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On a Non-Cooperative Model for Wavelength
Assignment in Multifiber Optical Networks

Evangelos Bampas, Aris Pagourtzis, George Pierrakos, aeria Potika

Abstract—We propose and investigate BLFISH PATH MuL- been renewed interest in applying game-theoretic teclesiqu
TICOLORING games as a natural model for non-cooperative to a variety of problems in networking. For numerous recent

wavelength assignment in mulifiber optical networks. In s gnq earlier results on the subject the reader is referreijto |
setting, we view the wavelength assignment process as a s&gic ] and to references therein

game in which each communication request selfishly chooses al ] C )
wavelength, in an effort to minimize the maximum congestion [N this work, we draw motivation from large-scale optical

that it encounters on the chosen wavelength. We measure thenetworks which are currently deployed to sustain the bulk of
cost of a certain wavelength assignment as the maximum, amgn network traffic generated by the ever-increasing and divers
all physical links, number of parallel fibers employed by this fying user demands. Unfortunately, the majority of reseurc

assignment. . . . .
We start by settling questions related to the existence and allocation problems in optical networks are computatignal

computation of, and convergence to pure Nash equilibria in intractable, even in restricted network topologies. Wepado
these games. Our main contribution is a thorough analysis of an increasingly popular approach to modeling the lack of
the price of anarchy of such games, that is the worst-case ratio centralized control in optical networks, viewing the usass
between the cost of a Nash equilibrium and the optimal cost. & active, selfish, non-cooperating entities who compete with

first provide upper bounds on the price of anarchy for games :
defined on general network topologies; along the way we obtai ©ON€ @nother over network resources ([4]-[7]). We study the

an upper bound of 2 for games defined on star networks. We Corresponding strategic game in a game-theoretic framewor
next show that our bounds are tight even in the case of tree pioneered by Koutsoupias and Papadimitridu ([8], [9]) and
networks of maximum degree 3, leading to non-constant pricef e provide, among other results, a complete analysis of the
anarchy for such topologies. In contrast, for network topobgies yaterioration of the quality of solutions caused by the lack

of maximum degree 2 the quality of the solutions obtained by f dination i tural del f ti
selfish wavelength assignment is much more satisfactory: we O USEr coordination in a natural model for non-cooperative

prove that the price of anarchy is bounded by 4 for a large Wavelength assignment in multifiber optical networks.

class of practically interesting games defined on ring netwas. The tremendous bandwidth available in optical fibers is most
Index Terms—selfish wavelength assignment, non-cooperative efficiently exploited through the use dtavelength Division

games, bottleneck games, price of anarchy, multifiber optm Multiplexing (WDM) WDM allows for splitting the fiber

networks, path multicoloring. bandwidth into multiple independent channels (wavelesigth
each one operating at a different light frequency. It is high
|. INTRODUCTION desirable that all communication in an optical network stiou

ENTRALIZED decision making in contemporary Iarge-be carried c:uitra;rr]]sparer;ltl){r:.e.],c.t()eachtﬁlgtnil gshould useTthe
scale computer networks is often impractical or in22Mme Wavlf ength on a f e” ' (;.'_rsl a_t|h_raverses. ra?s-
feasible. Indeed, the relevant resource allocation pmi;leparency atows the use of af-optical switching components
and thus obviates the need for opto-electronic conversian t

usually turn out to be computationally intractable, thusiiog . th ¢ of terminal . ¢ and sl q h
network operators to content themselves with suboptimal éegigrskes € cost ot terminal equipment and siows down the

lutions that can be produced at a more realistic computaltioﬁ] L
In a WDM network, communication requests that are routed

cost. In this light, a trend that constantly gains groundois t th fib tall dt h lenath
study the effect of reducing or even completely abandonir%I € same fiber are not allowed to USe Ihe€ same wavelengtn.

centralized resource allocation to network users. Suckrdec ¢ bafn\(;lvvg?\;h suppotrtetd b>t/ curr?rtnly (;I]eplgyeéj |mple|mer:';]a-
tralized systems have been proposed and studied in therpa&olns 0 amounts to at most two hundred wavelengins

the context of routing. However, in the last decade there hag" fiber, and this numbe_r IS not. expected to change d_rdytlf:al
In the near future. An immediate remedy to this situation
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independently of the wavelength assignment procedures Thiultiplicity reveals which traffic patterns can be served by
is the case when there are specific routing requirementh, sao existing infrastructure.
as shortest-path routing, or when the lightpaths are sehup i In the second scenario, the player cost is viewed rather as a
an earlier stage of the virtual topology design process. disutility naturally suffered by the request due to the dtods

In this work, we introduce and study a model where there ¢sirrently present in the network. For example, users may
no central authority assigning wavelengths to commuroaatiprefer wavelengths that are not used in too many other fibers
requests. Instead, each request is considered as a plager imorder to leave the highest possible margin for transigrtd
strategic game, in which every possible choice of frequenepother fiber in case of fiber failure or other “kick-out” eten
incurs some cost on the request, depending on the choicegenfl. due to the arrival of higher priority requests). Theialo
other players as well. Specifically, the cost of a player thabst is now interpreted as the maximum disutility suffergd b
has chosen a particular frequengys equal to the maximum any player in the network, a measure knownegslitarian
number of requests using the same frequefi@ncountered social cost which has been frequently used for evaluatieg th
on some edge along its path. Each player/request behagmality of strategy profiles in the selfish resource allanati
selfishly, trying to choose a wavelength that will minimizditerature ([18]-[21], see alsa[3, chapter 17]).
her cost. We call theseeSFISH PATH MULTICOLORING (S- Note, additionally, that S-PMC games can model selfish
PMC) gamé& In game theory, numerous ways have beemavelength assignment in single-fiber optical networks. In
proposed to model the outcome of strategic games, by far thés setting, a color multiplicity on an edge represents the
most popular approach being to assume that the game sattlesoingestion encountered by requests using the corresgpndin
someNash equilibriuma stable state of the game in which nevavelength on that edge. A player may naturally seek to
player can reduce her cost by changing strategy unilageratninimize the maximum wavelength congestion along her
The famous result of Nash [11] guarantees the existencepsith, in order to maximize her throughput. Similar to the
mixed equilibria, in which each player chooses each of heecond scenario above, the social cost represents the mmaxim
available strategies with some probability. Here, we wiltds disutility of any player.
exclusively ompure equilibria, where each player plays exactly In the Koutsoupias-Papadimitriou framework, the loss in-
one of her strategies with probability. Early results on curred by the lack of centralized control is measured by the
the properties of (pure) Nash equilibria of non-coopematiyprice of anarchythe ratio of the social cost of the worst-case
network routing games, as well as further motivation for thdash equilibrium to the social cost of an optimal, centrally
game-theoretic viewpoint, can be found in the work of Ordeomputed, strategy profile. A small price of anarchy implies
et al. [12]. From the point of view of the network operatothat one can let the players play the game selfishly and
the minimization of the cost of optical fibers that are regdir converge to some Nash equilibrium, the cost of which will
to accommodate all communication requests is a compellingt be far from the optimal. A second measure of interest,
desideratum. Thus, it is in the operator’s best intereshéf tintroduced by Anshelevich et al. [22], is tipeice of stability
players reach a “good” Nash equilibrium, in the sense that tthe ratio of the social cost of a best-case Nash equilibrium
cost of optical fibers required to accommodate the wavetendo the cost of an optimal solution. A small price of stability
choices of the players is small. In S-PMC games, we measinlies that there exists a strategy profile that mayniygosed
the quality of a game state by usingacial costfunction that on the players, from which no player will have incentive to
is equal to the maximum number of requests that use the saiewiate, and the cost of which will not be far from the optimal
wavelength on the same edge.

The above game-theoretic model admits at least two diffél- Related Work
ent interpretations of the player cost and social cost fanst S-PMC games naturally correspond to the following opti-
In the first scenario, the player cost function is primarilynization problem: given a multifiber network, a set of pre-
regarded as a simpleharging mechanisnemployed by the routed requests (fixed routing), and a number of available
network operator in order to steer users towards Nash equilivavelengths, find a wavelength assignment to minimize the
ria that are beneficial for the system. Accordingly, the abcimaximum fiber requirement on any network link (the number
cost function represents the maximum number of parallef fibers required on a link is equal to the maximum wave-
optical fibers that will be required on some physical linkength multiplicity on that link). This problem has beendstu
of the network in order to accommodate all requests. Thied in [23] under the name M-MAXFIBER-FIXEDROUTE,
is a justified optimization target from the network operatorwhere they present a randomized algorithm for general graph
perspective. Indeed, in certain cases the specific fiber cagtich achieves a logarithmic approximation ratio; a very
per link may be unknown or vary with time, and therefore gimilar optimization problem was studied [n_[24], wheredeg
reasonable objective is to minimize the maximum fiber usagéhmic approximation hardness was shown which applies als
over all links of the network[[13]. Furthermore, scenarioo MIN-MAXFIBER-FIXEDROUTE as observed in[[23]. As
where there is a fixed number of fibers per link arise naturaltggards specific topologies, the algorithms proposed ihffkx0
in practice and have been considered in several studiek-([14 related optimization problem directly give exact solaidor
[17]); in such cases, the minimization of maximum fibechain networks an@-approximate solutions for ring and star

1 . , o networks for MN-MAX FIBER-FIXEDROUTE. Similar bounds

In the context of multifiber optical networks, the temulticoloring refers .
to the fact that we allow multiple requests that share an ¢dgeceive the hold also for the variant of the prOblem where requests are no
same color[[10]. pre-routed (flexible routing).
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Another optimization problem that has been consideredplaced withw parallel edges, one for each available color.
in multifiber networks is the minimization of the total fiberEach player's strategy set then consistsuofedge-disjoint
requirement. Exact or constant-ratio approximation atgors  source-destination paths, corresponding to theavailable
for this problem were given for chains, rings (with both fixedolors in the selfish path multicoloring model. However, our
and flexible routing), and stars in [10], for treeslin|[25]ddar model fits better into the framework of optical networks for
spiders in[[26]. For general graphs, logarithmic approxioma which we provide smaller upper bounds on the price of
algorithms and hardness results were giverLin [23] and [2&parchy compared to the ones obtained’in [20] and [21], as
assuming fixed as well as flexible routing. Yet another variawell as a better convergence rate to Nash equilibria. Magov
seeks to minimize the number of wavelengths used, givear lower bounds naturally hold in the more general models
a fixed number of fibers on each link. This variant wasf [20] and [21], but are not directly comparable to the lower
studied in [14], [15], [[25], and[[28], where constant ratidbounds presented there.
approximation algorithms were presented for various simpl The type of bottleneck games discussed above are usually
topologies. called networkbottleneck games to stress the fact that the set

Selfish path multicoloring games as such have not beehresources available to the players are edges of a graph;
considered before in the literature. Even in the single fibanother type argeneralbottleneck games, where there is no
setting, selfish path coloring has only recently been studisuch combinatorial structure underlying the set of resesirc
in [4]-[7]. Bilo and Moscardelli[[4] present payment segies moreover a bottleneck game is said to &®/mmetricwhen
that induce games possessing pure Nash equilibria. Laggyers are allowed to have different strategy sets (in etsr s
Bilo et al. [5] extend these games by introducing informati ting this translates to different source and destinatiodesd.
levels to the local knowledge of the players for computinbp light of the observation in the previous paragraph, our
their payments and give bounds for the price of anarchy inodel can be seen as a special case of (asymmetric) network
chains, rings and trees. In the work of Georgakopoulos leottleneck games, with linear delay functions on the edges.
al. [6], additionally to providing results for the existenand In [29] the authors show that the problem of computing
computation of pure Nash equilibria of selfish routing anthny)ca-approximate Nash equilibrium for general asymmetric
path coloring games, they also consider the complexity bbttleneck games in which the delay functions on the ressurc
recognizing and computing better Nash equilibria for sudimve bounded jumps isRLS-complete problem (i.e., the nat-
games under various payment functions. Milis et/al. [7] enés ural, exponential in the worst case, sequence of bestnsspo
upper and, for the first time, lower bounds on the price @ynamics is probably the best we can hope for). Unfortugiatel
anarchy of selfish routing and path coloring games under ctiseir result does not immediately imply anything about the
functions that charge each player taking into account ontpmplexity of computing a Nash equilibrium in our model,
her own strategy choice. Among other results, they showsace their model is more general both in the strategy space
constant price of anarchy for selfish path coloring games (general vs network game) and in the type of delay functions
rings. allowed (bounded-jump vs linear). On the other hand, for

Selfish path multicoloring games are closely related the related setting of congestion games, it is showri_in [30]
bottleneck games[([20], [21]), a variation of congestiomga that computing a Nash equilibrium iBLS-complete even
where a player’s cost is determined by meaximumlatency in (asymmetric) network congestion games with linear delay
instead of the usual cost which is tesamof her latencies.  functions on the edges.

In [20], Busch and Magdon-Ismail study atomic routing In [29] the authors also provide an algorithm for computing
games on networks, where each player chooses a pathatstrong equilibrium (a generalization of Nash equilibrium)
route her traffic from an origin to a destination node, with thin matroid bottleneck games. In Sectionl IV we study selfish
objective of minimizing the maximum congestion on any edgeath multicoloring games on a specific network topology we
of her path. They show that these games always possesstat leals “rooted-tree” topology and we provide an algorithm for
one optimal pure Nash equilibrium (hence the price of stgbil computing a Nash equilibrium. It is easy to see that this is
is 1) and that the price of anarchy of the game is determined &yspecial case of matroid bottleneck games and therefore the
topological properties of the network. In particular, trelyow algorithm of [29] works in our setting as well, however our
that the price of anarchy is upper bounded by the length algorithm is faster and has the property that it always caegpu
the longest path in the player strategy sets and lower balindeNash equilibrium of optimal social cost.
by the length of the longest cycle in the network.

A further generalization is the model of Banner an&. Contributions
Orda [21], where they introduce the notion of bottleneck In this paper we proposeEBFISH PATH MULTICOLORING
games. In this model they allow arbitrary latency functiongames as a model for studying the behavior of multifiber
on the edges and consider both the case of splittable amtical networks in which the wavelength assignment preces
unsplittable flows. They show existence, convergence and nis carried out by the users in a selfish manner. We present
uniqueness of equilibria and they prove that the price afthorough analysis of the price of anarchy of these games,
anarchy for these games is unbounded. as well as results on the existence and computation of Nash

Both models are more general than the model considereckijuilibria and on the rate of convergence to Nash equilibria
this article, since a selfish path multicoloring game candens We first observe that all 8 FISH PATH MULTICOLORING
as a traffic routing game in a multigraph, where each edgegames converge to some Nash equilibrium in a finite number
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of steps. We show a lower rate of convergence than the oné) 1.(®)(p,a) will denote the maximum multiplicity of
known for the more general games 0f [20] ahd|[21]. We also  color o over the edges of pathx

observe that there always exist Nash equilibria of optimal s () _ ()

cial cost: the price of stability i. The problem of finding such pep, o) = Igggiu (e,0) -

equilibria is, in general, computationally intractabléice the  \yhenever there is no ambiguity regarding the coloring we
corresponding optimization problemiéP-hard. In this work, are referring to, we will not make explicit the dependence
we are able to pinpoint a subclass of games defined on tregs.

(“rooted-tree” topology), for which we provide a polynorhia
time algorithm that computes optimal Nash equilibria. We Note that u5ax, as defined above, represents the cost of
then prove that for all games defined on stars, we can useda§oloring in the corresponding optimization problem. The
approximation algorithm for the corresponding optimiaati Minimum cost over all possible coloringswill be denoted
problem in order to compute approximate equilibria. by popr, i.e.:

Our main contribution is the analysis of the price of anarchy HOPT = chin ufﬁix )

of several classes ofEsFISH PATH MULTICOLORING games. . : .
where ¢ ranges over all possible colorings. We observe im-

We first provide upper bounds for games defined on general ~. . . )
. . mediately that in any coloring, at least one color will appea
graphs; in particular, we prove that on any graph, the price 0

anarchy is bounded by the length of the shortest maximuﬁf(gh multiplicity at .Ieast %1 on the maximum-load .edge.
cost request in any Nash equilibrium. This bound immedyate erefore, we obtain the following lower bound pap:
yields a constant price of anarchy, namelyfor the special Fact 1. No coloring can achieve a cost that is smaller than
case of star topologies. We next show that our bounds gré]. Thus,

tight even in the case of tree networks of maximum degree L

yielding non-constant price of anarchy for such (and more poPT = {_-‘

general) topologies. In contrast, for networks of maximum

degree2, that is rings and chains, the situation is much mom®®, Game-Theoretic Model

gratifying: we show that the price of anarchy is bounded by \ye now define formally our game-theoretic model for non-

2 . .
max{4, -}, where L is the maximum load of the network oqnerative (or selfish) wavelength assignment in multifibe

andw is the number of available wavelengths per fiber. Th.bc‘ptical networks.
means that for a large class of practically interesting game

the price of anarchy is at most Definition 2 (SELFISH PATH MULTICOLORING games) Let
G be an undirected grapt? = {p1,...,pn} be a set of
Il. PRELIMINARIES simple paths defined o, and W = {a1,...,a,} be a

Given an undirected graghi = (V, E'), anonempty seP = set of available colors. TheESFISH PATH MULTICOLORING
{p1,...,pn} of simple paths defined o, and a nonempty game(G, P, W) is defined as follows:

setW = {a1,...,a,} of available colors/L(e) will denote .+ Players there is one player for each path iR. For

the load of edgee, i.e. the number of paths that use edge simplicity, we will identify each playet with the cor-

The maximum of these loads will be denoted byi.e. L = responding patlp;.

max.cr L(e). We will occasionally view a patlp € P as a . StrategiesAll players share the common set of available

set of edges, therefore the notatiog p will mean that pattp strategiesV. The choice of strategy (color) of playér

uses edge and|p| will stand for the length of patip. is denoted by:; € W. A strategy profilefor the game is
A coloring, i.e. an assignment of colors to paths, will 3 coloringe = (c1, ..., cy) that corresponds to the color

be denoted by a vectoe = (ci,...,cy) in W¥: each choices made by the players.

coordinatec; denotes the color assigned to path With « Disutility: The disutility of playeri in the strategy pro-

respect to a coloring, we will make use of the following file c is given by the disutility functiory; : WY — N as

notation: follows:

Definition 1 (Notation) 1) P(®)(e,a) will denote the set file) = ) (pici) -

of paths that use edgeand are colored with colaf.  Definition 3. S-PMC will denote the class of allESFISH
2) p (e, ) will denote themultiplicity of color & on  paty MULTICOLORING games.

edgee: ] ]
19 (e, a) = ‘P“’(e@)‘ _ We will use the notation S-PMC() to denote a subclass

of S-PMC that contains only games satisfying a property
3) Mgc) will denote the maximum multiplicity of any color X. For example, the r_estrlct|0n of S-PMC to games defined
on edgee: on trees (resp. stars) is denoted by S-PMRXH) (resp. S-

1 = max () (e, a) . PMC(STAR)), where we use REE for the property G is a

aEW tree”.
4) Mggix will denote the maximum multiplicity of any color It is _clear from Definitior_DZ that we concentrate on pure
over all edges: strategies and do not consider the case where players might

pick each color with some probability. Following the startia

o = max p definition, we say that a strategy profibe= (c1,...,cy) is

Hom
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a pure Nash equilibrium(PNE), or simply for our purposes [1l. PRICE OF STABILITY, EXISTENCE, AND
Nash equilibrium(NE), if for each playet it holds that: CONVERGENCE TOEQUILIBRIA
filer, ... o) > filer, ey en) We first prove that any S-PMC gani€', P, W) has at least

, ) _ .. one Nash equilibrium of optimal social cost. Moreover, we
for any strategyc; € W. Moreover, following the definition gp,q that starting from an arbitrary strategy profile, agsh
from Chien and Sinclair [31], we say that a strategy prOfII8ynamicsx:onverges to a Nash equilibrium in at maét steps.
c=(c1,..., c_N) is ane-approximate Nash equilibriurif for = 0.r purposes, the Nash dynamics is a sequeqas, . . .
each player it holds that: of strategy profiles where in each profitg,; exactly one
filer, ... ¢y en) > (1—¢) - filer, ..o cirennren) player has a different strategy compared dg moreover,
that player has strictly decreased her disutility comparced
her disutility in c;. In other words, the Nash dynamics is a
0sfequence of cost-improving moves of the players in which no
particular order of play or fairness criteria is assuragatiori
For any strategy profile, we consider a disutility vector

D(c) defined as follows:
Definition 4 (Blocking edges) Let ¢ be a strategy profile for D(e) = (d d
some gamegG, P,W). We say that edge is an a-blocking (¢) = (drfe),..dufe))
edge forp; € P, or that it blocksa for p;, if e € p; and Whered;(c) stands for the number of players whose disutility
19 (e,a) > fi(c) — 1. Furthermore, in that case, the paths iis exactlyi (note that the disutility of any player cannot be
P (e, ) are calleda-blocking paths forp;. and cannot be greater thar). We use lexicographic-order
arguments similar to those in_[20] and [21] to show that
starting from an arbitrary strategy profile any Nash dynamic
converges to a Nash equilibrium of smaller or equal social
cost.

for any strategy’; € W. In a Nash equilibrium, no player will
improve her disutility by changing strategy unilaterallyhile
in an e-approximate Nash equilibrium a unilateral change
strategy may result in reducing the deviating player’s dyst
no more than a factor of — ¢.

Intuitively, an a-blocking edge forp; “blocks” this player
from switching to colon because if she did, her new disutility
would be at leasp(®)(e,a) + 1 > fi(c), no better than her
disutility in the current coloring. The following charadiza-
tion of the Nash equilibria of S-PMC games is immediatéheorem 1. For any game(G, P, W) in S-PMC
from the definitions: 1) the price of stability isl, and
2) any Nash dynamics converges to a Nash equilibrium in

Property 2 (Structural characterization of S-PMC Nash equi- at most4 steps.

libria). A strategy profile for arS-PMC game (G, P, W) is
a Nash equilibrium if and only if every paghe P contains Proof: Let < denote the standard lexicographic ordering
at least onen-blocking edge fop, for every colora. between vectors of equal size. d¢fis a strategy profile for
(G, P,W) that is not a Nash equilibrium and is the strategy
éJrofiIe resulting from a profitable deviation of some playgr

we show thatD(c’) < D(c) and hencesc(c’) < sc(c). This
implies that any Nash dynamics starting from a minimum-cost
sc(c) = uﬁggx ) strategy profile converges to a Nash equilibrium of the same

It is straightforward to verify that the social cost of a°cial cost, Lhusl the pricehof st:;bilit);llsl hose disutil
strategy profile coincides with the maximum player distytili To proye's € claim, we S_OW,'F at all players whose Isutility
in that profile: changes irc’ have a new disutility strictly smaller thafi(c).

This guarantees that the new disutility vector is lexicpgra
sc(c) = max ) = max fi(e) . ically smaller than the previous one. Clearly, this holds fo
) ayerp; herself.
Some of the players that overlap withh and are colored
with ¢; may also have their disutilities reduced by exadtly
= max sc(c) . The original disutility of any such player; must bef;(c) <
cis NE fi(c), thereforef;(c’) < fi(c) — 1. On the other hand, the
Theprice of anarchy(PoA) of a game(G, P, W) is the worst-  geviation of playeri may result in an increase by exactly
case social cost in a Nash equilibrium divided faypr, i.€.0  of the disutility of some players who overlap with and are
max, js NESc(c) il colored withc;. For any playep, whose disutility is increased,
PoA((G, PIW)) = —— = o it holds fi(c) < f:(c)—2, otherwisep; would be blocked from

The price of stability (PoS) of a game is the best-case sociafVitching top;’s color. Thereforefy,(c') < fi(c) —1 and the

cost in a Nash equilibrium divided byopr: claim is proved.
Regarding the rate of convergence, observe that for any

PoS((G, P,w)) = w ) strategy profilec the sum of the components of the corre-
HOPT sponding disutility vectoD(c) is:
The price of anarchy (resp. stability) of a class of games I
S-PMC(X) is the least upper bound on the price of anarchy Zdi(c) =N,
(resp. stability) of S-PMC games that satisfy propekty =

Definition 5 (Social cost) We define thesocial costof a
strategy profilec for an S-PMC game to be the cost of th
corresponding coloring:

) . . I
We definej: to be the maximum social cost over all stratege
profiles that are Nash equilibria:
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independent ot. Therefore, the number of distinct disutility
vectors is at most equal to the number of distinct ways in
which N indistinguishable balls can be thrown info bins.
This number is equal to

N4L-1\ _ nip.
<92 +L—-1 4N
(Fpi )

becausd, < N. The convergence of any Nash dynamics in at
most this many steps follows, since any cost-improving move
results in a new disutility vector which is lexicographigal
strictly smaller than the current disutility vector. ]

)

V. C 0 A Fig. 1. A coloring obtained by ®oTED-TREE-NE given an instance with
- COMPUTING OPTIMAL AND APPROXIMATE |W| = 2. Different wavelengths are illustrated by different lingls/color
EQUILIBRIA combinations. Solid black lines between nodes representetiyes of the
. . e nderlying graph. The root node is marked with a small circle
In view of TheoreniIl, computing a Nash equilibrium of
minimum social cost is at least as hard as the corresponding

optimization problem, in which one is given a graph a 3 for all pathsp that start from edge do

set of simple pathsP defined onG, and the number of 4 Pick a colora such thatu(e, ) is minimum in
available colorsav and is asked to color all paths A so that the current coloring, breaking ties arbitrarily.
the maximum fiber multiplicityumax iS minimized. Using a  s: Assign colora to pathp.

simple reduction from the single fiber path coloring problemes: end for

(as was done ir [10] for a similar path multicoloring prob)}em 7: end for

it can be shown that the problemNs>-hard in general graphs,

in fact even in rings and stars (see alsol [13]). Therefors, it A coloring obtained by the algorithm is illustrated in Fig. 1
alsoNP-hard to compute an optimal Nash equilibrium even igye proceed to prove its correctness.

the case of rings and stars. However, we show that theresexist _

an efficient algorithm that computes optimal Nash equiibri’ h€orem 2. Algorithm _ROOTED'_TREE'NE computes a
for a subclass of S-PMCEE). Furthermore, we show thatNash equilibrium of optimal social cosfy; | for any S-
we can use a known algorithm for them® MuLTICoLoring P MC(ROOTED-TREE) game.

problem in stars to computg-approximate Nash equilibria for Proof: Let ej,..., e be the order in which the algo-
games in S-PMC(8R). rithm considers the edges 6f, let P, be the subset of paths

Definition 6. We define S-PMC(BOTED-TREE) to be the that are colored after theth iteration of the outer loop, and

subclass of S-PMC that contains ganiés P, W) with the let ci be the corresponding partial coloring. Note th@at
following property: contains exactly the pa’Fhs that start from edgeand, for
all < > 1, P; \ P,_; contains exactly the paths that start from
edgee;. Finally, note thatP 5| = P.

We first prove that the coloring returned by the algorithm
is a Nash equilibrium. More specifically, we will show that,
A similar class of instances has been defined and studied@sall i > 1, the strategy profile; is a Nash equilibrium for

an intersection model for “rooted directed edge path graphtie game(G, P;, W). Fori = 1, because the multiplicity of
in [32]. any color on edge; is either #J‘ or | el (L(e)) is
We will say that a path in a tree rooted at nodestarts the load on edge; with respect to the complete path g},

from edgee, if e is the edge of the path that lies closng path inP, has incentive to change color angd is a Nash
est to noder. The following algorithm is a polynomial- equilibrium for (G, P, W).

time algorithm that computes optimal Nash equilibria for S- For the inductive step, assume that ; is a Nash equilib-
PMC(RooTED-TREE) games. It greedily colors paths in ordefium for (G, P,_,, W), for somei > 1. Let p be a path inP;

of non-decreasing distance of their starting edge in suchya wand leta be the color assigned tp in the profilec;. First,
that the disutility of the path at the time of coloring is theissume that(¢") (p, o) = p(¢-1)(p, ), so that the disutility
lowest possible with respect to the current partial colgrin - of , after thei-th iteration is exactly the same as it was after
the (i — 1)-st iteration. Moreover, sincg; 2O P;_, pathp still

“G is a tree and there is a root nodsuch that each
path in P lies entirely on some simple path from
to a leaf.”

Algorithm ROOTED-TREE-NE contains after theé-th iteration at least the blocking edges that
Input: an S-PMC(ROTED-TREE) game(G, P, W) it contained after thé; — 1)-st iteration. Therefore, pathhas
Output: an optimal Nash equilibrium fotG, P, W) no incentive to change strategy in the profile
1: Find a root node- such that each path iRt lies on some  Now assume that(®)(p, a) > u(®-1)(p, a). Considering
simple path from to a leaf. that only paths which start on edge are assigned colors

2: for all edgese € E in order of non-decreasing distancealuring thei-th iteration, this implies thagt containse; and the
from r, breaking ties arbitrarilgo maximum multiplicity of colora along pathp in the profilec;
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appears on edge or on some edge; with j > 7. However, V. THE PRICE OFANARCHY IN GENERAL GRAPHS
any colored path that contairg also containg;, therefore:
() () Although we can efficiently compute optimal or close-to-
P (pa) = pt (e, ) (1)  optimal Nash equilibria for certain classes of games, wavsho
in this section that the quality of obtained solutions may
deteriorate if the players are allowed to decide their own
strategy. In other words, there exist families of S-PMC game
in which the social cost of the worst-case Nash equilibrium
is arbitrarily high compared to the optimum. In such games,
M(ci)(ei,o/) > u(ci)(ei,a) _1. ) the player-charging mechanism_ (_)f our model is ina_de_zquate to
steer players towards Nash equilibria that are beneficiahi®
From [d) and[(R), edge; is an «/-blocking edge forp, for network.
any colora’ # «, and thug has no incentive to change color. More specifically, for any S-PMC game we exhibit two
We have thus proved that the algorithm computes a Naghper bounds on the price of anarchy. The first bound is
equilibrium. Note that, sinc#;, O P,_; for all i (assume that determined by a property of the network, namely the number
Py = 1), Mg;;;; is a non-decreasing function of Consider the of available wavelengths. The second bound is more sulstle, a
last iterationj for which u{&2) > 1 Six*). Clearly, 1{&) took it depends on the length of paths with the highest disutitity
its final value after the coloring of a certain path which tstarworst-case Nash equilibria. We then prove that these bounds
from edgee; with some colora. From [2) and the fact that ~ are tight for the class S-PMC(RTED-TREE), and asymptot-
is a maximum-multiplicity color ore;, it follows that color ically tight for the class S-PMC(®OTED-TREE: A = 3), i.e.
multiplicities one; are equal or differ at most by, hence  the subclass of S-PMC@FOTED-TREE) that contains games
defined on trees with maximum degree equa3.to

L(ej)-‘ < {ﬁ-‘ . The two upper bounds are stated in Lemidas 3[&nd 4 below.
w T lw

Let p’ be the last path to be colored with colarduring the
i-th iteration, among the paths that start on edgeAt the
momentp’ was colored, colorr must have been a minimum
multiplicity color. Therefore, for any colot’ # «:

s = wis? = |

Lemma 3. The price of anarchy of any5-PMC game
Using FactlL, it turns out that for the final colorirg= ||, (G, P,W) is at mostw.

we have
() _ B [LW Proof: The costji of the worst-case Nash equilibrium
Pmax = HOPT = | "0 - of (G,P,W) cannot exceed., so Fact[ll yields the fol-
lowing bound: popr > [£] > L > L Therefore,
B PoA((G, PW)) = L < uw. n
HOPT

Theorem 3. There is a polynomial-time algorithm that
computes anj-approximate Nash equilibrium for ang- PMC game (G, P,W) and for anyp; € P with fi(c) —
PMC(SraR) game. sc(c) = fi, the price of anarchy of gam@, P, W) is at most
Proof: Let (G, P,W) be a game in S-PMC(@3R). We equal to the length of path;.

use the polynomial-time approximation algorithm presénte
by Nomikos et al. in[[10] for the &rH MULTICOLORING
problem in stars. This algorithm returns a coloring of théhpa
in P with the following property: for any edge, the paths
that usee can be partitioned into two sets of cardinality(e)
and Ly(e) respectively, such that for any colar

02 [5] s [2]-[2]

w w

Lemma 4. For any worst-case Nash equilibrium of an S-

Proof: Let z denote the length of path;. Sincec is a
Nash equilibrium, by Properfy 2, for each cotoie W pathp;

must contain at least one-blocking edge fomp;. Thus, there
must be some edge € p; that blocks at leasf%] distinct
colors forp;. Since the disutility of pathy; is f;(c) = /i, the
load of edger is at least:

w
> |- (a=1) .
L(e)> 1+ [Z] (i — 1)
Note that any player who changes color causes an increase ) _
by 1 of the multiplicity of the new color on the edges used bBY Factll and the above inequality, we get that

that player. Together with the above inequalities, thisliesp
that if c is the strategy profile returned by the algorithm, then o {L" - {L(e)" o [1 + (2] (a— 1)—‘
PT = | /| £ =

any playeri who deviates resulting in a new strategy profile
¢’ may reduce her cost by at mast Therefore,

w w

1 Therefore, the price of anarchy is bounded as follows:

Rz o)1= (1= 5 ) e . @ A
| | - PoA((G, P,W)) = —— < L@
Now, players with f;(c) = 1 certainly have no incentive HOPT {H[% -(ﬂl)-‘
to deviate in the profilec, therefore in the worst case we
have fi(c) = 2 in (3). Hencec is an -approximate Nash
equilibrium. [ ] Now, let i = Az + x, whereX and x are integers satisfying

=

[

g
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A>0and0 <y < z—1. We can rewrite[(4) as follows:

PoA((G, P, V) < Akt ARy
“E}.i.)ﬂ_w-‘ as o
Az +x

< )
[)\ + [+] -(x1)+1—‘

w

becausg 2] > “. Now if x = 0, (5) gives:

PoA((G, P,W)) < Az Az

because {ﬂ] w. By the last inequality we get Fig. 2. The constructiond. () for the proof of Lemm&l6. The thick lines
4 . . .
PoA((G P W)) represent the edges of the underlying graph, a_nq @he thirs limpresent the
T . . . paths defined on the graph. The color and multiplicity of egadup of paths
On the other hand, it < x <=z —1, (@) gives: that use the same edge and have the same color are displaytetb ribat
group. Each shaded box represents a recursive copy.¢h — 1).
Az+z—-1 Az+z-1

M+1] A+l

<
<

Az
T_Z'

PoA((G,P,W)) < <z.
[ |
As an immediate corollary of Lemma 4, we derive the
following upper bound on the price of anarchy:

Corollary 5. The price of anarchy of anys-PMC game
(G, P,W) is bounded as follows:

PoAUG PRI < o B i s 1P
In fact, the upper bounds stated in Lemima 3 and Cordllary 5
are tight for rooted-tree games and asymptotically tight fo
rooted-tree games of maximum degfedn Lemmas b anfl7 e
below, we describe the construction of families of gameg’,
which exhibit a price of anarchy that matches these upper
bounds.

Lemma 6. The upper bounds of Lemm& 3 and Corollaty 5i9- 3. The constructionds(3), as described in the proof of Lemrha 6.

. Different wavelengths are illustrated by different linglefcolor combinations.
are tlght for the class OB'PMC(R)OTED'TREE) games. Solid black lines between nodes represent the edges of therlyimg graph.

Proof: We first define a recursive construction of an
S-PMC game and a Nash equilibrium for this game. The ) ) ) )
construction is illustrated in Fidl 2. Proof of Claim: It is straightforward to verify that
S-PMC game with> available colors: there ard paths of nodewuq of the first level of the recursive construction. The
color a1 and lengthz which branch out into\ branches, one 9ame is in Nash equilibrium by construction, since everjnpat
on each branch. Let us call these firenary paths for.A. (\). contains one blocking edge for every color other than its.own
On any of thez — 1 edges of each such branch, one color iEhe number of available colors is equaltdy definition. The
blocked for the primary path. Tha — 1 blocking paths of Maximum multiplicity sum.x = 2 appears on the edge incident
each edge branch out into af.(\ — 1) game. They become the root node of4,(z). The maximum load. = = appears
primary paths for this copy afl, (A—1). The base case of this®" all the edges of the first level of the construction. Fipall
recursive construction ist.(0), which is a degenerate game?!l Path lengths are equal to by construction. The claim is

with no paths, defined on a graph consisting of a single nod&0ved- _ _
We have included the explicit construction for= A = 3in  BY Theoreni2, the optimal strategy profile fet.(z) has

i social costuopr = [L£] = 1. Therefore, the ratiot=e is
Flg' [3 w e . OPT
equal toz for the Nash equilibrium we constructecf hence the

Claim. For any z > 1, the constructionA4,(z) is an S-
PMC(RooTED-TREE) game in Nash equilibrium, in which
all of the following are equal ta: the number of available Lemma 7. The upper bounds of Lemiink 3 and Corollaly 5 are
colorsw, the maximum load’, the maximum color multiplic- asymptotically tight for the class d-PMC(ROOTED-TREE:

ity tmax, and all path lengths. A = 3) games.

price of anarchy is at least [ ]
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Proof: The construction presented in Lemina 6 can he between the edges of the tree and the edges of the star,
modified so that the maximum degree of the resulting tread for every playep = {e, ¢’} defined on the tree, define
is 3, with only a logarithmic increase in the length of the playerp = {¢(e), p(¢’)} with the same color on the star.
paths. It is clear that the paths we just defined on the star overlap
For z > )\, we define the new constructiod’ (\) of an with each other in exactly the same way as the original paths
S-PMC(RoOTED-TREE: A = 3) game and Nash equilibrium overlapped on the tree. Therefore, the game on the star is in
thereof as follows: the underlying graph is the same as thish equilibrium with,ax = A, whereas the optimal solution

underlying graph of4. ()\), except that in any recursive copyhas maximum color multiplicity.opr = [£] = [4], where

of A’ (A—1), we interject between nodes andu; o, ...,uy2 We used the fact that we have a speciaulj case of rooted trees
(cf. Fig. @) a single edge out of node, followed by a and souopr = [£] according to Theorer 2. [ ]
binary tree with height[logz] > [logA] and exactly A
leaves, which coincide with the nodes., . . ., u, . The extra VI. THE PRICE OFANARCHY IN GRAPHS OFMAXIMUM
edge interjected before the binary tree is necessary tor@nsu DEGREE2
degree3 in the later stages of the recursive construction; if In the previous section we gave two generic upper bounds
we do not include this edge, but rather branch out into tif the price of anarchy of S-PMC games on general graphs,
first level of the binary tree, then node - for example will and provided matching lower bounds for graphs of maximum
have degree four. The set of primary paths of each recursilegree at leass. We now proceed to determine the price
copy of AL(\ — 1) also remains the same, except that fo®f anarchy of this model on graphs of maximum degree
all i: 1 <4 < ), the primary path that used edge;, ;) This graph family contains the fundamental network topglog
in A.()\) is now stretched to use the edges connecting Of rings, thus it is interesting to study the price of anarchy
to u;» through the newly interjected binary tree. Therefor@®f the classes S-PMC(RG) and S-PMC(®AIN) from a
all paths now have the same lendth- = + [log z] + 1. The theoretical as well as from a practical point of view.
number of available colors and the coloring of the pathsés th We start by proving, in Lemmal 8, a stronger necessary
same as in the original construction. condition for Nash equilibria of S-PMC(RG) games, com-
This process results in an underlying graph which is a tré@red to the one we have already seen in Progerty 2 for
of maximum degree3. The strategy profile is also a NasHNash equilibria of arbitrary S-PMC games. Then, we employ
equilibrium for the new game, since there is no change his structural property in order to show, in Lemiia 9, that
the overlaps between paths. The constructitirfz) is an S- any S-PMC(RNG) game with/i > w necessarily contains
PMC(ROOTED-TREE: A = 3) game in Nash equilibrium, @n edge with high load. This allows us to prove a constant
with the same properties as the construction in Lerfiima 6 é4per bound on the price of anarchy for a broad class of S-
cept that the length of all paths is exactly z+[log z]+1 = PMC(RNG) games withL = Q(w?). We will refer to these
O(z). It turns out, then, thaPoA > z = ¢ — ([logz] +1) = 9amesas “heavily loaded.” Notice that this class essénéat

0 —o(z) =1 —o(0). m compasses all S-PMC(RG) games of practical importance,
We summarize the results of Lemnidd B[4, 6, [@nd 7 in tA€ the number of wavelengths is limited in practice due to
following theorem: technological constraints, whereas the maximum load can be

. arbitrarily large depending on network traffic. Finallyy fine
Theorem 4. The price of anarchy of anyS-PMC gake of completeness, we show that the price of anarchy may

game(G, P, w) is upper-bounded both by and by become unbounded if the network designer opts to provide the
min min  [ps| users with ample wavelengths, i.e. wher= o(w?). Instances
¢ is NE:sc(c)=p i:fi(c)=q pil - with L = o(w?) will be called “lightly loaded.”

We introduce the following notation: For an S-PMQ(R)

. ) game,[e, ¢'] denotes the arc of the ring that contains all edges
and asymptotically tight for the class-PMC(RoOTED- betweere ande’ in the clockwise direction, includingande’.

TREE A = 3). Additionally, we say thafe, €] is containedn a pathp if every

On a final note, we prove a constant, tight bound2ain edge infe, ¢'] belongs top.
the price of anarchy of S-PMC games defined on stars.

These bounds are tight for the claSsPMC(ROOTED-TREE)

Lemma 8 (Structural property of S-PMC(IRG) Nash equi-
Theorem 5. The price of anarchy of the cla& PMC(Sar) libria). Given a game inS-PMC(RNG) and a coloringc
is 2. thereof which is a Nash equilibrium, for every edgeand

o , color « there is an arc[e™,e™]| (that containse) with the
Proof: Lemmd4 implies an upper bound ®bn the price following properties:

of anarchy, since the length of any simple path defined on al) for every edge’ of the arcle~,e*] it holds that
star cannot be greater than ’

For the lower bound, we can easily modify the construction w(e', @) > |P(e,a) N Ple, o) > {MW 7
that appears in the proof of Lemrhh 6 to yield a family of S- 2
PMC(STAR) games with price of anarcly More specifically, and

observe that any gamé,()\) contains only players (paths) of 2) for every colore/, there is an edge’ of the arcle™, e™]
length2. Such a game can be embedded in a star with exactly  such that
the same number of edges as follows: fix an isomorphism ple',a) > ule,a) =1 .



10 IEEE/ACM TRANSACTIONS ON NETWORKING

Proof: The strategy profilec is a Nash equilibrium, ey el en e1 €0 en en e el
therefore by Propertly]2 every path must contain at least one 11 = N — H——
«’'-blocking edge, for every colar’. The paths inP(e, o) have ' T o U T Quo
cost at least:(e, «), therefore for every colat’ there must ex- H - L o

Ll HN HN ul

ist at least one edgs on the ring withu(ey, o) > (e, a)—1. L e L :
Now, fix a colora’ and consider the edgg (resp.es) that = T = Quy,
lies closest toe in the clockwise (resp. counter-clockwise) i i
direction and for whichu(e;,a’) > wu(e,a) — 1 (resp. i
plea, o) > pe,a) — 1). It may well be the case that; is ' R :
identical toe,. We now observe that eithér, e;] is contained o =
in at least half of the paths if*(e, ) or [eq, €] is contained
in at least half of the paths iP’(e, «), otherwise there would
exist at least one path i (e, «) which would not contain
an «’-blocking edge. In the first case, we defibigy') = e;
and designatex’ as a positive color, otherwise we define color, respectively, such thai(eo, a., ) = ji. Let [eg, e be

/ _ H / H
) = & and designate’ as anegauvelc-olor. Note th"’}t' an arc that satisfies the properties of Lemma 8 applied on
by definition, a color cannot be both positive and negative @Bgeeo and colora,, and letAy = {au, }
UuQ - uo S

the same time. N Lo _ Now, for i > 0, given {(e;, o, €; ,e;, A;)}, definee; 1
We now define two _s_etB and B~: B conslsts of_the anda,, ., to be some edge ife; ;] and color inW \ 4;,

edgesb(a’) for all positive colorse’/, whereasB~ consists respecltively with the followingzprozperties:

of the edged(a’) for all negative colorsy’. Note thata is 1) ule: ' > e | and

always a positive color and thiéa) = e € BT. Lete™ be the pleit, Oy ) = pi(es; ) — 1 an

last edge ofB* encountered during a clockwise traversal of 2) the apphcatllon of Lem[ndjg on _edg.eiﬂ and

the ring starting at edge, and lete~ be the first edge o8~ COIOr_O‘uT yields an arde; ,, ;" ;] which is a subset

encountered during the same traversal {flet= e if B~ is of [e; € ) .

empty). qually, deflne Ai‘-ﬁ-l = A; U {ay,,,}. This sequence of
We prove that arde—, e*] actually contains edge. This auintuples is defined up to = n < w — 1, at which point

is equivalent to stating that iB~ is not empty, then=— is €ither A, = W or the application of Lemmal8 on any

not contained irfe, e*]. Indeed, ife~ = b(a’) was contained €d9€en1 inarcle,,, e, ] and any color,,, ., € W\ A, such

in [e,e*], for some negative colot’, then by the definition thati(eni1, @u,,,) > p(en, au,) — 1 fails to provide an arc

of edgee*, arc e, e~] would be contained in at least half ofWhich is contained ife;, , ef]. See Fig[# for an illustration

the paths inP(e, a) and thereforey’ would be a positive and Of this structure. .

negative color at the same time, a contradiction. From the definitions, it is immediately deduced that foriall
Finally, we claim that the two properties in the statement of

the Lemma hold for the arfe ™, e™|. By construction]e™, e™]

contains all edges i3~ and B*, thus the second propertyTherefore, by Lemm&l8 for all edgesin [e; , ;]

holds. By the definition ofe—, for every edge:’ of [e™,¢] f—i p—i

we have|P(¢/,a) N P(e,a)| > {@W and by definition ples o) = [ 5 w z 5

+ +
of ¢, the same holds for every edgeof [, * |. Therefore, In particular, edges:; and e are included in all of the

the second inequality of the first property is also satisfigue intervals e, ¢}]. Therefore, the load induced on edgg

first inequality is trivial sinceu(e’, o) = |P(€’, a)|. by paths cioI’oried with colors il is:

Fig. 4. The path structure implied in the proof of Lemida 9.

{(es, v, €5 e, A Yiso. Let g and v, be an edge and

IR A

plesan,) > =i .

A. Constant Price of Anarchy for Heavy Instances iu(en’%i) > Xn: =1 > (n+1) Lo (n+1) .
We next prove a constant upper bound on the price ofi=o0 =0 2 2 4

anarchy of S-PMC(RiG) games withL = Q(w?); denote N (6)

this class by S-PMC(RG: L = Q(w?)). This yields as well Similarly for edgee;:

a constant upper bound on the price of anarchy of any S- n m+1) . n-(n+1)

PMC(CHAIN: L = Q(w?)) game, as every game defined on Zﬂ(eiaaui) 2 5 K~ 1 ‘

a chain can be trivially embedded in a ring topology. =0

We first employ the structural property we proved in Furthermore, the application of Lemmbl 8 on any
Lemmd.8 in order to establish the existence of a heavily ldadeolor «,,,,., € W \ A4, and any edge, 1 in [e; e} ]| such
edge in S-PMC(RvG) games withii > w. that ju(ent1, Qu, ;) > pen, o, ) — 1 yields an arce™, e™]
not contained iffe;,, e;']. This implies that at least half of the
colors inW \ A,, induce arcs that contain the same extremal
edge ofle,,, ¢,7] (let it be edges,, , without loss of generality).

Proof: Let ¢ be a worst-case Nash equilibrium forFig.[4 offers an illustration. Due to Lemnia 8, for each such
game(G, P,W). We presently define a sequence of quintupleslor «, each edge iffie™, e*| — and therefore also edgg —

Lemma 9. In everyS-PMC(RNG) game(G, P, W) with /i >
w there is an edge with load at least=.
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is used by at leas W paths of colora. Since the Q;
—————————[p—|A
number of colors IV \ A4,, is w— (n + 1), the load induced i N 2
on edgee;, by paths colored with colors ifl \ 4, is: | 2= : g
- W\ A, plen, ay, ) =1 - = : = _ §g
e R ] o= - 1
acW\A, 3
- 1) a-— 1
> wod) pznrd) g [ s [ s R
2 2
i w — |A] — 1 copies: w — |A| — 1 copies:
By (6) and [[T), the total load of edgg, is: P(AU{ai} a;),  P(AU{a},ap),
foreach a; € W\ (AU {a;}) foreacha; € W\ (AU {a;})
Lien) = Z o a“i) + Z o a) Fig. 5. The path seP(A, «;), for a; € W \ A, used in the construction
i=0 aEW\A, of TheoreniV.
i-w nmn+1
> b (w1 8)

A we will prove to be a Nash equilibrium, with the following
Sinceji > w andn > 0, we get from[(8) thatl(e, ) > %*. properties:
u 1) the number of available colors is = [p' "7+ ],
We can now prove a constant upper bound on the price ofz) the maximum load ig, — £2=32+12 and
. . o 2 - 2 il
anarchy of games in S-PMC(RG: L = Q(w?)). 3) the maximum multiplicity of any color iiyax = p.

Theorem 6. The price of anarchy of any game in the clas&irst of all, observe thal. = O(p?) = O(w?~¢). Therefore,
S-PMC(RNG) is at mostmax{4, %2 ) the family indeed belongs to S-PMCKGIN: L = O(w?~¢)).
Moreover, since the class S-PMQO{&IN) is a subclass of
S-PMC(RoOTED-TREE), by Theoreni R the optimal strategy
profile for gameB, has social costiopr = [£] < £ +1.

w

Additionally, the cost of the worst-case Nash equilibriumstn

Proof: We distinguish between two casesjif> w, then
by Lemmal® we have a maximum lodd> £=. Therefore,
the price of anarchy is bounded as follows:

>

. > . [ [ :
PoA — P < Lw <4 be i > pmax. The price of anarchy of gamB, is therefore
HOPT ] max * Mmax
o . PoA(B,) = —— > Hmee T7H
where for the first inequality we used Fagét 1. popr — 2+ 1 L+w
On the other hand, ifi < w, then we can bound the price =
: >
of anarchy as follows: Z pz,gépHQ PSR
P 2
- w w . e
PoA < 7 < A where in the last step we used the fact thdt'z—= <

w < p't7== + 1. Because: < 1, we get thatPoA(,)
Corollary 10. The price of anarchy of heavily loaded games  Construction ofB3,: Given the parameters and p, we
defined on rings, i.e. of the cla8&sPMC(RNG: L = Q(w?)), describe the construction of an S-PME(@N) game using

is at mostO(1). In particular, the price of anarchy of gamesthe path set’(A, o) illustrated in Fig[5 as a building block.
in S-PMC(RNG: L > w{) is at most4. We now describe the structure dP(A4,«), along with a

coloring of the paths it contains.
_ _ Let W be a set of available colors of side'">=]. We
B. Unbounded Price of Anarchy for Light Instances will define P(A, o) for |[A| < p—3, AC W, anda € W\ A.
To complete our study of the price of anarchy in graph&/henever|A| < p —4, P(A,a) is recursively defined to be
of degree2, we show that for arbitrarily smal there exists a path set consisting of:
an infinite subclass of S-PMCHIN: L = O(w?7°)) games  « The main pathsthese are the — |A| paths of colora,
whose price of anarchy iQ(w?). This implies that the price arranged as shown in the top part of Fify. 5. They all share
of anarchy can get arbitrarily large when the number of a common edge, henceforth called thentral edgefor
available colors increases, therefore the price of anaishy this copy of P(A4, «). Half of them extend to the left of
unbounded for the classes S-PMGLN: L = o(w?)) and, the central edge, and the rest extend to the right.
consequently, S-PMC(RG: L = o(w?)). « The secondary pathsthese are thep — |A| — 4 paths
of color «, arranged as illustrated in the central part of
Fig.[8. These paths do not use the central edge and half
of them extend to the left of the central edge, and the
rest extend to the right.
Proof: Fix somee in the range) < ¢ < 1. We will con- » Two copies ofP(A U {a},a’) for everyo/ € W\ (AU
struct a family{,},>4 of S-PMC(QGHAIN: L = O(w?~¢)) {a}), one of them on each side of the central edge, as
games and a strategy profile for each game in the family, which per the bottom part of Fid.] 5.

Theorem 7. For any fixede in the range0 < ¢ < 1, there
exists an infinite family of games 8-PMC(QHAIN: L =
O(w?~¢)) with price of anarchy(w?).
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The base case of this recursive construction occustcking edges, and thus the game is in Nash equilibrium.

when|A4| = p—3. In this case, the path s&(A, ) is defined [ |

on a chain of lengttl = (w — p+2) - (w — p + 1). Let

eo,€1,...,¢p—1 be the edges of this chain, in order from left VIlI. CONCLUSION

to right. The path seP’(4, «) contains: In this work we have proposed a framework for studying
« three paths of colox spanning edges, up toey_1, non-cooperative wavelength assignment in multifiber eptic

« for each colorg; € W \ (A U {a}), two paths of networks, namely SLFISH PATH MULTICOLORING games.
color ; and lengthlw —p+-1) spanning edges.,,—,+1) The results we obtained in Sectién]VI suggest an efficient

up 10 e(iq1).(w—p+1)—1, Where Bo,...,B3u—p+1 iS an decentralized protocol for wavelength assignment in rigg n
arbitrary enumeration of the colors i \ (AU {a}), works where wavelengths are scarce — a safe assumption in
and practically relevant scenarios: Any Nash equilibrium reect

« for each colorg; in the previous enumeration, for eactby the players is guaranteed to have a cost of at mdishes
color~; ; € W\ (AU {«, S;}), one path of colory;, ; that of the cost of an optimal solution.
and length one, defined on edgg(,—,+1)+;, Where On the other hand, the situation in more general networks
7,0, - - - Vi,w—p IS @N arbitrary enumeration of the colords much less gratifying: In Sectidn]V we show that the price
in W\ (AU {a, 8:}). of anarchy can grow unbounded even in tree networks of
We now claim that the S-PMC@@IN) game mMmaximum degree 3. Evidently, the player-charging mechanis
(G, P(0,a1),W), where G is a chain long enough to Of this model is inadequate to steer players towards Nash
accommodate all paths of(0,a), is a game in S- equilibria of low fiber cost in such networks. It is therefore
PMC(CHAIN: L = O(w?®~¢)) with the desired properties.a promising direction for further research to investigdte t
First observe that the maximum color multipliCity.,ax quality of equilibria obtained under different player ctistc-
occurs, by construction, on the central edge of the chafiPns.
This edge is used by exactly paths of colora;, thus
lmax = p. The number of available colors has been fixed to ACKNOWLEDGMENT
exactlyw = [p'T2=|. Finally, regarding the maximum load, The authors wish to thank the anonymous reviewers for their
observe that the main and secondary paths of each copytfdrough comments which helped to significantly improve the
P(A,«a) induce a load op — |A| — 2, whereas the base casgresentation of the article, as well as clarify a number of
of the construction induces a constant load6ofTherefore, technical points.
the maximum load is:
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