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In colloquial language the term elementary geometry is used loosely to

refer to the body of notions and theorems which, following the tradition

of Euclid's Elements, form the subject matter of geometry courses in

secondary schools. Thus the term has no well determined meaning and

can be subjected to various interpretations. If we wish to make elementa-

ry geometry a topic of metamathematical investigation and to obtain

exact results (not within, but) about this discipline, then a choice of a

definite interpretation becomes necessary. In fact, we have then to

describe precisely which sentences can be formulated in elementary

geometry and which among them can be recognized as valid; in other

words, we have to determine the means of expression and proof with

which the discipline is provided.

In this paper we shall primarily concern ourselves with a conception of

elementary geometry which can roughly be described as follows: we

regard as elementary that part of Euclidean geometry which can be formulated

and established without the help of any set-theoretical devices. l

More precisely, elementary geometry is conceived here as a theory with

standard formalization in the sense of [9].
2 It is formalized within elc-

1 The paper was prepared for publication while the author was working on a

research project in the foundations of mathematics sponsored by the U.S. National

Science Foundation.
2 One of the main purposes of this paper is to exhibit the significance of notions

and methods of modern logic and metamathematics for the study of the foundations

of geometry. For logical and metamathematical notions involved in the discussion

consult [8] and [9] (see the bibliography at the end of the paper) . The main meta-

mathematical result upon which the discussion is based was established in [7J. For

algebraic notions and results consult [11].

Several articles in this volume are related to the present paper in methods and
results. This applies in the first place to Scott [5] and Szmielew [6J, and to some
extent also to Robinson [3].
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mentary logic, i.e., first-order predicate calculus. All the variables*,)/, z, . . .

occurring in this theory are assumed to range over elements of a fixed set ;

the elements are referred to as points, and the set as the space. The logical

constants of the theory are (i) the sentential connectives the negation

symbol -i, the implication symbol >, the disjunction symbol v, and the

conjunction symbol A
; (ii) the quantifiers the universal quantifier A

and the existential quantifier V ; and (iii) two special binary predicates
the identity symbol = and the diversity symbol ^. As non-logical
constants (primitive symbols of the theory) we could choose any predi-

cates denoting certain relations among points in terms of which all

geometrical notions are known to be definable. Actually we pick two

predicates for this purpose: the ternary predicate ft used to denote the

betweenness relation and the quaternary predicate d used to denote the

equidistance relation; the formula fi(xyz) is read y lies between x and z

(the case when y coincides with % or z not being excluded), while 6(xyzu) is

read x is as distant from y as z is from u.

Thus, in our formalization of elementary geometry, only points are

treated as individuals and are represented by (first-order) variables.

Since elementary geometry has no set-theoretical basis, its formalization

does not provide for variables of higher orders and no symbols are

available to represent or denote geometrical figures (point sets), classes

of geometrical figures, etc. It should be clear that, nevertheless, we are

able to express in our symbolism all the results which can be found in

textbooks of elementary geometry and which are formulated there in

terms referring to various special classes of geometrical figures, such as

the straight lines, the circles, the segments, the triangles, the quadrangles,

and, more generally, the polygons with a fixed number of vertices, as

well as to certain relations between geometrical figures in these classes,

such as congruence and similarity. This is primarily a consequence of the

fact that, in each of the classes just mentioned, every geometrical figure

is determined by a fixed finite number of points. For instance, instead of

saying that a point z lies on the straight line through the points x and y,

we can state that either ft(xyz) or fi(yzx) or fi(zxy) holds; instead of saying

that two segments with the end-points x, y and x',y
r

are congruent, we

simply state that d(xyx'y
r

).
3

3 In various formalizations of geometry (whether elementary or not) which are

known from the literature, and in particular in all those which follow the lines of

[1], not only points but also certain special geometrical figures are treated 'as
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A sentence formulated in our symbolism is regarded as valid if it follows

(semantically) from sentences adopted as axioms, i.e., if it holds in every
mathematical structure in which all the axioms hold. In the present case,

by virtue of the completeness theorem for elementary logic, this amounts

to saying that a sentence is valid if it is derivable from the axioms by
means of some familiar rules of inference. To obtain an appropriate set

of axioms, we start with an axiom system which is known to provide an

adequate basis for the whole of Euclidean geometry and contains /? and d

as the only non-logical constants. Usually the only non-elementary
sentence in such a system is the continuity axiom, which contains second-

order variables X, Y, ... ranging over arbitrary point sets (in addition to

first-order variables %, y, ... ranging over points) and also an additional

logical constant, the membership symbol e denoting the membership
relation between points and point sets. The continuity axiom can be

formulated, e.g., as follows:

A XY{V z A xy[x e X A y e Y -> p(zxy)]

-> V w A #y [xEXhyeY-+ p(xuy)]}.

We remove this axiom from the system and replace it by the infinite

collection of all elementary continuity axioms, i.e., roughly, by all the

sentences which are obtained from the non-elementary axiom if x E X is

replaced by an arbitrary elementary formula in which % occurs free, and

y E Y by an arbitrary elementary formula in which y occurs free. To fix

the ideas, we restrict ourselves in what follows to the two-dimensional

individuals and are represented by first-order variables; usually the only figures

treated this way are straight lines, planes, and, more generally, linear subspaccs.
The set-theoretical relations of membership and inclusion, between a point and a

special geometrical figure or between two such figures, arc replaced by the geo-

metrical relation of incidence, and the symbol denoting this relation is included in

the list of primitive symbols of geometry. All other geometrical figures are treated

as point sets and can be represented by second-order variables (assuming that the

system of geometry discussed is provided with a set-theoretical basis). This ap-

proach has some advantages for restricted purposes of projective geometry; in fact,

it facilitates the development of projective geometry by yielding a convenient

formulation of the duality principle, and leads to a subsumption of this geometry
under the algebraic theory of lattices. In other branches of geometry an analogous

procedure can hardly be justified; the non-uniform treatment of geometrical

figures seems to be intrinsically unnatural, obscures the logical structure of the

foundations of geometry, and leads to some complications in the development of

this discipline (by necessitating, e.g., a distinction between a straight line and the

set of all points on this line).
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elementary geometry and quote explicitly a simple axiom system ob-

tained in the way just described. The system consists of twelve individual

axioms, A1-A2, and the infinite collection of all elementary continuity

axioms, A 13.

Al [IDENTITY AXIOM FOR BETWEENNESS].

A xy[0(xyx) -> (x
=

y)]

A2 [TRANSITIVITY AXIOM FOR BETWEENNESS].

A xyzu[(i(xyu) A ft(yzu) -> ft(xyz)]

A3 [CONNECTIVITY AXIOM FOR BETWEENNESS].

A xyzu[p(xyz) A f$(xyu) A (x ^ y) -> fi(xzu) v f$(xuz)]

A4 [REFLEXIVITY AXIOM FOR EQUIDISTANCE].

A xy[d(xyyx)]

A5 [IDENTITY AXIOM FOR EQUIDISTANCE].

A xyz[6(xyzz) -> (x
=

y)]

A6 [TRANSITIVITY AXIOM FOR EQUIDISTANCE].

A xyzuvw[d(xyzu) A d(xyvw) -> d(zuvw)]

A7 [PASCH'S AXIOM].

A txyzu V v[ft(xtu) A ft(yuz) -+p(xvy) A /5(^)]

A8 [EUCLID'S AXIOM].

A txyzu V vw[fi(xiit) A jft(yw2) A
(A: ^ w) -> p(xzv) A p(xyw) A fl(vtw)]

A9 (FIVE-SEGMENT AXIOM).

A ^^'yy'^'w^'f^^y^'y') A (5(y2;yy) A d(xux'u'} A d(yuy'u')

A ^(%y^) A jff^'y'a:') A (* ^ y) -> 6(zuz'u')]

A 10 (AXIOM OF SEGMENT CONSTRUCTION).

A xyuv V z[f$(xyz) A <5(y2wz;)]

Al 1 (LOWER DIMENSION AXIOM).

V xyz[^(xyz) A -j(yzx) A -^(^)]

A 1 2 (UPPER DIMENSION AXIOM) .

A xyzuv[d(xuxv) A ^(ywyv) A 6(zuzv) A (u ^= v)

^ p(xyz) v P(yzx) v 0(zxy)]
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A13 [ELEMENTARY CONTINUITY AXIOMS]. All sentences of the form

A vw . . . {V z A xy[<p A \p
-> fi(zxy)] -> V u A #y[g? A ^

z>A0r0 99 stands for any formula in which the variables x, v, w, . . .
,
&/

neither y nor z nor u, occur free, and similarly for ip, with x and y

interchanged.

Elementary geometry based upon the axioms just listed will be denoted

by <^2- In Theorems 1-4 below we state fundamental metamathematical

properties of this theory.
4

First we deal with the representation problem for <^2, i.e., with the

problem of characterizing all models of this theory. By a model of $2 we
understand a system 9ft </I, B, Dy such that

(i)
A is an arbitrary non-

empty set, and B and D are respectively a ternary and a quaternary
relation among elements of A

; (ii) all the axioms of <f2 prove to hold in -JJl

if all the variables are assumed to range over elements of A, and the

constants /? and 6 are understood to denote the relations B and D, re-

spectively.

The most familiar examples of models of ^2 (and ones which can

easily be handled by algorithmic methods) are certain Cartesian spaces

over ordered fields. We assume known under what conditions a system

g <F, + ,-,<> (where F is a set, + and are binary operations

under which F is closed, and < is a binary relation between elements of F)
is referred to as an ordered field and how the symbols 0, x y, x2 are

defined for ordered fields. An ordered field 3f will be called Euclidean if

every non-negative element in F is a square; it is called real closed if it is

Euclidean and if every polynomial of an odd degree with coefficients in F
has a zero in F. Consider the set A% F x F of all ordered couples

4 A brief discussion of the theory ^2 and its metamathematical properties was

given in [7], pp. 43 ff. A detailed development (based upon the results of [7]) can be

found in [4] where, however, the underlying system of elementary geometry
differs from the one discussed in this paper in its logical structure, primitive sym-
bols, and axioms.

The axiom system for <?2 quoted in the text above is a simplified version of the

system in [7J, pp. 55 f. The simplification consists piimarily in the omission of

several superfluous axioms. The proof that those superfluous axioms are actually
derivable from the remaining ones was obtained by Eva Kallin, Scott Taylor, and
the author in connection with a course in the foundations of geometry given by the

author at the University of California, Berkeley, during the academic year 1956-57.
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% = <#i, #2 > with #1 and #2 in F. We define the relations B% and D%
among such couples by means of the following stipulations :

B%(xyz) if and only if (xi yi)-(ya
- z2 )

=
(x2
-

y2)-(yi *i),

< (xi yi)-(yi 2:1), 0nd < (*2 y2)-(y2 22) ;

D9 (xyzu) if and only if (xi yi)
2 + (*2 y2)

2 =
(*i ui)

2
+(z2 U2)

2
.

The system $2(1$)
=

<A%, B%, Dg)> is called the (two-dimensional)
Cartesian space over $. If in particular we take for $ the ordered field 9ft

of real numbers, we obtain the ordinary (two-dimensional) analytic space

THEOREM 1 (REPRESENTATION THEOREM). For W, to be a model of <^2 it is

necessary and sufficient that 9K be isomorphic with the Cartesian space

Ea(3f) over some real closed field $.

PROOF (in outline). It is well known that all the axioms of <^2 hold in

62(8?) and that therefore (2(3?) is a model of ^2 . By a fundamental result

in [7], every real closed field g is elementarily equivalent with the field 91,

i.e., every elementary (first-order) sentence which holds in one of these

two fields holds also in the other. Consequently every Cartesian space

(2) ovcr a real closed field gf is elementarily equivalent with E2 (9?) and

hence is a model of ^2 ; this clearly applies to all systems 2R isomorphic
with S2@) as well.

To prove the theorem in the opposite direction, we apply methods and

results of the elementary geometrical theory of proportions, which has

been developed in the literature on several occasions (see, e.g., [1J, pp.

51 if.). Consider a model Wl = <A, B, Z)> of <^2 ;
let z and u be any two

distinct points of A, and F be the straight line through z and u, i.e., the

set of all points x such that B(zux) or B(uxz) or B(xzu). Applying some

familiar geometrical constructions, we define the operations + and on,

and the relation < between, any two points x and y in F. Thus we say
that x < y if either x = y or else B(xzu) and not B(yxu) or, finally,

5 All the results in this paper extend (with obvious changes) to the w-dimensional

case for any positive integer n. To obtain an axiom system for tfn we have to modify
the two dimension axioms, Al 1 and A 12, leaving the remaining axioms unchanged;

by a result in [5] ,A1 1 and A 12 can be replaced by any sentence formulated in the

symbolism of &n which holds in the ordinary w-dimensional analytic space but not

in any m-dimensional analytic space for m & n. In constructing algebraic models

for one-dimensional geometries we use ordered abelian groups instead of ordered

fields.
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B(zxy) and not B(xzu) ; x + y is defined as the unique point v in F such

that D(zxyv) and either z < x and y <^ t; or else % < z and v < y. The
definition of #-y is more involved; it refers to some points outside of F
and is essentially based upon the properties of parallel lines. Using ex-

clusively axioms A 1-A 12 we show that $ = <F, +, ', <>> is an ordered

field; with the help of A 13 we arrive at the conclusion that $ is actually
a real closed field. By considering a straight line G perpendicular to F at

the point z, we introduce a rectangular coordinate system in 3D? and we
establish a one-to-one correspondence between points x, y, ... in A and

ordered couples of their coordinates x <#i, #2), y = <yi, ^2), ... in

F x F. With the help of the Pythagorean theorem (which proves to be

valid in ^2) we show that the formula

D(xyst)

holds for any given points x, y, ... in A if and only if the formula

holds for the correlated couples of coordinates x = <#i, #2), y =<yi,
. . . in F x F, i.e., if

an analogous conclusion is obtained for B(xys). Consequently, the

systems 3R and 62(8) are isomorphic, which completes the proof.

We turn to the completeness problem for <^2 - A theory is called complete
if every sentence a (formulated in the symbolism of the theory) holds

either in every model of this theory or in no such model. For theories

with standard formalization this definition can be put in several other

equivalent forms; we can say, e.g., that a theory is complete if, for every
sentence or, either a or -ic

1

is valid, or if any two models of the theory are

elementarily equivalent. A theory is called consistent if it has at least one

model; here, again, several equivalent formulations are known. If there

is a model 9K such that a sentence holds in 551 if and only if it is valid in the

given theory, then the theory is clearly both complete and consistent,

and conversely. The solution of the completeness problem for $2 is given
in the following

THEOREM 2 (COMPLETENESS THEOREM), (i) A sentence formulated in 6%
is valid if and only if it holds in (2 (9ft) ;

(ii) the theory $2 is complete (and consistent).
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Part (i) of this theorem follows from Theorem 1 and from a funda-

mental result in [7] which was applied in the proof of Theorem 1 ; (ii) is an

immediate consequence of (i).

The next problem which will be discussed here is the decision problem
for $2. It is the problem of the existence of a mechanical method which

enables us in each particular case to decide whether or not a given sen-

tence formulated in <^2 is valid. The solution of this problem is again

positive :

THEOREM 3 (DECISION THEOREM). The theory #2 is decidable.

In fact, &2 is complete by Theorem 2 and is axiomatizable by its very

description (i.e., it has an axiom system such that we can always decide

whether a given sentence is an axiom). It is known, however, that every

complete and axiomatizable theory with standard formalization is deci-

dable (cf., e.g., [9], p. 14), and therefore $2 is decidable. By analyzing the

discussion in [7] we can actually obtain a decision method for $2-

The last metamathematical problem to be discussed for $% is the

problem of finite axiomatizability. From the description of <f2 we see that

this theory has an axiom system consisting of finitely many individual

axioms and of an infinite collection of axioms falling under a single axiom

schema. This axiom schema (which is the symbolic expression occurring

in A 13) can be slightly modified so as to form a single sentence in the

system of predicate calculus with free variable first-order predicates, and

all the particular axioms of the infinite collection can be obtained from

this sentence by substitution. We briefly describe the whole situation by

saying that the theory <f2 is "almost finitely axiomatizable", and we now
ask the question whether $2 is finitely axiomatizable in the strict sense,

i.e., whether the original axiom system can be replaced by an equivalent

finite system of sentences formulated in $2- The answer is negative:

THEOREM 4 (NON-FINITIZABILITY THEOREM). The theory $2 is not

finitely axiomatizable.

PROOF (in outline). From the proof of Theorem 1 it is seen that the

infinite collection of axiomsA 1 3 be can equivalently replaced by an infinite

sequence of sentences So, . . .
,
Sw ,

. . . ; So states that the ordered field g
constructed in the proof of Theorem 1 is Euclidean, and Sn for n >
expresses the fact that in this field every polynomial of degree 2n + 1

has a zero. For every prime number p we can easily construct an ordered
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field $p in which every polynomial of an odd degree 2n + 1 < p has a

zero while some polynomial of degree p has no zero; consequently, if

2m + 1 = p is a prime, then all the axioms A1-A12 and Sn with n < m
hold in 2 p) while Sm does not hold. This implies immediately that the

infinite axiom system A 1
,

. . . ,
A 1 2, So, . . . , Sn > has no finite sub-

system from which all the axioms of the system follow. Hence by a simple

argument we conclude that, more generally, there is no finite axiom

system which is equivalent with the original axiom system for $2-

From the proof just outlined we see that $2 can be based upon an

axiom system Al, . . .
,
A 12, So, . . ., Sw , ... in which (as opposed to the

original axiom system) each axiom can be put in the form of either a

universal sentence or an existential sentence or a universal-existential

sentence; i.e., each axiom is either of the form

A xy . . . (<p)

or else of the form

V uv . . . ((p)

or, finally, of the form

A xy . . . V uv . . .
(<p)

where <p is a formula without quantifiers. A rather obvious consequence
of this structural property of the axioms is the fact that the union of a

chain (or of a directed family) of models of <^2 is again a model of $2- This

consequence can also be derived directly from the proof of Theorem 1 .

The conception of elementary geometry with which we have been

concerned so far is certainly not the only feasible one. In what follows we
shall discuss briefly two other possible interpretations of the term

"elementary geometry" ; they will be embodied in two different formalized

theories, <f2' and <f2"
'

The theory $2 is obtained by supplementing the logical base of $2
with a small fragment of set theory. Specifically, we include in the

symbolism of <V new variables X, Y , . . . assumed to range over arbitrary

finite sets of points (or, what in this case amounts essentially to the same,

over arbitrary finite sequences of points) ;
we also include a new logical

constant, the membership symbol e, to denote the membership relation

between points and finite point sets. As axioms for <V we again choose

A 1-A 13; it should be noticed, however, that the collection of axiom A 13



WHAT IS ELEMENTARY GEOMETRY? 25

is now more comprehensive than in the case of $2 since <p and y stand for

arbitrary formulas constructed in the symbolism of <^y. In consequence
the theory &% considerably exceeds <f2 in means of expression and power.
In $2 we can formulate and study various notions which are traditionally

discussed in textbooks of elementary geometry but which cannot be

expressed in $2', e.g., the notions of a polygon with arbitrarily many
vertices, and of the circumference and the area of a circle.

As regards metamathematical problems which have been discussed

and solved for $2 in Theorems 1-4, three of them the problems of

representation, completeness, and finite axiomatizability are still open
when referred to <^2 '. In particular, we do not know any simple character-

ization of all models of $2, nor, do we know whether any two such

models are equivalent with respect to all sentences formulated in $2 -

(When speaking of models of <^y we mean exclusively the so-called

standard models; i.e., when deciding whether a sentence a formulated in

$2' holds in a given model, we assume that the variables x, y, ... oc-

curring in a range over all elements of a set, the variables X, Y, ... range
over all finite subsets of this set, and e is always understood to denote the

membership relation) . The Archimedean postulate can be formulated and

proves to be valid in <^y. Hence, by Theorem 1, every model of <^y is

isomorphic with a Cartesian space 62) over some Archimedean real

closed field $. There are, however, Archimedean real closed fields $ such

that 62) is n t a niodel of $2 ', e.g., the field of real algebraic numbers is

of this kind. A consequence of the Archimedean postulate is that every
model of 6*2 has at most the power of the continuum (while, if only by
virtue of Theorem 1, $2 has models with arbitrary infinite powers). In

fact, $2 has models which have exactly the power of the continuum, e.g.,

&2(ffi), but it can also be shown to have denumerable models. Thus,

although the theory $2 may prove to be complete, it certainly has non-

isomorphic models and therefore is not categorical.
6

Only the decision problem for $2 has found so far a definite solution :

8 These last remarks result from a general metamathematical theorem (an

extension of the Skolem-Lowenheim theorem) which applies to all theories with the

same logical structure as <V, i.e., to all theories obtained from theories with stan-

dard formalization by including new variables ranging over arbitrary finite sets and

a new logical constant, the membership symbol e, and possibly by extending

original axiom systems. By this general theorem, if &" is a theory of the class just

described with at most ft different symbols, and if a mathematical system 9JI is a
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THEOREM 5. The theory #2' is undecidable, and so are all its consistent

extensions.

This follows from the fact that Peano's arithmetic is (relatively) inter-

pretable in <f2'; cf. [9], pp. 31 ff.

To obtain the theory $2" we leave the symbolism of $2 unchanged but

we weaken the axiom system of 2- In fact, we replace the infinite

collection of elementary continuity axioms, A 13, by a single sentence,

A 13', which is a consequence of one of these axioms. The sentence ex-

presses the fact that a segment which joins two points, one inside and one

outside a given circle, always intersects the circle; symbolically:

A 13'. A xyzx'z'u V y'[6(uxux') A d(uzuz') A (t(uxz) A ft(xyz)

-v d(uyuy') A ftx'y'z')]

As a consequence of the weakening of the axiom system, various

sentences which are formulated and valid in $2 are no longer valid in $2".

This applies in particular to existential theorems which cannot be esta-

blished by means of so-called elementary geometrical constructions

(using exclusively ruler and compass), e.g., to the theorem on the tri-

section of an arbitrary angle.

With regard to metamathematical problems discussed in this paper the

situation in the case of $2" is just opposite to that encountered in the

case of <^y. The three problems which are open for <f2
'

admit of simple
solutions when referred to ^2". In particular, the solution of the repre-

sentation problem is given in the following

standard model of y with an infinite power a, then 9Ji has subsystems with any
infinite power y, p<y <<x, which are also standard models of y. The proof of this

theorem (recently found by the author) has not yet been published; it differs but

slightly from the proof of the analogous theorem for the theories with standard

formalization outlined in [10], pp. 92 f. In opposition to theories with standard

formalization, some of the theories &~ discussed in this footnote have models with

an infinite power a and with any smaller, but with no larger, infinite power; an

example is provided by the theory &%' for which a is the power of the continuum.

In particular, some of the theories y have exclusively denumerable models and in

fact are categorical; this applies, e.g., to the theory obtained from Peano's arith-

metic in exactly the same way in which ^V has been obtained from $%. There are

also theories y which have models with arbitrary infinite powers; such is, e.g., the

theory <f2'" mentioned at the end of this paper.
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THEOREM 6. For 2ft to be a model of $2" it is necessary and sufficient that

$R be isomorphic with the Cartesian space 62(8) over some Euclidean field f^f.

This theorem is essentially known from the literature. The sufficiency

of the condition can be checked directly; the necessity can be established

with the help of the elementary geometrical theory of proportions (cf . the

proof of Theorem 1).

Using Theorem 6 we easily show that the theory <f2
"

is incomplete,
and from the description of ^2" we see at once that this theory is finitely

axiomatizable.

On the other hand, the decision problem for <y remains open and

presumably is difficult. In the light of the results in [2] it seems likely that

the solution of this problem is negative ; the author would risk the (much

stronger) conjecture that no finitely axiomatizable subtheory of <^2 is

decidable. If we agree to refer to an elementary geometrical sentence (i.e.,

a sentence formulated in $2) as valid if it is valid in $2, and as elementarily

provable if it is valid in $2", then the situation can be described as

follows : we know a general mechanical method for deciding whether a given

elementary geometrical sentence is valid, but we do not, and probably shall

never know, any such method for deciding whether a sentence of this sort is

elementarily provable.

The differences between $2 and f2" vanish when we restrict ourselves

to universal sentences. In fact, we have

THEOREM 7. A universal sentence formulated in $2 is valid in $2 if

only if it is valid in $2".

To prove this we recall that every ordered field can be extended to a

real closed field. Hence, by Theorems 1 and 6, every model of $2" can be

extended to a model of %. Consequently, every universal sentence

which is valid in $2 is also valid in $2" \
the converse is obvious. (An even

simpler proof of Theorem 7, and in fact a proof independent of Theorem 1 ,

can be based upon the lemma by which every finite subsystem of an

ordered field can be isomorphically embedded in the ordered field of real

numbers.)

Theorem 7 remains valid if we remove A 13' from the axiom system of

$2" (and it applies even to some still weaker axiom systems). Thus we see

that every elementary universal sentence which is valid in $2 can be

proved without any help of the continuity axioms. The result extends to
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all the sentences which may not be universal when formulated in <^2 but

which, roughly speaking, become universal when expressed in the

notation of Cartesian spaces (2$)-
As an immediate consequence of Theorems 3 and 7 we obtain:

THEOREM 8. The theory $2" is decidable with respect to the set of its

universal sentences.

This means that there is a mechanical method for deciding in each

particular case whether or not a given universal sentence formulated in

the theory $2" holds in every model of this theory.

We could discuss some further theories related to $2, &2, and <f2";

e.g., the theory <y" which has the same symbolism as <f2
' and the same

axiom system as <f2". The problem of deciding which of the various

formal conceptions of elementary geometry is closer to the historical

tradition and the colloquial usage of this notion seems to be rather

hopeless and deprived of broader interest. The author feels that, among
these various conceptions, the one embodied in <^2 distinguishes itself by
the simplicity and clarity of underlying intuitions and by the harmony
and power of its metamathematical implications.
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