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On a Non-Cooperative Model for Wavelength
Assignment in Multifiber Optical Networks
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Abstract—We propose and investigate SELFISH PATH M UL -
TI COLORING games as a natural model for non-cooperative
wavelength assignment in multifiber optical networks. In this
setting, we view the wavelength assignment process as a strategic
game in which each communication request selfishly chooses a
wavelength, in an effort to minimize the maximum congestion
that it encounters on the chosen wavelength. We measure the
cost of a certain wavelength assignment as the maximum, among
all physical links, number of parallel fibers employed by this
assignment.

We start by settling questions related to the existence and
computation of, and convergence to pure Nash equilibria in
these games. Our main contribution is a thorough analysis of
the price of anarchy of such games, that is the worst-case ratio
between the cost of a Nash equilibrium and the optimal cost. We
first provide upper bounds on the price of anarchy for games
defined on general network topologies; along the way we obtain
an upper bound of 2 for games defined on star networks. We
next show that our bounds are tight even in the case of tree
networks of maximum degree 3, leading to non-constant priceof
anarchy for such topologies. In contrast, for network topologies
of maximum degree 2 the quality of the solutions obtained by
selfish wavelength assignment is much more satisfactory: we
prove that the price of anarchy is bounded by 4 for a large
class of practically interesting games defined on ring networks.

Index Terms—selfish wavelength assignment, non-cooperative
games, bottleneck games, price of anarchy, multifiber optical
networks, path multicoloring.

I. I NTRODUCTION

CENTRALIZED decision making in contemporary large-
scale computer networks is often impractical or in-

feasible. Indeed, the relevant resource allocation problems
usually turn out to be computationally intractable, thus forcing
network operators to content themselves with suboptimal so-
lutions that can be produced at a more realistic computational
cost. In this light, a trend that constantly gains ground is to
study the effect of reducing or even completely abandoning
centralized resource allocation to network users. Such decen-
tralized systems have been proposed and studied in the past in
the context of routing. However, in the last decade there has
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been renewed interest in applying game-theoretic techniques
to a variety of problems in networking. For numerous recent
and earlier results on the subject the reader is referred to [1]–
[3] and to references therein.

In this work, we draw motivation from large-scale optical
networks which are currently deployed to sustain the bulk of
network traffic generated by the ever-increasing and diversi-
fying user demands. Unfortunately, the majority of resource
allocation problems in optical networks are computationally
intractable, even in restricted network topologies. We adopt
an increasingly popular approach to modeling the lack of
centralized control in optical networks, viewing the usersas
active, selfish, non-cooperating entities who compete with
one another over network resources ([4]–[7]). We study the
corresponding strategic game in a game-theoretic framework
pioneered by Koutsoupias and Papadimitriou ([8], [9]) and
we provide, among other results, a complete analysis of the
deterioration of the quality of solutions caused by the lack
of user coordination in a natural model for non-cooperative
wavelength assignment in multifiber optical networks.

The tremendous bandwidth available in optical fibers is most
efficiently exploited through the use ofWavelength Division
Multiplexing (WDM). WDM allows for splitting the fiber
bandwidth into multiple independent channels (wavelengths),
each one operating at a different light frequency. It is highly
desirable that all communication in an optical network should
be carried outtransparently, i.e., each signal should use the
same wavelength on all the fibers that it traverses. Trans-
parency allows the use of all-optical switching components,
and thus obviates the need for opto-electronic conversion that
increases the cost of terminal equipment and slows down the
network.

In a WDM network, communication requests that are routed
on the same fiber are not allowed to use the same wavelength.
The bandwidth supported by currently deployed implementa-
tions of WDM amounts to at most two hundred wavelengths
per fiber, and this number is not expected to change drastically
in the near future. An immediate remedy to this situation
is to implement physical links using multiple parallel fibers.
Naturally, this boosts the available bandwidth and also allows
for several requests that use the same wavelength to be
routed on the same physical link, provided that each one
uses a different fiber. Several optimization problems have
been defined and studied in the multifiber setting (see the
subsection on related work below). Our focus here is on pre-
routed requests. Pre-routed requests arise in settings where
routing is unique (acyclic network topologies), or when the
path on which a particular request will be routed is decided
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independently of the wavelength assignment procedure. This
is the case when there are specific routing requirements, such
as shortest-path routing, or when the lightpaths are set up in
an earlier stage of the virtual topology design process.

In this work, we introduce and study a model where there is
no central authority assigning wavelengths to communication
requests. Instead, each request is considered as a player ina
strategic game, in which every possible choice of frequency
incurs some cost on the request, depending on the choices of
other players as well. Specifically, the cost of a player that
has chosen a particular frequencyf is equal to the maximum
number of requests using the same frequencyf encountered
on some edge along its path. Each player/request behaves
selfishly, trying to choose a wavelength that will minimize
her cost. We call these SELFISH PATH MULTI COLORING (S-
PMC) games1. In game theory, numerous ways have been
proposed to model the outcome of strategic games, by far the
most popular approach being to assume that the game settles in
someNash equilibrium, a stable state of the game in which no
player can reduce her cost by changing strategy unilaterally.
The famous result of Nash [11] guarantees the existence of
mixed equilibria, in which each player chooses each of her
available strategies with some probability. Here, we will focus
exclusively onpureequilibria, where each player plays exactly
one of her strategies with probability1. Early results on
the properties of (pure) Nash equilibria of non-cooperative
network routing games, as well as further motivation for the
game-theoretic viewpoint, can be found in the work of Orda
et al. [12]. From the point of view of the network operator,
the minimization of the cost of optical fibers that are required
to accommodate all communication requests is a compelling
desideratum. Thus, it is in the operator’s best interest if the
players reach a “good” Nash equilibrium, in the sense that the
cost of optical fibers required to accommodate the wavelength
choices of the players is small. In S-PMC games, we measure
the quality of a game state by using asocial costfunction that
is equal to the maximum number of requests that use the same
wavelength on the same edge.

The above game-theoretic model admits at least two differ-
ent interpretations of the player cost and social cost functions.
In the first scenario, the player cost function is primarily
regarded as a simplecharging mechanismemployed by the
network operator in order to steer users towards Nash equilib-
ria that are beneficial for the system. Accordingly, the social
cost function represents the maximum number of parallel
optical fibers that will be required on some physical link
of the network in order to accommodate all requests. This
is a justified optimization target from the network operator’s
perspective. Indeed, in certain cases the specific fiber cost
per link may be unknown or vary with time, and therefore a
reasonable objective is to minimize the maximum fiber usage
over all links of the network [13]. Furthermore, scenarios
where there is a fixed number of fibers per link arise naturally
in practice and have been considered in several studies ([14]–
[17]); in such cases, the minimization of maximum fiber

1In the context of multifiber optical networks, the termmulticoloring refers
to the fact that we allow multiple requests that share an edgeto receive the
same color [10].

multiplicity reveals which traffic patterns can be served by
an existing infrastructure.

In the second scenario, the player cost is viewed rather as a
disutility naturally suffered by the request due to the conditions
currently present in the network. For example, users may
prefer wavelengths that are not used in too many other fibers
in order to leave the highest possible margin for transferring to
another fiber in case of fiber failure or other “kick-out” events
(e.g. due to the arrival of higher priority requests). The social
cost is now interpreted as the maximum disutility suffered by
any player in the network, a measure known asegalitarian
social cost which has been frequently used for evaluating the
quality of strategy profiles in the selfish resource allocation
literature ([18]–[21], see also [3, chapter 17]).

Note, additionally, that S-PMC games can model selfish
wavelength assignment in single-fiber optical networks. In
this setting, a color multiplicity on an edge represents the
congestion encountered by requests using the corresponding
wavelength on that edge. A player may naturally seek to
minimize the maximum wavelength congestion along her
path, in order to maximize her throughput. Similar to the
second scenario above, the social cost represents the maximum
disutility of any player.

In the Koutsoupias-Papadimitriou framework, the loss in-
curred by the lack of centralized control is measured by the
price of anarchy: the ratio of the social cost of the worst-case
Nash equilibrium to the social cost of an optimal, centrally
computed, strategy profile. A small price of anarchy implies
that one can let the players play the game selfishly and
converge to some Nash equilibrium, the cost of which will
not be far from the optimal. A second measure of interest,
introduced by Anshelevich et al. [22], is theprice of stability:
the ratio of the social cost of a best-case Nash equilibrium
to the cost of an optimal solution. A small price of stability
implies that there exists a strategy profile that may beimposed
on the players, from which no player will have incentive to
deviate, and the cost of which will not be far from the optimal.

A. Related Work

S-PMC games naturally correspond to the following opti-
mization problem: given a multifiber network, a set of pre-
routed requests (fixed routing), and a number of available
wavelengths, find a wavelength assignment to minimize the
maximum fiber requirement on any network link (the number
of fibers required on a link is equal to the maximum wave-
length multiplicity on that link). This problem has been stud-
ied in [23] under the name MIN-MAX FIBER-FIXEDROUTE,
where they present a randomized algorithm for general graphs
which achieves a logarithmic approximation ratio; a very
similar optimization problem was studied in [24], where loga-
rithmic approximation hardness was shown which applies also
to MIN-MAX FIBER-FIXEDROUTE as observed in [23]. As
regards specific topologies, the algorithms proposed in [10] for
a related optimization problem directly give exact solutions for
chain networks and2-approximate solutions for ring and star
networks for MIN-MAX FIBER-FIXEDROUTE. Similar bounds
hold also for the variant of the problem where requests are not
pre-routed (flexible routing).
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Another optimization problem that has been considered
in multifiber networks is the minimization of the total fiber
requirement. Exact or constant-ratio approximation algorithms
for this problem were given for chains, rings (with both fixed
and flexible routing), and stars in [10], for trees in [25], and for
spiders in [26]. For general graphs, logarithmic approximation
algorithms and hardness results were given in [23] and [27],
assuming fixed as well as flexible routing. Yet another variant
seeks to minimize the number of wavelengths used, given
a fixed number of fibers on each link. This variant was
studied in [14], [15], [25], and [28], where constant ratio
approximation algorithms were presented for various simple
topologies.

Selfish path multicoloring games as such have not been
considered before in the literature. Even in the single fiber
setting, selfish path coloring has only recently been studied
in [4]–[7]. Bilò and Moscardelli [4] present payment strategies
that induce games possessing pure Nash equilibria. Later,
Bilò et al. [5] extend these games by introducing information
levels to the local knowledge of the players for computing
their payments and give bounds for the price of anarchy in
chains, rings and trees. In the work of Georgakopoulos et
al. [6], additionally to providing results for the existence and
computation of pure Nash equilibria of selfish routing and
path coloring games, they also consider the complexity of
recognizing and computing better Nash equilibria for such
games under various payment functions. Milis et al. [7] present
upper and, for the first time, lower bounds on the price of
anarchy of selfish routing and path coloring games under cost
functions that charge each player taking into account only
her own strategy choice. Among other results, they show a
constant price of anarchy for selfish path coloring games in
rings.

Selfish path multicoloring games are closely related to
bottleneck games ([20], [21]), a variation of congestion games
where a player’s cost is determined by hermaximumlatency
instead of the usual cost which is thesumof her latencies.

In [20], Busch and Magdon-Ismail study atomic routing
games on networks, where each player chooses a path to
route her traffic from an origin to a destination node, with the
objective of minimizing the maximum congestion on any edge
of her path. They show that these games always possess at least
one optimal pure Nash equilibrium (hence the price of stability
is 1) and that the price of anarchy of the game is determined by
topological properties of the network. In particular, theyshow
that the price of anarchy is upper bounded by the length of
the longest path in the player strategy sets and lower bounded
by the length of the longest cycle in the network.

A further generalization is the model of Banner and
Orda [21], where they introduce the notion of bottleneck
games. In this model they allow arbitrary latency functions
on the edges and consider both the case of splittable and
unsplittable flows. They show existence, convergence and non-
uniqueness of equilibria and they prove that the price of
anarchy for these games is unbounded.

Both models are more general than the model considered in
this article, since a selfish path multicoloring game can be seen
as a traffic routing game in a multigraph, where each edge is

replaced withw parallel edges, one for each available color.
Each player’s strategy set then consists ofw edge-disjoint
source-destination paths, corresponding to thew available
colors in the selfish path multicoloring model. However, our
model fits better into the framework of optical networks for
which we provide smaller upper bounds on the price of
anarchy compared to the ones obtained in [20] and [21], as
well as a better convergence rate to Nash equilibria. Moreover,
our lower bounds naturally hold in the more general models
of [20] and [21], but are not directly comparable to the lower
bounds presented there.

The type of bottleneck games discussed above are usually
callednetworkbottleneck games to stress the fact that the set
of resources available to the players are edges of a graph;
another type aregeneralbottleneck games, where there is no
such combinatorial structure underlying the set of resources;
moreover a bottleneck game is said to beasymmetricwhen
players are allowed to have different strategy sets (in our set-
ting this translates to different source and destination nodes).
In light of the observation in the previous paragraph, our
model can be seen as a special case of (asymmetric) network
bottleneck games, with linear delay functions on the edges.
In [29] the authors show that the problem of computing
(any)α-approximate Nash equilibrium for general asymmetric
bottleneck games in which the delay functions on the resources
have bounded jumps is aPLS-complete problem (i.e., the nat-
ural, exponential in the worst case, sequence of best-response
dynamics is probably the best we can hope for). Unfortunately,
their result does not immediately imply anything about the
complexity of computing a Nash equilibrium in our model,
since their model is more general both in the strategy space
(general vs network game) and in the type of delay functions
allowed (bounded-jump vs linear). On the other hand, for
the related setting of congestion games, it is shown in [30]
that computing a Nash equilibrium isPLS-complete even
in (asymmetric) network congestion games with linear delay
functions on the edges.

In [29] the authors also provide an algorithm for computing
a strong equilibrium (a generalization of Nash equilibrium)
in matroid bottleneck games. In Section IV we study selfish
path multicoloring games on a specific network topology we
call “rooted-tree” topology and we provide an algorithm for
computing a Nash equilibrium. It is easy to see that this is
a special case of matroid bottleneck games and therefore the
algorithm of [29] works in our setting as well, however our
algorithm is faster and has the property that it always computes
a Nash equilibrium of optimal social cost.

B. Contributions

In this paper we propose SELFISH PATH MULTI COLORING

games as a model for studying the behavior of multifiber
optical networks in which the wavelength assignment process
is carried out by the users in a selfish manner. We present
a thorough analysis of the price of anarchy of these games,
as well as results on the existence and computation of Nash
equilibria and on the rate of convergence to Nash equilibria.

We first observe that all SELFISH PATH MULTI COLORING

games converge to some Nash equilibrium in a finite number
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of steps. We show a lower rate of convergence than the one
known for the more general games of [20] and [21]. We also
observe that there always exist Nash equilibria of optimal so-
cial cost: the price of stability is1. The problem of finding such
equilibria is, in general, computationally intractable, since the
corresponding optimization problem isNP-hard. In this work,
we are able to pinpoint a subclass of games defined on trees
(“rooted-tree” topology), for which we provide a polynomial-
time algorithm that computes optimal Nash equilibria. We
then prove that for all games defined on stars, we can use an
approximation algorithm for the corresponding optimization
problem in order to compute approximate equilibria.

Our main contribution is the analysis of the price of anarchy
of several classes of SELFISH PATH MULTI COLORING games.
We first provide upper bounds for games defined on general
graphs; in particular, we prove that on any graph, the price of
anarchy is bounded by the length of the shortest maximum-
cost request in any Nash equilibrium. This bound immediately
yields a constant price of anarchy, namely2, for the special
case of star topologies. We next show that our bounds are
tight even in the case of tree networks of maximum degree3,
yielding non-constant price of anarchy for such (and more
general) topologies. In contrast, for networks of maximum
degree2, that is rings and chains, the situation is much more
gratifying: we show that the price of anarchy is bounded by
max{4, w

2

L
}, whereL is the maximum load of the network

andw is the number of available wavelengths per fiber. This
means that for a large class of practically interesting games,
the price of anarchy is at most4.

II. PRELIMINARIES

Given an undirected graphG = (V,E), a nonempty setP =
{p1, . . . , pN} of simple paths defined onG, and a nonempty
setW = {α1, . . . , αw} of available colors,L(e) will denote
the load of edgee, i.e. the number of paths that use edgee.
The maximum of these loads will be denoted byL, i.e. L =
maxe∈E L(e). We will occasionally view a pathp ∈ P as a
set of edges, therefore the notatione ∈ p will mean that pathp
uses edgee and |p| will stand for the length of pathp.

A coloring, i.e. an assignment of colors to paths, will
be denoted by a vectorc = (c1, . . . , cN ) in WN : each
coordinateci denotes the color assigned to pathpi. With
respect to a coloringc, we will make use of the following
notation:

Definition 1 (Notation). 1) P (c)(e, α) will denote the set
of paths that use edgee and are colored with colorα.

2) µ(c)(e, α) will denote themultiplicity of color α on
edgee:

µ(c)(e, α) =
∣

∣

∣
P (c)(e, α)

∣

∣

∣
.

3) µ
(c)
e will denote the maximum multiplicity of any color

on edgee:
µ(c)
e = max

α∈W
µ(c)(e, α) .

4) µ
(c)
max will denote the maximum multiplicity of any color

over all edges:

µ(c)
max = max

e∈E
µ(c)
e .

5) µ(c)(p, α) will denote the maximum multiplicity of
color α over the edges of pathp:

µ(c)(p, α) = max
e∈p

µ(c)(e, α) .

Whenever there is no ambiguity regarding the coloring we
are referring to, we will not make explicit the dependence
on c.

Note thatµ(c)
max, as defined above, represents the cost of

a coloring in the corresponding optimization problem. The
minimum cost over all possible coloringsc will be denoted
by µOPT, i.e.:

µOPT = min
c

µ(c)
max ,

wherec ranges over all possible colorings. We observe im-
mediately that in any coloring, at least one color will appear
with multiplicity at least

⌈

L
w

⌉

on the maximum-load edge.
Therefore, we obtain the following lower bound onµOPT:

Fact 1. No coloring can achieve a cost that is smaller than
⌈

L
w

⌉

. Thus,

µOPT ≥

⌈

L

w

⌉

.

A. Game-Theoretic Model

We now define formally our game-theoretic model for non-
cooperative (or selfish) wavelength assignment in multifiber
optical networks.

Definition 2 (SELFISH PATH MULTI COLORING games). Let
G be an undirected graph,P = {p1, . . . , pN} be a set of
simple paths defined onG, and W = {α1, . . . , αw} be a
set of available colors. The SELFISH PATH MULTI COLORING

game〈G,P,W 〉 is defined as follows:
• Players: there is one player for each path inP . For

simplicity, we will identify each playeri with the cor-
responding pathpi.

• Strategies: All players share the common set of available
strategiesW . The choice of strategy (color) of playeri
is denoted byci ∈ W . A strategy profilefor the game is
a coloringc = (c1, . . . , cN ) that corresponds to the color
choices made by the players.

• Disutility: The disutility of player i in the strategy pro-
file c is given by the disutility functionfi : WN → N as
follows:

fi(c) = µ(c)(pi, ci) .

Definition 3. S-PMC will denote the class of all SELFISH

PATH MULTI COLORING games.

We will use the notation S-PMC(X ) to denote a subclass
of S-PMC that contains only games satisfying a property
X . For example, the restriction of S-PMC to games defined
on trees (resp. stars) is denoted by S-PMC(TREE) (resp. S-
PMC(STAR)), where we use TREE for the property “G is a
tree”.

It is clear from Definition 2 that we concentrate on pure
strategies and do not consider the case where players might
pick each color with some probability. Following the standard
definition, we say that a strategy profilec = (c1, . . . , cN) is
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a pure Nash equilibrium(PNE), or simply for our purposes
Nash equilibrium(NE), if for each playeri it holds that:

fi(c1, . . . , c
′
i, . . . , cN ) ≥ fi(c1, . . . , ci, . . . , cN) ,

for any strategyc′i ∈ W . Moreover, following the definition
from Chien and Sinclair [31], we say that a strategy profile
c = (c1, . . . , cN ) is anε-approximate Nash equilibriumif for
each playeri it holds that:

fi(c1, . . . , c
′
i, . . . , cN ) ≥ (1− ε) · fi(c1, . . . , ci, . . . , cN) ,

for any strategyc′i ∈ W . In a Nash equilibrium, no player will
improve her disutility by changing strategy unilaterally,while
in an ε-approximate Nash equilibrium a unilateral change of
strategy may result in reducing the deviating player’s costby
no more than a factor of1− ε.

Definition 4 (Blocking edges). Let c be a strategy profile for
some game〈G,P,W 〉. We say that edgee is anα-blocking
edge forpi ∈ P , or that it blocksα for pi, if e ∈ pi and
µ(c)(e, α) ≥ fi(c)− 1. Furthermore, in that case, the paths in
P (c)(e, α) are calledα-blocking paths forpi.

Intuitively, anα-blocking edge forpi “blocks” this player
from switching to colorα because if she did, her new disutility
would be at leastµ(c)(e, α) + 1 ≥ fi(c), no better than her
disutility in the current coloring. The following characteriza-
tion of the Nash equilibria of S-PMC games is immediate
from the definitions:

Property 2 (Structural characterization of S-PMC Nash equi-
libria). A strategy profile for anS-PMC game〈G,P,W 〉 is
a Nash equilibrium if and only if every pathp ∈ P contains
at least oneα-blocking edge forp, for every colorα.

Definition 5 (Social cost). We define thesocial costof a
strategy profilec for an S-PMC game to be the cost of the
corresponding coloring:

sc(c) = µ(c)
max .

It is straightforward to verify that the social cost of a
strategy profile coincides with the maximum player disutility
in that profile:

sc(c) = max
e∈E

µ(c)
e = max

pi∈P
fi(c) .

We defineµ̂ to be the maximum social cost over all strategy
profiles that are Nash equilibria:

µ̂ = max
c is NE

sc(c) .

Theprice of anarchy(PoA) of a game〈G,P,W 〉 is the worst-
case social cost in a Nash equilibrium divided byµOPT, i.e.:

PoA(〈G,P,W 〉) =
max

c is NE sc(c)

µOPT
=

µ̂

µOPT
.

The price of stability(PoS) of a game is the best-case social
cost in a Nash equilibrium divided byµOPT:

PoS(〈G,P,w〉) =
min

c is NE sc(c)

µOPT
.

The price of anarchy (resp. stability) of a class of games
S-PMC(X ) is the least upper bound on the price of anarchy
(resp. stability) of S-PMC games that satisfy propertyX .

III. PRICE OFSTABILITY , EXISTENCE, AND

CONVERGENCE TOEQUILIBRIA

We first prove that any S-PMC game〈G,P,W 〉 has at least
one Nash equilibrium of optimal social cost. Moreover, we
show that starting from an arbitrary strategy profile, anyNash
dynamicsconverges to a Nash equilibrium in at most4N steps.
For our purposes, the Nash dynamics is a sequencec0, c1, . . .

of strategy profiles where in each profileci+1 exactly one
player has a different strategy compared toci; moreover,
that player has strictly decreased her disutility comparedto
her disutility in ci. In other words, the Nash dynamics is a
sequence of cost-improving moves of the players in which no
particular order of play or fairness criteria is assumeda priori.

For any strategy profilec, we consider a disutility vector
DDD(c) defined as follows:

DDD(c) = (dL(c), . . . , d1(c)) ,

wheredi(c) stands for the number of players whose disutility
is exactlyi (note that the disutility of any player cannot be0
and cannot be greater thanL). We use lexicographic-order
arguments similar to those in [20] and [21] to show that
starting from an arbitrary strategy profile any Nash dynamics
converges to a Nash equilibrium of smaller or equal social
cost.

Theorem 1. For any game〈G,P,W 〉 in S-PMC:
1) the price of stability is1, and
2) any Nash dynamics converges to a Nash equilibrium in

at most4N steps.

Proof: Let ≺ denote the standard lexicographic ordering
between vectors of equal size. Ifc is a strategy profile for
〈G,P,W 〉 that is not a Nash equilibrium andc′ is the strategy
profile resulting from a profitable deviation of some playerpi,
we show thatDDD(c′) ≺ DDD(c) and hencesc(c′) ≤ sc(c). This
implies that any Nash dynamics starting from a minimum-cost
strategy profile converges to a Nash equilibrium of the same
social cost, thus the price of stability is1.

To prove the claim, we show that all players whose disutility
changes inc′ have a new disutility strictly smaller thanfi(c).
This guarantees that the new disutility vector is lexicograph-
ically smaller than the previous one. Clearly, this holds for
playerpi herself.

Some of the players that overlap withpi and are colored
with ci may also have their disutilities reduced by exactly1.
The original disutility of any such playerpj must befj(c) ≤
fi(c), thereforefj(c′) ≤ fi(c) − 1. On the other hand, the
deviation of playeri may result in an increase by exactly1
of the disutility of some players who overlap withpi and are
colored withc′i. For any playerpk whose disutility is increased,
it holdsfk(c) ≤ fi(c)−2, otherwisepi would be blocked from
switching topk ’s color. Therefore,fk(c′) ≤ fi(c)− 1 and the
claim is proved.

Regarding the rate of convergence, observe that for any
strategy profilec the sum of the components of the corre-
sponding disutility vectorDDD(c) is:

L
∑

i=1

di(c) = N ,
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independent ofc. Therefore, the number of distinct disutility
vectors is at most equal to the number of distinct ways in
which N indistinguishable balls can be thrown intoL bins.
This number is equal to

(

N + L− 1

L− 1

)

≤ 2N+L−1 < 4N ,

becauseL ≤ N . The convergence of any Nash dynamics in at
most this many steps follows, since any cost-improving move
results in a new disutility vector which is lexicographically
strictly smaller than the current disutility vector.

IV. COMPUTING OPTIMAL AND APPROXIMATE

EQUILIBRIA

In view of Theorem 1, computing a Nash equilibrium of
minimum social cost is at least as hard as the corresponding
optimization problem, in which one is given a graphG, a
set of simple pathsP defined onG, and the number of
available colorsw and is asked to color all paths inP so that
the maximum fiber multiplicityµmax is minimized. Using a
simple reduction from the single fiber path coloring problem
(as was done in [10] for a similar path multicoloring problem)
it can be shown that the problem isNP-hard in general graphs,
in fact even in rings and stars (see also [13]). Therefore, itis
alsoNP-hard to compute an optimal Nash equilibrium even in
the case of rings and stars. However, we show that there exists
an efficient algorithm that computes optimal Nash equilibria
for a subclass of S-PMC(TREE). Furthermore, we show that
we can use a known algorithm for the PATH MULTI COLORING

problem in stars to compute12 -approximate Nash equilibria for
games in S-PMC(STAR).

Definition 6. We define S-PMC(ROOTED-TREE) to be the
subclass of S-PMC that contains games〈G,P,W 〉 with the
following property:

“G is a tree and there is a root noder such that each
path inP lies entirely on some simple path fromr
to a leaf.”

A similar class of instances has been defined and studied as
an intersection model for “rooted directed edge path graphs”
in [32].

We will say that a path in a tree rooted at noder starts
from edge e, if e is the edge of the path that lies clos-
est to noder. The following algorithm is a polynomial-
time algorithm that computes optimal Nash equilibria for S-
PMC(ROOTED-TREE) games. It greedily colors paths in order
of non-decreasing distance of their starting edge in such a way
that the disutility of the path at the time of coloring is the
lowest possible with respect to the current partial coloring:

Algorithm ROOTED-TREE-NE

Input: an S-PMC(ROOTED-TREE) game〈G,P,W 〉
Output: an optimal Nash equilibrium for〈G,P,W 〉

1: Find a root noder such that each path inP lies on some
simple path fromr to a leaf.

2: for all edgese ∈ E in order of non-decreasing distance
from r, breaking ties arbitrarilydo

Fig. 1. A coloring obtained by ROOTED-TREE-NE given an instance with
|W | = 2. Different wavelengths are illustrated by different line style/color
combinations. Solid black lines between nodes represent the edges of the
underlying graph. The root node is marked with a small circle.

3: for all pathsp that start from edgee do
4: Pick a colorα such thatµ(e, α) is minimum in

the current coloring, breaking ties arbitrarily.
5: Assign colorα to pathp.
6: end for
7: end for

A coloring obtained by the algorithm is illustrated in Fig. 1.
We proceed to prove its correctness.

Theorem 2. Algorithm ROOTED-TREE-NE computes a
Nash equilibrium of optimal social cost

⌈

L
w

⌉

for any S-
PMC(ROOTED-TREE) game.

Proof: Let e1, . . . , e|E| be the order in which the algo-
rithm considers the edges ofG, let Pi be the subset of paths
that are colored after thei-th iteration of the outer loop, and
let ci be the corresponding partial coloring. Note thatP1

contains exactly the paths that start from edgee1 and, for
all i > 1, Pi \ Pi−1 contains exactly the paths that start from
edgeei. Finally, note thatP|E| = P .

We first prove that the coloring returned by the algorithm
is a Nash equilibrium. More specifically, we will show that,
for all i ≥ 1, the strategy profileci is a Nash equilibrium for
the game〈G,Pi,W 〉. For i = 1, because the multiplicity of

any color on edgee1 is either
⌊

L(e1)
w

⌋

or
⌈

L(e1)
w

⌉

(L(e1) is
the load on edgee1 with respect to the complete path setP ),
no path inP1 has incentive to change color andc1 is a Nash
equilibrium for 〈G,P1,W 〉.

For the inductive step, assume thatci−1 is a Nash equilib-
rium for 〈G,Pi−1,W 〉, for somei > 1. Let p be a path inPi

and letα be the color assigned top in the profileci. First,
assume thatµ(ci)(p, α) = µ(ci−1)(p, α), so that the disutility
of p after thei-th iteration is exactly the same as it was after
the(i−1)-st iteration. Moreover, sincePi ⊇ Pi−1, pathp still
contains after thei-th iteration at least the blocking edges that
it contained after the(i−1)-st iteration. Therefore, pathp has
no incentive to change strategy in the profileci.

Now assume thatµ(ci)(p, α) > µ(ci−1)(p, α). Considering
that only paths which start on edgeei are assigned colors
during thei-th iteration, this implies thatp containsei and the
maximum multiplicity of colorα along pathp in the profileci
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appears on edgeei or on some edgeej with j > i. However,
any colored path that containsej also containsei, therefore:

µ(ci)(p, α) = µ(ci)(ei, α) . (1)

Let p′ be the last path to be colored with colorα during the
i-th iteration, among the paths that start on edgeei. At the
momentp′ was colored, colorα must have been a minimum
multiplicity color. Therefore, for any colorα′ 6= α:

µ(ci)(ei, α
′) ≥ µ(ci)(ei, α)− 1 . (2)

From (1) and (2), edgeei is an α′-blocking edge forp, for
any colorα′ 6= α, and thusp has no incentive to change color.

We have thus proved that the algorithm computes a Nash
equilibrium. Note that, sincePi ⊇ Pi−1 for all i (assume that
P0 = ∅), µ(ci)

max is a non-decreasing function ofi. Consider the
last iterationj for which µ

(cj)
max > µ

(cj−1)
max . Clearly,µ(cj)

max took
its final value after the coloring of a certain path which starts
from edgeej with some colorα. From (2) and the fact thatα
is a maximum-multiplicity color onej , it follows that color
multiplicities onej are equal or differ at most by1, hence

µ(cj)
max = µ(cj)

ej
=

⌈

L(ej)

w

⌉

≤

⌈

L

w

⌉

.

Using Fact 1, it turns out that for the final coloringc = c|E|,
we have

µ(c)
max = µOPT =

⌈

L

w

⌉

.

Theorem 3. There is a polynomial-time algorithm that
computes an1

2 -approximate Nash equilibrium for anyS-
PMC(STAR) game.

Proof: Let 〈G,P,W 〉 be a game in S-PMC(STAR). We
use the polynomial-time approximation algorithm presented
by Nomikos et al. in [10] for the PATH MULTI COLORING

problem in stars. This algorithm returns a coloring of the paths
in P with the following property: for any edgee, the paths
that usee can be partitioned into two sets of cardinalityL1(e)
andL2(e) respectively, such that for any colorα
⌈

L1(e)

w

⌉

+

⌈

L2(e)

w

⌉

−2 ≤ µ(e, α) ≤

⌈

L1(e)

w

⌉

+

⌈

L2(e)

w

⌉

.

Note that any player who changes color causes an increase
by 1 of the multiplicity of the new color on the edges used by
that player. Together with the above inequalities, this implies
that if c is the strategy profile returned by the algorithm, then
any playeri who deviates resulting in a new strategy profile
c
′ may reduce her cost by at most1. Therefore,

fi(c
′) ≥ fi(c) − 1 =

(

1−
1

fi(c)

)

· fi(c) . (3)

Now, players withfi(c) = 1 certainly have no incentive
to deviate in the profilec, therefore in the worst case we
have fi(c) = 2 in (3). Hencec is an 1

2 -approximate Nash
equilibrium.

V. THE PRICE OFANARCHY IN GENERAL GRAPHS

Although we can efficiently compute optimal or close-to-
optimal Nash equilibria for certain classes of games, we show
in this section that the quality of obtained solutions may
deteriorate if the players are allowed to decide their own
strategy. In other words, there exist families of S-PMC games
in which the social cost of the worst-case Nash equilibrium
is arbitrarily high compared to the optimum. In such games,
the player-charging mechanism of our model is inadequate to
steer players towards Nash equilibria that are beneficial for the
network.

More specifically, for any S-PMC game we exhibit two
upper bounds on the price of anarchy. The first bound is
determined by a property of the network, namely the number
of available wavelengths. The second bound is more subtle, as
it depends on the length of paths with the highest disutilityin
worst-case Nash equilibria. We then prove that these bounds
are tight for the class S-PMC(ROOTED-TREE), and asymptot-
ically tight for the class S-PMC(ROOTED-TREE: ∆ = 3), i.e.
the subclass of S-PMC(ROOTED-TREE) that contains games
defined on trees with maximum degree equal to3.

The two upper bounds are stated in Lemmas 3 and 4 below.

Lemma 3. The price of anarchy of anyS-PMC game
〈G,P,W 〉 is at mostw.

Proof: The costµ̂ of the worst-case Nash equilibrium
of 〈G,P,W 〉 cannot exceedL, so Fact 1 yields the fol-
lowing bound: µOPT ≥

⌈

L
w

⌉

≥ L
w

≥ µ̂
w

. Therefore,
PoA(〈G,P,W 〉) = µ̂

µOPT
≤ w.

Lemma 4. For any worst-case Nash equilibriumc of an S-
PMC game 〈G,P,W 〉 and for anypi ∈ P with fi(c) =
sc(c) = µ̂, the price of anarchy of game〈G,P,W 〉 is at most
equal to the length of pathpi.

Proof: Let z denote the length of pathpi. Sincec is a
Nash equilibrium, by Property 2, for each colorα ∈ W pathpi
must contain at least oneα-blocking edge forpi. Thus, there
must be some edgee ∈ pi that blocks at least

⌈

w
z

⌉

distinct
colors forpi. Since the disutility of pathpi is fi(c) = µ̂, the
load of edgee is at least:

L(e) ≥ 1 +
⌈w

z

⌉

· (µ̂− 1) .

By Fact 1 and the above inequality, we get that

µOPT ≥

⌈

L

w

⌉

≥

⌈

L(e)

w

⌉

≥

⌈

1 +
⌈

w
z

⌉

· (µ̂− 1)

w

⌉

.

Therefore, the price of anarchy is bounded as follows:

PoA(〈G,P,W 〉) =
µ̂

µOPT
≤

µ̂
⌈

1+⌈w
z ⌉·(µ̂−1)

w

⌉ . (4)

Now, let µ̂ = λz+χ, whereλ andχ are integers satisfying
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λ ≥ 0 and0 ≤ χ ≤ z − 1. We can rewrite (4) as follows:

PoA(〈G,P,W 〉) ≤
λz + χ

⌈

⌈

w
z

⌉

· z
w
· λ+

⌈w
z ⌉·(χ−1)+1

w

⌉

≤
λz + χ

⌈

λ+
⌈w

z ⌉·(χ−1)+1

w

⌉ , (5)

because
⌈

w
z

⌉

≥ w
z

. Now if χ = 0, (5) gives:

PoA(〈G,P,W 〉) ≤
λz

⌈

λ−
⌈w

z ⌉−1

w

⌉ ≤
λz

⌈

λ− w−1
w

⌉ ,

because
⌈

w
z

⌉

≤ w. By the last inequality we get
PoA(〈G,P,W 〉) ≤ λz

λ
= z.

On the other hand, if1 ≤ χ ≤ z − 1, (5) gives:

PoA(〈G,P,W 〉) ≤
λz + z − 1
⌈

λ+ 1
w

⌉ =
λz + z − 1

λ+ 1
< z .

As an immediate corollary of Lemma 4, we derive the
following upper bound on the price of anarchy:

Corollary 5. The price of anarchy of anyS-PMC game
〈G,P,W 〉 is bounded as follows:

PoA(〈G,P,W 〉) ≤ min
c is NE:sc(c)=µ̂

min
i:fi(c)=µ̂

|pi| .

In fact, the upper bounds stated in Lemma 3 and Corollary 5
are tight for rooted-tree games and asymptotically tight for
rooted-tree games of maximum degree3. In Lemmas 6 and 7
below, we describe the construction of families of games
which exhibit a price of anarchy that matches these upper
bounds.

Lemma 6. The upper bounds of Lemma 3 and Corollary 5
are tight for the class ofS-PMC(ROOTED-TREE) games.

Proof: We first define a recursive construction of an
S-PMC game and a Nash equilibrium for this game. The
construction is illustrated in Fig. 2.

For any z ≥ 1 and λ ≥ 1, let Az(λ) be the following
S-PMC game withz available colors: there areλ paths of
color α1 and lengthz which branch out intoλ branches, one
on each branch. Let us call these theprimary paths forAz(λ).
On any of thez − 1 edges of each such branch, one color is
blocked for the primary path. Theλ − 1 blocking paths of
each edge branch out into anAz(λ− 1) game. They become
primary paths for this copy ofAz(λ−1). The base case of this
recursive construction isAz(0), which is a degenerate game
with no paths, defined on a graph consisting of a single node.
We have included the explicit construction forz = λ = 3 in
Fig. 3.

Claim. For any z ≥ 1, the constructionAz(z) is an S-
PMC(ROOTED-TREE) game in Nash equilibrium, in which
all of the following are equal toz: the number of available
colorsw, the maximum loadL, the maximum color multiplic-
ity µmax, and all path lengths.
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α2

αz

α2

α3

λ− 1
λ− 1 λ− 1

λ− 1
λ− 1 λ− 1

α3

αz

α1

λ

Fig. 2. The constructionAz(λ) for the proof of Lemma 6. The thick lines
represent the edges of the underlying graph, and the thin lines represent the
paths defined on the graph. The color and multiplicity of eachgroup of paths
that use the same edge and have the same color are displayed next to that
group. Each shaded box represents a recursive copy ofAz(λ− 1).

Fig. 3. The constructionA3(3), as described in the proof of Lemma 6.
Different wavelengths are illustrated by different line style/color combinations.
Solid black lines between nodes represent the edges of the underlying graph.

Proof of Claim: It is straightforward to verify that
Az(z) ∈ S-PMC(ROOTED-TREE); the root node is the root
nodeu0 of the first level of the recursive construction. The
game is in Nash equilibrium by construction, since every path
contains one blocking edge for every color other than its own.
The number of available colors is equal toz by definition. The
maximum multiplicityµmax = z appears on the edge incident
to the root node ofAz(z). The maximum loadL = z appears
on all the edges of the first level of the construction. Finally,
all path lengths are equal toz by construction. The claim is
proved.

By Theorem 2, the optimal strategy profile forAz(z) has
social costµOPT =

⌈

L
w

⌉

= 1. Therefore, the ratioµmax

µOPT
is

equal toz for the Nash equilibrium we constructed, hence the
price of anarchy is at leastz.

Lemma 7. The upper bounds of Lemma 3 and Corollary 5 are
asymptotically tight for the class ofS-PMC(ROOTED-TREE:
∆ = 3) games.
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Proof: The construction presented in Lemma 6 can be
modified so that the maximum degree of the resulting tree
is 3, with only a logarithmic increase in the length of the
paths.

For z ≥ λ, we define the new constructionA′
z(λ) of an

S-PMC(ROOTED-TREE: ∆ = 3) game and Nash equilibrium
thereof as follows: the underlying graph is the same as the
underlying graph ofAz(λ), except that in any recursive copy
of A′

z(λ−1), we interject between nodesu1 andu1,2, . . . , uλ,2

(cf. Fig. 2) a single edge out of nodeu1 followed by a
binary tree with height⌈log z⌉ ≥ ⌈logλ⌉ and exactlyλ
leaves, which coincide with the nodesu1,2, . . . , uλ,2. The extra
edge interjected before the binary tree is necessary to ensure
degree3 in the later stages of the recursive construction; if
we do not include this edge, but rather branch out into the
first level of the binary tree, then nodeu1,2 for example will
have degree four. The set of primary paths of each recursive
copy of A′

z(λ − 1) also remains the same, except that for
all i: 1 ≤ i ≤ λ, the primary path that used edge(u1, ui,2)
in Az(λ) is now stretched to use the edges connectingu1

to ui,2 through the newly interjected binary tree. Therefore,
all paths now have the same lengthℓ = z + ⌈log z⌉+ 1. The
number of available colors and the coloring of the paths is the
same as in the original construction.

This process results in an underlying graph which is a tree
of maximum degree3. The strategy profile is also a Nash
equilibrium for the new game, since there is no change in
the overlaps between paths. The constructionA′

z(z) is an S-
PMC(ROOTED-TREE: ∆ = 3) game in Nash equilibrium,
with the same properties as the construction in Lemma 6 ex-
cept that the length of all paths is exactlyℓ = z+⌈log z⌉+1 =
Θ(z). It turns out, then, thatPoA ≥ z = ℓ− (⌈log z⌉+ 1) =
ℓ− o(z) = ℓ− o(ℓ).

We summarize the results of Lemmas 3, 4, 6, and 7 in the
following theorem:

Theorem 4. The price of anarchy of anyS-PMC
game〈G,P,w〉 is upper-bounded both byw and by

min
c is NE:sc(c)=µ̂

min
i:fi(c)=µ̂

|pi| .

These bounds are tight for the classS-PMC(ROOTED-TREE)
and asymptotically tight for the classS-PMC(ROOTED-
TREE: ∆ = 3).

On a final note, we prove a constant, tight bound of2 on
the price of anarchy of S-PMC games defined on stars.

Theorem 5. The price of anarchy of the classS-PMC(STAR)
is 2.

Proof: Lemma 4 implies an upper bound of2 on the price
of anarchy, since the length of any simple path defined on a
star cannot be greater than2.

For the lower bound, we can easily modify the construction
that appears in the proof of Lemma 6 to yield a family of S-
PMC(STAR) games with price of anarchy2. More specifically,
observe that any gameA2(λ) contains only players (paths) of
length2. Such a game can be embedded in a star with exactly
the same number of edges as follows: fix an isomorphism

ϕ between the edges of the tree and the edges of the star,
and for every playerp = {e, e′} defined on the tree, define
a playerp̃ = {ϕ(e), ϕ(e′)} with the same color on the star.
It is clear that the paths we just defined on the star overlap
with each other in exactly the same way as the original paths
overlapped on the tree. Therefore, the game on the star is in
Nash equilibrium withµmax = λ, whereas the optimal solution
has maximum color multiplicityµOPT =

⌈

L
w

⌉

=
⌈

λ
2

⌉

, where
we used the fact that we have a special case of rooted trees
and soµOPT =

⌈

L
w

⌉

according to Theorem 2.

VI. T HE PRICE OFANARCHY IN GRAPHS OFMAXIMUM

DEGREE2

In the previous section we gave two generic upper bounds
on the price of anarchy of S-PMC games on general graphs,
and provided matching lower bounds for graphs of maximum
degree at least3. We now proceed to determine the price
of anarchy of this model on graphs of maximum degree2.
This graph family contains the fundamental network topology
of rings, thus it is interesting to study the price of anarchy
of the classes S-PMC(RING) and S-PMC(CHAIN ) from a
theoretical as well as from a practical point of view.

We start by proving, in Lemma 8, a stronger necessary
condition for Nash equilibria of S-PMC(RING) games, com-
pared to the one we have already seen in Property 2 for
Nash equilibria of arbitrary S-PMC games. Then, we employ
this structural property in order to show, in Lemma 9, that
any S-PMC(RING) game with µ̂ ≥ w necessarily contains
an edge with high load. This allows us to prove a constant
upper bound on the price of anarchy for a broad class of S-
PMC(RING) games withL = Ω(w2). We will refer to these
games as “heavily loaded.” Notice that this class essentially en-
compasses all S-PMC(RING) games of practical importance,
as the number of wavelengths is limited in practice due to
technological constraints, whereas the maximum load can be
arbitrarily large depending on network traffic. Finally, for the
sake of completeness, we show that the price of anarchy may
become unbounded if the network designer opts to provide the
users with ample wavelengths, i.e. whenL = o(w2). Instances
with L = o(w2) will be called “lightly loaded.”

We introduce the following notation: For an S-PMC(RING)
game,[e, e′] denotes the arc of the ring that contains all edges
betweene ande′ in the clockwise direction, includinge ande′.
Additionally, we say that[e, e′] is containedin a pathp if every
edge in[e, e′] belongs top.

Lemma 8 (Structural property of S-PMC(RING) Nash equi-
libria). Given a game inS-PMC(RING) and a coloringc
thereof which is a Nash equilibrium, for every edgee and
color α there is an arc[e−, e+] (that containse) with the
following properties:

1) for every edgee′ of the arc[e−, e+] it holds that

µ(e′, α) ≥ |P (e′, α) ∩ P (e, α)| ≥

⌈

µ(e, α)

2

⌉

,

and
2) for every colorα′, there is an edgee′ of the arc[e−, e+]

such that
µ(e′, α′) ≥ µ(e, α)− 1 .
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Proof: The strategy profilec is a Nash equilibrium,
therefore by Property 2 every path must contain at least one
α′-blocking edge, for every colorα′. The paths inP (e, α) have
cost at leastµ(e, α), therefore for every colorα′ there must ex-
ist at least one edgeeb on the ring withµ(eb, α′) ≥ µ(e, α)−1.

Now, fix a colorα′ and consider the edgee1 (resp.e2) that
lies closest toe in the clockwise (resp. counter-clockwise)
direction and for whichµ(e1, α′) ≥ µ(e, α) − 1 (resp.
µ(e2, α

′) ≥ µ(e, α) − 1). It may well be the case thate1 is
identical toe2. We now observe that either[e, e1] is contained
in at least half of the paths inP (e, α) or [e2, e] is contained
in at least half of the paths inP (e, α), otherwise there would
exist at least one path inP (e, α) which would not contain
an α′-blocking edge. In the first case, we defineb(α′) = e1
and designateα′ as a positive color, otherwise we define
b(α′) = e2 and designateα′ as anegativecolor. Note that,
by definition, a color cannot be both positive and negative at
the same time.

We now define two setsB+ andB−: B+ consists of the
edgesb(α′) for all positive colorsα′, whereasB− consists
of the edgesb(α′) for all negative colorsα′. Note thatα is
always a positive color and thusb(α) = e ∈ B+. Let e+ be the
last edge ofB+ encountered during a clockwise traversal of
the ring starting at edgee, and lete− be the first edge ofB−

encountered during the same traversal (lete− = e if B− is
empty).

We prove that arc[e−, e+] actually contains edgee. This
is equivalent to stating that ifB− is not empty, thene− is
not contained in[e, e+]. Indeed, ife− = b(α′) was contained
in [e, e+], for some negative colorα′, then by the definition
of edgee+, arc [e, e−] would be contained in at least half of
the paths inP (e, α) and thereforeα′ would be a positive and
negative color at the same time, a contradiction.

Finally, we claim that the two properties in the statement of
the Lemma hold for the arc[e−, e+]. By construction,[e−, e+]
contains all edges inB− andB+, thus the second property
holds. By the definition ofe−, for every edgee′ of [e−, e]

we have|P (e′, α) ∩ P (e, α)| ≥
⌈

µ(e,α)
2

⌉

, and by definition

of e+, the same holds for every edgee′ of [e, e+]. Therefore,
the second inequality of the first property is also satisfied.The
first inequality is trivial sinceµ(e′, α) = |P (e′, α)|.

A. Constant Price of Anarchy for Heavy Instances

We next prove a constant upper bound on the price of
anarchy of S-PMC(RING) games withL = Ω(w2); denote
this class by S-PMC(RING: L = Ω(w2)). This yields as well
a constant upper bound on the price of anarchy of any S-
PMC(CHAIN : L = Ω(w2)) game, as every game defined on
a chain can be trivially embedded in a ring topology.

We first employ the structural property we proved in
Lemma 8 in order to establish the existence of a heavily loaded
edge in S-PMC(RING) games withµ̂ ≥ w.

Lemma 9. In everyS-PMC(RING) game〈G,P,W 〉 with µ̂ ≥
w there is an edge with load at leastµ̂·w4 .

Proof: Let c be a worst-case Nash equilibrium for
game〈G,P,W 〉. We presently define a sequence of quintuples

... ...

...

e0 e
+
0

αu0

e1e
−
1

αu1

e
−
n en e

+
n

αun

e
+
1e

−
0

Fig. 4. The path structure implied in the proof of Lemma 9.

{(ei, αui
, e−i , e

+
i , Ai)}i≥0. Let e0 and αu0

be an edge and
color, respectively, such thatµ(e0, αu0

) = µ̂. Let [e−0 , e
+
0 ] be

an arc that satisfies the properties of Lemma 8 applied on
edgee0 and colorαu0

and letA0 = {αu0
}.

Now, for i ≥ 0, given {(ei, αui
, e−i , e

+
i , Ai)}, defineei+1

andαui+1
to be some edge in[e−i , e

+
i ] and color inW \ Ai,

respectively, with the following properties:

1) µ(ei+1, αui+1
) ≥ µ(ei, αui

)− 1 and
2) the application of Lemma 8 on edgeei+1 and

color αui+1
yields an arc[e−i+1, e

+
i+1] which is a subset

of [e−i , e
+
i ].

Finally, define Ai+1 = Ai ∪ {αui+1
}. This sequence of

quintuples is defined up toi = n ≤ w − 1, at which point
either An = W or the application of Lemma 8 on any
edgeen+1 in arc [e−n , e

+
n ] and any colorαun+1

∈ W \An such
thatµ(en+1, αun+1

) ≥ µ(en, αun
)− 1 fails to provide an arc

which is contained in[e−n , e
+
n ]. See Fig. 4 for an illustration

of this structure.
From the definitions, it is immediately deduced that for alli,

µ(ei, αui
) ≥ µ̂− i .

Therefore, by Lemma 8 for all edgese in [e−i , e
+
i ],

µ(e, αui
) ≥

⌈

µ̂− i

2

⌉

≥
µ̂− i

2
.

In particular, edgese−n and e+n are included in all of the
intervals [e−i , e

+
i ]. Therefore, the load induced on edgee−n

by paths colored with colors inAn is:
n
∑

i=0

µ(e−n , αui
) ≥

n
∑

i=0

µ̂− i

2
≥

(n+ 1)

2
· µ̂−

n · (n+ 1)

4
.

(6)
Similarly for edgee+n :

n
∑

i=0

µ(e+n , αui
) ≥

(n+ 1)

2
· µ̂−

n · (n+ 1)

4
.

Furthermore, the application of Lemma 8 on any
color αun+1

∈ W \ An and any edgeen+1 in [e−n , e
+
n ] such

that µ(en+1, αun+1
) ≥ µ(en, αun

) − 1 yields an arc[e−, e+]
not contained in[e−n , e

+
n ]. This implies that at least half of the

colors inW \An induce arcs that contain the same extremal
edge of[e−n , e

+
n ] (let it be edgee−n , without loss of generality).

Fig. 4 offers an illustration. Due to Lemma 8, for each such
color α, each edge in[e−, e+] – and therefore also edgee−n –
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is used by at least
⌈

µ(en,αun )−1
2

⌉

paths of colorα. Since the

number of colors inW \An is w− (n+1), the load induced
on edgee−n by paths colored with colors inW \An is:

∑

α∈W\An

µ(e−n , α) =

⌈

|W \An|

2

⌉

·

⌈

µ(en, αun
)− 1

2

⌉

≥
w − (n+ 1)

2
·
µ̂− (n+ 1)

2
. (7)

By (6) and (7), the total load of edgee−n is:

L(e−n ) =

n
∑

i=0

µ(e−n , αui
) +

∑

α∈W\An

µ(e−n , α)

≥
µ̂ · w

4
+

n+ 1

4
· (µ̂− w + 1) . (8)

Sinceµ̂ ≥ w andn ≥ 0, we get from (8) thatL(e−n ) ≥
µ̂·w
4 .

We can now prove a constant upper bound on the price of
anarchy of games in S-PMC(RING: L = Ω(w2)).

Theorem 6. The price of anarchy of any game in the class
S-PMC(RING) is at mostmax{4, w

2

L
}.

Proof: We distinguish between two cases: Ifµ̂ ≥ w, then
by Lemma 9 we have a maximum loadL ≥ µ̂·w

4 . Therefore,
the price of anarchy is bounded as follows:

PoA =
µ̂

µOPT
≤

µ̂ · w

L
≤ 4 ,

where for the first inequality we used Fact 1.
On the other hand, if̂µ < w, then we can bound the price

of anarchy as follows:

PoA ≤
µ̂ · w

L
<

w2

L
.

Corollary 10. The price of anarchy of heavily loaded games
defined on rings, i.e. of the classS-PMC(RING: L = Ω(w2)),
is at mostO(1). In particular, the price of anarchy of games
in S-PMC(RING: L ≥ w2

4 ) is at most4.

B. Unbounded Price of Anarchy for Light Instances

To complete our study of the price of anarchy in graphs
of degree2, we show that for arbitrarily smallε there exists
an infinite subclass of S-PMC(CHAIN : L = O(w2−ε)) games
whose price of anarchy isΩ(w

ε
2 ). This implies that the price

of anarchy can get arbitrarily large when the number of
available colors increases, therefore the price of anarchyis
unbounded for the classes S-PMC(CHAIN : L = o(w2)) and,
consequently, S-PMC(RING: L = o(w2)).

Theorem 7. For any fixedε in the range0 < ε ≤ 1, there
exists an infinite family of games inS-PMC(CHAIN : L =
O(w2−ε)) with price of anarchyΩ(w

ε
2 ).

Proof: Fix someε in the range0 < ε ≤ 1. We will con-
struct a family{Bρ}ρ≥4 of S-PMC(CHAIN : L = O(w2−ε))
games and a strategy profile for each game in the family, which

for each for each

......
...

...

se
co

nd
ar

y
pa

th
s

... ...

pa
th

s
m

ai
n

copies:copies:

αj ∈ W \ (A ∪ {αi}) αj ∈ W \ (A ∪ {αi})

αi

j

ρ−|A|
2

k

αi
l

ρ−|A|
2

m

j

ρ−|A|
2

k

− 2

αi

αi
l

ρ−|A|
2

m

− 2

P (A ∪ {αi}, αj),

w − |A| − 1

P (A ∪ {αi}, αj),

w − |A| − 1

Fig. 5. The path setP (A,αi), for αi ∈ W \ A, used in the construction
of Theorem 7.

we will prove to be a Nash equilibrium, with the following
properties:

1) the number of available colors isw =
⌈

ρ1+
ε

2−ε

⌉

,

2) the maximum load isL = ρ2−3·ρ+12
2 , and

3) the maximum multiplicity of any color isµmax = ρ.
First of all, observe thatL = O(ρ2) = O(w2−ε). Therefore,
the family indeed belongs to S-PMC(CHAIN : L = O(w2−ε)).
Moreover, since the class S-PMC(CHAIN ) is a subclass of
S-PMC(ROOTED-TREE), by Theorem 2 the optimal strategy
profile for gameBρ has social costµOPT =

⌈

L
w

⌉

< L
w
+ 1.

Additionally, the cost of the worst-case Nash equilibrium must
be µ̂ ≥ µmax. The price of anarchy of gameBρ is therefore:

PoA(Bρ) =
µ̂

µOPT
≥

µmax

L
w
+ 1

=
w · µmax

L+ w

≥
ρ1+

ε
2−ε · ρ

ρ2−3·ρ+12
2 + ρ1+

ε
2−ε + 1

,

where in the last step we used the fact thatρ1+
ε

2−ε ≤
w < ρ1+

ε
2−ε + 1. Becauseε ≤ 1, we get thatPoA(Bρ) =

Ω(ρ
ε

2−ε ) = Ω(w
ε
2 ).

Construction ofBρ: Given the parametersε and ρ, we
describe the construction of an S-PMC(CHAIN ) game using
the path setP (A,α) illustrated in Fig. 5 as a building block.
We now describe the structure ofP (A,α), along with a
coloring of the paths it contains.

Let W be a set of available colors of size
⌈

ρ1+
ε

2−ε

⌉

. We
will defineP (A,α) for |A| ≤ ρ−3, A ⊆ W , andα ∈ W \A.
Whenever|A| ≤ ρ − 4, P (A,α) is recursively defined to be
a path set consisting of:

• The main paths: these are theρ− |A| paths of colorα,
arranged as shown in the top part of Fig. 5. They all share
a common edge, henceforth called thecentral edgefor
this copy ofP (A,α). Half of them extend to the left of
the central edge, and the rest extend to the right.

• The secondary paths: these are theρ − |A| − 4 paths
of color α, arranged as illustrated in the central part of
Fig. 5. These paths do not use the central edge and half
of them extend to the left of the central edge, and the
rest extend to the right.

• Two copies ofP (A ∪ {α}, α′) for everyα′ ∈ W \ (A ∪
{α}), one of them on each side of the central edge, as
per the bottom part of Fig. 5.
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The base case of this recursive construction occurs
when|A| = ρ−3. In this case, the path setP (A,α) is defined
on a chain of lengthℓ = (w − ρ + 2) · (w − ρ + 1). Let
e0, e1, . . . , eℓ−1 be the edges of this chain, in order from left
to right. The path setP (A,α) contains:

• three paths of colorα spanning edgese0 up to eℓ−1,
• for each colorβi ∈ W \ (A ∪ {α}), two paths of

colorβi and length(w−ρ+1) spanning edgesei·(w−ρ+1)

up to e(i+1)·(w−ρ+1)−1, where β0, . . . , βw−ρ+1 is an
arbitrary enumeration of the colors inW \ (A ∪ {α}),
and

• for each colorβi in the previous enumeration, for each
color γi,j ∈ W \ (A ∪ {α, βi}), one path of colorγi,j
and length one, defined on edgeei·(w−ρ+1)+j, where
γi,0, . . . , γi,w−ρ is an arbitrary enumeration of the colors
in W \ (A ∪ {α, βi}).

We now claim that the S-PMC(CHAIN ) game
〈G,P (∅, α1),W 〉, where G is a chain long enough to
accommodate all paths ofP (∅, α1), is a game in S-
PMC(CHAIN : L = O(w2−ε)) with the desired properties.
First observe that the maximum color multiplicityµmax

occurs, by construction, on the central edge of the chain.
This edge is used by exactlyρ paths of colorα1, thus
µmax = ρ. The number of available colors has been fixed to
exactlyw =

⌈

ρ1+
ε

2−ε

⌉

. Finally, regarding the maximum load,
observe that the main and secondary paths of each copy of
P (A,α) induce a load ofρ− |A| − 2, whereas the base case
of the construction induces a constant load of6. Therefore,
the maximum load is:

L = 6 +

ρ−4
∑

i=0

(ρ− i− 2) =
ρ2 − 3 · ρ+ 12

2
.

It remains to be shown that the coloring described above
for path setP (∅, α1) is indeed a Nash equilibrium. Consider
a particular copy ofP (A,α) with |A| ≤ ρ − 4, included
somewhere in the path set. We remark immediately that, by
construction, the main and secondary paths do not overlap with
any other path of colorα in the path set. Therefore, the main
paths have a disutility ofρ−|A| and the secondary paths have
a disutility of ρ− |A| − 2.

Now, for all colorsα′ ∈ W \ (A ∪ {α}), any main or
secondary path ofP (A,α) overlaps with a copy ofP (A ∪
{α}, α′), thus it contains some edge on which the multiplicity
of color α′ is ρ − (|A| + 1) = ρ − |A| − 1. This proves that
all main and secondary paths inP (A,α) are blocked from
switching to any colorα′ ∈ W \ (A ∪ {α}).

Regarding colorsα′ ∈ A, observe that the copy ofP (A,α)
under consideration is itself included in a sequence of bigger
copies P (A1, α

′
1), P (A2, α

′
2), . . . , P (Ax, α

′
x), where A1 =

A\{α′
1} andAi+1 = Ai\{α′

i+1}, ending atAx = ∅, α′
x ≡ α1.

Therefore, for any colorα′
i ∈ A, any edge of any main or

secondary path ofP (A,α) has a multiplicity of colorα′
i equal

to ρ−(|A|−i)−2 = ρ−|A|+i−2≥ ρ−|A|−1. Therefore, all
main and secondary paths inP (A,α) are also blocked from
switching to any colorα′ ∈ A.

Finally, it is straightforward to verify that all paths contained
in the base case of the construction contain the required

blocking edges, and thus the game is in Nash equilibrium.

VII. C ONCLUSION

In this work we have proposed a framework for studying
non-cooperative wavelength assignment in multifiber optical
networks, namely SELFISH PATH MULTI COLORING games.
The results we obtained in Section VI suggest an efficient
decentralized protocol for wavelength assignment in ring net-
works where wavelengths are scarce – a safe assumption in
practically relevant scenarios: Any Nash equilibrium reached
by the players is guaranteed to have a cost of at most4 times
that of the cost of an optimal solution.

On the other hand, the situation in more general networks
is much less gratifying: In Section V we show that the price
of anarchy can grow unbounded even in tree networks of
maximum degree 3. Evidently, the player-charging mechanism
of this model is inadequate to steer players towards Nash
equilibria of low fiber cost in such networks. It is therefore
a promising direction for further research to investigate the
quality of equilibria obtained under different player costfunc-
tions.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers for their
thorough comments which helped to significantly improve the
presentation of the article, as well as clarify a number of
technical points.

REFERENCES

[1] E. Altman, T. Boulogne, R. E. Azouzi, T. Jiménez, and L. Wynter, “A
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