- Definition (Rayleigh Quotient): The ratio $\frac{x^T A x}{x^T x}$ is called the *Rayleigh Quotient* of x with respect to A.

• Next lecture we will use it to bound evalues of Laplacians.