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Abstract
We seek to understand when heterogeneity in agent
preferences yields improved outcomes in terms of
overall cost. That this might be hoped for is based
on the common belief that diversity is advantageous
in many multi-agent settings. We investigate this in
the context of routing. Our main result is a sharp
characterization of the network settings in which
diversity always helps, versus those in which it is
sometimes harmful.
Specifically, we consider routing games, where di-
versity arises in the way that agents trade-off two
criteria (such as time and money, or, in the case of
stochastic delays, expectation and variance of de-
lay). Our main contributions are: 1) A participant-
oriented measure of cost in the presence of agent
diversity; 2) A full characterization of those net-
work topologies for which diversity always helps,
for all latency functions and demands.

1 Introduction
It is a common belief that diversity helps. In non-cooperative
multi-agent systems, where a central theme is the tension be-
tween selfish behavior and social optimality—can diversity of
agent preferences help to bring us closer to the coveted social
optimality? We provide an answer to this question in the con-
text of non-atomic selfish routing, where diversity naturally
arises in the way agents trade-off two criteria, for example,
time and cost, or, in the presence of uncertain delays, expec-
tation and variance of delay.

As we shall see, there is no unique answer. Rather, it de-
pends on the setting. To address our question we need to
specify how to measure the cost of an outcome, and define a
benchmark setting with no agent heterogeneity. To measure
the cost of an outcome, we treat an agent’s cost as the sum
of two terms associated with two criteria: If we let `P denote
the cost of one criterion (e.g., the latency) over a path P , and
vP be the cost of the second criterion, then the overall cost is
given by `P + r · vP , where r is our diversity parameter. The
special case of r = 0 corresponds to indifference to the sec-
ond criterion and results in the classic selfish routing model
where agents simply minimize travel time.

A first approach to measuring the effect of diversity might
be to compare the cost of an outcome with r = 0 (i.e., just
the total latency) to that with other values of r, including pos-
sibly mixed values of r across the population being routed.
However, this approach does not pinpoint the gains and losses
from agent heterogeneity as opposed to agent homogeneity;
rather, it (mostly) pinpoints the gains and losses depending
on whether players are affected by the second criterion or
not. Instead, we focus on the sum of the costs incurred by the
agents as measured by their cost functions, and compare costs
incurred by a heterogeneous population of agents to those in-
curred by an equivalent population of homogeneous agents.
What are equivalent populations? Suppose the heterogeneous
population’s diversity profile is given by a population den-
sity function f(r). Then, we define the corresponding ho-
mogeneous population to have the single diversity parameter
r̄ =

∫
rf(r)dr. In addition, we require the two populations

to have the same size, in the sense that the total source-to-sink
flows that they induce are equal.
Contribution. We fully characterize the topology of net-
works for which diversity is never harmful, regardless of the
demand size and the distribution of the diversity parameter
(discrete or continuous). We do so both for single and multi-
commodity networks.

For single-commodity networks it turns out that this topol-
ogy is that of series-parallel networks. In Theorem 1, we
show that if the network is series-parallel, then diversity only
helps for any choice of demand and edge functions. The key
observation is that there is a path for which the homogeneous
flow is at least as large as the heterogeneous flow. As the cost
of the homogeneous flow is the same on all used paths, while
the cost of each unit of heterogeneous flow is lowest on the
path it uses, one can then deduce that the cost of the heteroge-
neous flow is at most that of the homogeneous flow. To show
necessity, we first provide an instance on the Braess graph for
which diversity is harmful, and then show how to embed it in
any non-series-parallel graph.

In multi-commodity networks, by the result above, each
commodity must route its flow through a series-parallel sub-
network. But, as Proposition 2 shows, this is not enough,
and the way in which these series-parallel networks overlap
needs to be constrained. The necessary constraint is exactly
captured by the class of block-matching networks, defined in
this paper. Sufficiency in this case then follows quite easily
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from the same result for the single commodity case.
The main technical challenge is to show necessity. To this

end, assuming diversity does no harm, we show, via a case
analysis, how the subnetworks of the commodities may over-
lap. First, in Proposition 2, we give an instance on a network
of two commodities and three paths for which diversity hurts.
Then we mimic this instance on a general network. The dif-
ficult part is to choose the corresponding paths for the mim-
icking, so that, in the created instance, all the flow under both
equilibria goes through these paths. The challenge is that the
commodities’ subnetworks may overlap in subtle ways.
Related work. Our work was inspired by the selfish rout-
ing literature where agents have to tradeoff two criteria such
as time versus tolls, or expected travel time versus variance.
In the former setting, early results (e.g., [Beckmann et al.,
1956]) showed that tolls can help implement the social opti-
mum as an equilibrium, when agents all have the same linear
objective function combining time and money. Much more
recently, these results were extended to the case where agents
trade-off travel time and money differently, by Cole et al.
(2003) and Fleischer (2005) for the single commodity case,
and by Karakostas and Kolliopoulos (2004a) and Fleischer et
al. (2004) for the multicommodity case. We remark that the
above works, apart from [Cole et al., 2003], consider only
the case where the social welfare is defined as the total travel
time, whereas in our work we consider the total agent cost,
which encapsulates both criteria. This, for example, is also
the case for Christodoulou et al. (2014) and Karakostas and
Kolliopoulos (2004b). In stochastic selfish routing and re-
lated frameworks, most models assume homogeneous agents
(e.g., [Piliouras et al., 2013], [Nikolova and Stier-Moses,
2015], [Lianeas et al., 2016], [Kleer and Schäfer, 2016]) and
study the degradation of a network’s performance due to risk
aversion. Fotakis et al. (2015) considered games with hetero-
geneous risk-averse players and showed how uncertainty can
be used to improve a network’s performance.

Characterizing the topology of networks that satisfy some
property is a common theme in computer science. Relevant
to our work, Epstein et al. (2009) characterized the topol-
ogy of single-commodity networks for which all Nash equi-
libria are social optima (under bottleneck costs), and Milch-
taich (2006) characterized the topology of single-commodity
networks which do not suffer from the Braess Paradox for
any cost functions. Chen et al. (2015) fully characterized
the topology of multi-commodity networks that do not suffer
from the Braess paradox. These characterizations appear sim-
ilar to ours, although there does not seem to be any other con-
nection between the two problems, as (i) there are instances
where diversity helps while the Braess Paradox occurs and
others where diversity hurts but the paradox does not occur,
and (ii) the Braess Paradox may occur in series-parallel net-
works when considering selfish routing with heterogeneity in
agent preferences, which is not the case for the classic selfish
routing model.

In the following works, the characterizing topology for the
corresponding question (for a single commodity) is similar to
ours. Fotakis and Spirakis (2008) considered atomic games
and proved that series-parallel networks are the largest class
of networks for which strongly optimal tolls are known to

exist. Nikolova and Stier-Moses (2015) considered homoge-
neous agents and a social cost function that does not account
for the second criterion; They showed that series-parallel net-
works admit the best bound on the degradation of the net-
work due to risk aversion. Theorem 4 of Acemoglu et al.
(2016), proves that series-parallel networks are the charac-
terizing topology for what they call the Informational Braess
Paradox with Restricted Information Sets; this theorem com-
pares the cost of one agent type before and after more infor-
mation is revealed to agents of that type, but does not consider
the change in the cost of other agent types. In contrast, our
work considers non-atomic games with heterogeneous agents
and bounds the overall costs faced by the collection of agents.
Most relevant to our work is [Meir and Parkes, 2014] and its
Theorem 3.1 as it implies that for series-parallel networks the
cost of an agent of average parameter only increases when
switching from the heterogeneous instance to the correspond-
ing homogeneous one and thus for our sufficiency theorems,
one is left to prove that the heterogeneous equilibrium cost
is no greater than the cost of an agent of average parameter
(though we give a different proof).

2 Preliminaries
Consider a directed multi-commodity network G = (V,E)
with an aggregate demand of dk units of flow between origin-
destination pairs (sk, tk) for k ∈ K. We let Pk be the set of
all paths between sk and tk, and P := ∪k∈KPk be the set of
all origin-destination paths. We let [m] denote {1, . . . ,m}.
We assume that K = [m], for some m. The agents in the
network—i.e., the players of the game—must choose routes
that connect their origins to their destinations. We encode the
collective decisions of agents in a flow vector f = (fπ)π∈P ∈
R|P|+ over all paths. Such a flow is feasible when demands
are satisfied, as given by constraints

∑
π∈Pk

fπ = dk for all
k ∈ K. For simplicity, we let fe denote the flow on edge
e; note that fe =

∑
π:e∈π fπ . When we need multiple flow

variables, we use the analogous notation g, gπ, ge.
The network is subject to congestion that affects two cri-

teria the players consider. These two criteria are modeled
by two edge-dependent functions that take as input the edge
flow fe of e, for each edge e: a latency function `e(x) as-
sumed to be continuous and non-decreasing, and a deviation
function σe(x) assumed to be continuous (but not necessarily
non-decreasing).

Throughout the paper we refer to the agent’s objective as
the cost along a route. Formally, for a given agent, on letting
`π(f) =

∑
e∈π `e(fe) and σπ(f) =

∑
e∈π σe(fe), for a con-

stant r ≥ 0 that quantifies the agent diversity parameter, the
agent’s cost along route π under flow f is

crπ(f) =
∑
e∈π

`e(fe) + r
∑
e∈π

σe(fe) = `π(f) + rσπ(f) (1)

We assume that for any edge and any agent’s diversity pa-
rameter r, the functions `e and `e + rσe are non-decreasing.
Note that if there is an upper bound rmax on the possible val-
ues of the diversity parameter r, then the latter assumptions
do not require σe to be non-decreasing. This is desirable be-
cause, for example, in risk-averse selfish routing where σe
models the variance, σe may be decreasing in the flow.
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Players Heterogeneity. We assume that there may be more
than one value of the diversity parameters r for the players
routing commodity k. We use the term single-minded to re-
fer to players with r = 0. We handle both the cases of a
continuous and a discrete distribution of the diversity param-
eter among the players, though, for our results, we need only
consider the discrete case.1

For a discrete distribution of, say, n discrete values
rk1 , . . . , r

k
n, the demand dk is a vector dk = (dk1 , . . . , d

k
n)

where each dki denotes the total demand of Commodity k
with diversity parameter rki . We let dk denote Commodity
k’s total demand, dk =

∑n
i=1 d

k
i . Variables frπ and fre de-

note the flow of diversity parameter r on path π and edge e,
respectively. Formally, an instance is described by the tu-
ple (G, {(`e, σe)}e∈E , {(sk, tk)}k∈K , {dk}k∈K , {rk}k∈K),
where rk = (rk1 , . . . , r

k
n) is the vector of different diversity

parameters encountered in the heterogeneous population.
Equilibrium flows. The Wardrop equilibrium of an instance
is a flow f such that for every k ∈ K, for every path π ∈ Pk
with positive flow, and any diversity parameter r on it, the
path cost crπ(f) ≤ crπ′(f) for all paths π′ ∈ Pk .

From here on, we shall refer to the Wardrop equilibrium
as the equilibrium. Our goal is to compare the total agent
cost at the equilibrium of an instance with a population that
has heterogeneous diversity parameters, to the total agent cost
at the equilibrium of the same instance but with the popula-
tion of each commodity keeping its magnitude but changed
to be homogeneous, with diversity parameter equal to the
expected value of the diversity parameter distribution in the
heterogeneous population of the commodity. To differentiate
more easily, for a heterogeneous instance we call the former
the heterogeneous equilibrium and the latter the (correspond-
ing) homogeneous equilibrium. We usually denote the hetero-
geneous equilibrium by g and the homogeneous equilibrium
by f . The existence of both equilibria is guaranteed by e.g.
[Schmeidler, 1973, Theorem 2]. We note here that in gen-
eral we do not need uniqueness of equilibria, neither for the
edge costs nor for the edge flows. Our results hold for any
arbitrary pair of heterogeneous and homogeneous equilibria
of the corresponding instances. Also, as for classic routing
games, without loss of generality (WLOG) we may assume
that equilibrium flows are acyclic.
Total Costs. For a heterogeneous equilibrium flow vector g,
the heterogeneous total cost of Commodity k is denoted by
Ck,ht(g) =

∑
j=1...n d

k
j c
k,rkj (g) where ck,r

k
j (g) denotes the

common cost at equilibrium g for players of diversity param-
eter rkj in Commodity k. The heterogeneous total cost of g
is then Cht(g) =

∑
k∈K C

k,ht(g). For the corresponding
homogeneous equilibrium flow f , i.e. the instance with di-
versity parameter r̄k, where r̄k denotes the average diversity
parameter for Commodity k, players of Commodity k share
the same cost cr̄

k

(f). Then, the homogeneous total cost of
Commodity k under f is Ck,hm(f) = dkc

r̄k(f), and the ho-
mogeneous total cost of f is Chm(f) =

∑
k∈K C

k,hm(f).

1This is basically because the flow gp of a path p with diver-
sity parameter within some range, can be changed to have parameter
equal to the average parameter on p, and the equilibrium remains.

Figure 1: A block-matching network of 2 commodities. G1 and
G2 are series-parallel and their block representations are G1 =
s1AuBvCwDt1 and G2 = s2EwDt1FuBvGt2. G1 and G2

share exactly blocks B and D and do not share any edge on any
other of their blocks. If we add an edge from s1 to t1, then the net-
work stops being block-matching since G1 will be a block by itself
and it will not match any of the blocks of G2.

Finally, if Cht(g) ≤ Chm(f), we say that diversity helps; if
not, we say that diversity hurts. For our characterization to be
meaningful, we assume an average-respecting demand, i.e.,
a demand where ∀i, j : r̄i = r̄j . Otherwise, diversity may
hurt in simple instances, e.g., with two parallel links and two
commodities.

Networks. For a network G we let V (G) and E(G) denote
its vertex set and edge set, respectively.

A directed s–t network G is series-parallel if it consists of
a single edge (s, t), or it is formed by the series or parallel
composition of two series-parallel networks with terminals
(s1, t1) and (s2, t2), respectively. In a series composition, t1
is identified with s2, s1 becomes s, and t2 becomes t. In a
parallel composition, s1 is identified with s2 and becomes
s, and t1 is identified with t2 and becomes t. The internal
vertices of a series-parallel networkG are all its vertices other
than its terminals.

An s–t series-parallel network may be represented using a
sequence of networks Bj connected in series, where each Bj
is either a single edge or two series-parallel networks con-
nected in parallel. Given a series-parallel network H , we
can write H = sB1v1B2v2 . . . Bb−1vb−1Bbt, where for any
j and triple xBjy, x and y are the terminals of the series-
parallel network Bj , and Bj is either a single edge or a par-
allel combination of two series-parallel networks. We re-
fer to the Bj’s as blocks, the prescribed representation as
the block representation of H , and the vi’s as separators,
as they separate s from t. Two series-parallel networks G1

and G2 are said to be block-matching if for every block B
of G1 and every block D of G2, either E(B) = E(D) or
E(B) ∩ E(D) = ∅. Note that E(B) = E(D) implies that
B and D have the same terminals and direction, as for either
B or D, the source vertex will have only outgoing edges to-
ward the internal vertices and the target vertex will have only
incoming edges from the internal vertices.

For a k-commodity network G, let Gi be the subnetwork
of G that contains all the vertices and edges of G that be-
long to a simple si–ti path for Commodity i. In other words,
Gi is the subnetwork of G for Commodity i that equilibria
flows will consider, as they are, WLOG, acyclic. A multi-
commodity network G is block-matching if for every i, Gi
is series-parallel, and for every i, j, Gi and Gj are block-
matching. An example is given in Figure 1.
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3 Topology of Single-Commodity Networks
for which Diversity Helps

In this section, we fully characterize the topology of single-
commodity networks for which, with any choice of hetero-
geneous demand and edge functions, diversity helps. WLOG
we may restrict our attention to single-commodity networks
whose edges all belong to some simple source-destination
path as only these edges are going to be used by the (WLOG,
acyclic) equilibria and thus all other edges can be discarded.
It turns out that this topology is exactly that of series-parallel
networks (Theorems 1 and 2).

3.1 Series Parallel Implies Diversity is Helpful
Throughout this section we will be considering a heteroge-
neous instance G on an s–t series-parallel network G. We let
F denote the corresponding homogeneous instance. We let g
denote an equilibrium flow for G and f an equilibrium flow
for F . Finally, we let Cht(g) denote the cost of flow g and
Chm(f) the cost of flow f . Although redundant, we keep the
superscripts as a further reminder of the flow type at hand.

The key observation is that there is a path P used by flow
f such that for every edge in P , fe ≥ ge, and hence for any
r ∈ [0, rmax], crp(f) ≥ crp(g) (Lemmas 12 and 2). We then
deduce our result: Cht(g) ≤ Chm(f) (Theorem 1).

Lemma 1. Let G be an s–t series-parallel network and let
x and y be flows on G that route d1 and d2 units of traffic
respectively, with d1 ≥ d2 and d1 > 0. Then, there exists an
s–t path P such that for all e ∈ P, xe > 0 and xe ≥ ye.
Lemma 2. There exists a path P used by f such that for any
r ∈ [0, rmax], crp(g) ≤ crp(f).

Proof. Flows f and g have the same magnitude on the series-
parallel network G. Applying Lemma 1 with x = f and
y = g implies that there exists an s–t path P such that for
all e ∈ P, fe > 0, implying that WLOG P is used by f , and
fe ≥ ge. By assumption, for any r ∈ [0, rmax], `e + rσe is
non-decreasing, and thus for all e ∈ P, `e(fe) + rσe(fe) ≥
`e(ge)+rσe(ge). Consequently,

∑
e∈P (`e(fe)+rσe(fe)) ≥∑

e∈P (`e(ge) + rσe(ge))⇔ crp(g) ≤ crp(f) as needed.

Theorem 1. Cht(g) ≤ Chm(f).3

Proof. Since G is a series-parallel network, on setting r̄ =
E[r] and then applying Lemma 2, we obtain that there is a
path P used by f such that

`p(f) + r̄σp(f) ≥ `p(g) + r̄σp(g) (2)

WLOG we can assume that the total demand d = 1. We
first bound the total cost of g in terms of the cost of path P
under g and then we use (2) to further bound it in terms of the
cost of path P under f . The latter equals the cost of f , as the
demand is equal to 1.

2Lemma 1 is similar to [Milchtaich, 2006, Lemma 2].
3The inequality might be strict. Consider the case of 2 parallel

links with (`1(x), σ1(x)) = (1, x) and (`2(x), σ2(x)) = (2, 0),
and 1 unit of flow, half with r = 0 and half with r = 2.

Figure 2: The Braess network of Proposition 1.

Consider the heterogeneous equilibrium flow g. By the
equilibrium conditions, for any player of diversity parame-
ter r, for any r, the cost she incurs with flow g is cr(g) ≤∑
e∈p `e(ge) + r

∑
e∈p σe(ge). In other words, there is

no incentive to deviate to path P (if not already on it).
Thus, for the demand vector (d1, . . . , dk) of diversity pa-
rameters (r1, . . . , rk), Cht(g) ≤

∑k
i=1 di(

∑
e∈p `e(ge) +

ri
∑
e∈p σe(ge)) = `p(g) + r̄σp(g), with the equality fol-

lowing as the total demand is 1 and the average diversity
parameter is r̄ =

∑k
i=1 diri. As P is used by f , we have

Chm(f) = `p(f) + r̄σp(f), and applying (2) we obtain
Cht(g) ≤ `p(g)+ r̄σp(g) ≤ `p(f)+ r̄σp(f) = Chm(f).

3.2 The Series Parallel Condition is Necessary
To prove the necessity of the network being series-parallel,
we begin by constructing an instance for which diversity
hurts, i.e. the heterogeneous equilibrium has total cost strictly
greater than the total cost of the homogeneous equilibrium
(Proposition 1). Then, in Theorem 2, we show how to embed
this instance into any network that is not series-parallel.

Recall the Braess graph GB , shown in Figure 2.

Proposition 1. For any strictly heterogeneous demand on the
Braess graph GB , there exist edge functions (`e)e∈E and
(σe)e∈E that depend on the demand, for which Cht(g) >
Chm(f). 4

Proof. We may assume WLOG that the demand is of unit
size. Let r̄ be the average diversity parameter, r0 be the min-
imum of the diversity parameters’ distribution and let d0 be
the total demand with diversity parameter equal to r0. Since
the demand is strictly heterogeneous, it must be r0 < r̄. In
addition, we let h be any continuous, strictly increasing cost
function with h( 1

2 ) = 1 and h( 1
2 + d0

2 ) = 1 + r̄−r0
2 .

Consider the Braess graph GB =
({s, u, v, t}, {(s, u), (u, t), (u, v), (s, v), (v, t)}) with
cost functions `(s,u)(x) = `(v,t)(x) = h(x),
σ(s,u)(x) = σ(v,t)(x) = 0, `(u,t)(x) = `(s,v)(x) = 2 + r̄+r0

2 ,
and σ(u,t)(x) = σ(s,v)(x) = 0, and `(u,v)(x) = 1 and
σ(u,v)(x) = 1. The instance is shown in Figure 2.

The heterogeneous equilibrium g routes the d0 units that
have r = r0 through the zig-zag path, i.e. path s, u, v, t; the
rest of the flow is split between the upper and lower paths
s, u, t and s, v, t, and has Cht(g) = 3 + r̄. The homogeneous
equilibrium f splits the flow between the upper and lower
paths and has Chm(f) = 3 + r̄+r0

2 < 3 + r̄ = Cht(g).

4The proposition remains true even if we are restricted to only
using affine functions.
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Theorem 2. If G is not series-parallel, then for any strictly
heterogeneous demand there are cost functions for which
Cht(g) > Chm(f).

Proof sketch. IfG is not series-parallel then the Braess graph
can be embedded in it (see e.g. [Valdes et al., 1979]). Thus,
starting from the Braess network GB , by subdividing edges,
adding edges and extending one of the terminals by one
edge, we can obtain G. Fixing such a sequence of oper-
ations, for the given heterogeneous demand, we start from
the Braess instance given by Proposition 1 and apply the se-
quence of operations one by one, so that, throughout the pro-
cedure, there are exactly 3 paths that correspond to the upper,
lower and zig-zag paths of Proposition 1, with corresponding
costs, and all other paths have some very large costs. Then,
Cht(g) > Chm(f) follows exactly as in Proposition 1.

4 Topology of Multi-Commodity Networks
for which Diversity Helps

In this section we fully characterize the topology of multi-
commodity networks for which, with any choice of hetero-
geneous average-respecting demand and edge functions, di-
versity helps. Because of Theorem 2, if we require diversity
to help on any instance on G, then for any commodity i, Gi
needs to be series-parallel. Yet, as we shall see in Proposi-
tion 2, this is not enough. We also need to understand the
overlaps of the Gi’s. It turns out that the allowable overlaps
are exactly captured by the topology of block-matching net-
works (Theorems 3 and 4).

4.1 Sufficiency
Using Theorem 1, we can obtain an analogous theorem for
the multi-commodity case.

Theorem 3. Let G be a k-commodity block-matching net-
work. Then, for any instance on G with average-respecting
demand Cht(g) ≤ Chm(f).

Proof sketch. Consider Commodity i and let Gi =
siB1v1 . . . vbi−1Bbiti be its block representation. Consider
an arbitrary Bj with terminals vj−1 and vj . Because G is
block-matching, any other Commodity l either contains Bj
as a block in its block representation or contains none of its
edges. Also, recall that, as explained in the preliminaries sec-
tion, if Gl contains Bj , it has the same terminals vj−1 and
vj . This implies that under any routing of the demand, ei-
ther all of l’s demand goes through Bj or none of it does.
This means that under both equilibria g and f , the total traffic
routed from vj−1 to vj through Bj is the same which fur-
ther implies that, if restricted to the block, the cost of the
heterogeneous equilibrium is less than or equal to that of
the homogeneous equilibrium: Cht(g)

∣∣∣
Bj

≤ Chm(f)
∣∣∣
Bj

.

On the other hand, if we let B be the set of all the blocks
of all commodities, then Cht(g) =

∑
B∈B C

ht(g)
∣∣∣
B

and

Chm(f) =
∑
B∈B C

hm(f)
∣∣∣
B

which using the previous in-
equality proves the result.

Figure 3: The network for Proposition 2

4.2 Necessity
To derive the necessity we first give an example of a non-
block-matching network for which diversity hurts (Proposi-
tion 2). Then, after giving some properties for commodities
for which the corresponding Gi’s are series-parallel (Lem-
mas 3 and 4), we mimic the above example to obtain con-
tradicting instances for networks that are not block-matching
and thereby prove Theorem 4.

Let G be the following 2-commodity network, depicted in
Figure 3. G2, the subnetwork for Commodity 2, consists of
a simple s2–t2 path P2, while G1, the subnetwork for Com-
modity 1, is formed from two simple s1–t1 paths named P1

and P3; P1 and P2 are disjoint, while P2 and P3 share a single
edge, named e2. Finally e1 is an edge on P1 but not on P3.

Proposition 2. There exist edge functions and demands onG
for which diversity hurts.

Proof. Let d1 = d2 = 1 be the total demands for Com-
modities 1 and 2 respectively. Let G1’s demand consist of
3
4 single-minded players (i.e., with diversity parameter equal
to 0) and 1

4 players with diversity parameter equal to 4, and
let G2’s demand be homogeneous with diversity parameter
equal to 1. To all edges other than e1 and e2, assign latency
and deviation functions equal to 0. Assign edge e1 the con-
stant latency function `1(x) = 1 and the constant deviation
function σ1(x) = 2. Assign edge e2 the constant deviation
σ2 = 0, and as latency function any `2 that is continuous and
strictly increasing, with `2(1) = 3 and `2( 5

4 ) = 9.
The equilibrium costs depend only on the flow through

edges e1 and e2, as all other edges have cost 0. Also note
that at least 1 unit of flow will go through e2 as this is the
only route for G2’s demand.

In the heterogeneous equilibrium g of this instance, 3
4 units

of flow are routed through e1, and 1 + 1
4 units of flow are

routed through e2, givingCht(g) = 1· 34d1 +9· 14d1 +9·d2 =
12. In the homogeneous equilibrium f , G1’s demand uses
only P1. Thus, Chm(f) = 3 · d1 + 3 · d2 = 6 < Cht(g).

Remark 1. Proposition 2 would still hold if the common por-
tion of P1 and P3, and the portion of P2 after e2, both had
positive costs instead of zero. This is close to the way we
will mimic this instance in the proof of Theorem 4. The idea,
in both equilibria, is to route all the flow of Commodity 1
through two paths, P1 and P3, each containing one of e1 or
e2, and to route the flow of Commodity 2 through a path, P2,
that contains e2. This is done by putting (relatively) big con-
stants as latency functions on all other edges that depart from
vertices of the corresponding paths up to the point where e1

or e2 is reached, though some care is needed. Then, the re-
lation of the equilibria costs will follow as in Proposition 2,
as the exact same edge functions will be used for edges e1
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and e2. This will be specified precisely when we give the con-
struction.

Next, we state some useful properties of series-parallel net-
works that are based on their block structure. They will be
used in the proof of Theorem 4.

Lemma 3. Let i be a commodity of network G and suppose
that Gi is series-parallel.

(i) Let B1 and B2 be distinct blocks of Gi, with B1 preced-
ing B2. There is no edge in G from an internal vertex of B1

to an internal vertex of B2.
(ii) Let u and v be vertices in Gi. If (u, v) is an edge of G

then there is a simple si–ti path in Gi that contains both u
and v (not necessarily in that order).

Lemma 4. Let i be a commodity of network G and suppose
that Gi is series-parallel with block representation Gi =
siB1v1 . . . vb−1Bbti. Let w be a vertex of Bk for some
k ∈ [b].

(i) Suppose that w 6= vk−1, and let P be an arbitrary path
from a vertex u, in a block A that precedes Bk in the block
representation, to vertex w. Let w′ be the first vertex on P
that is an internal vertex in Bk, if any. Then P must include
an edge of Bk exiting vk−1 prior to visiting w′.

(ii) Suppose that w 6= vk. Then any path of G from w to a
vertex u in a block succeedingBk has to first enter vk through
one of its incoming edges that belong to Bk, before going to
a block C that succeeds Bk in the block representation.

(iii) Every simple vk−1–vk path in G is completely con-
tained in Bk.

Theorem 4. Let G be a multi-commodity network. If diver-
sity helps for every instance on G with average-respecting
demand (i.e. for any heterogeneous equilibrium g and any
homogeneous equilibrium f , Cht(g) ≤ Chm(f)), then G is
a block-matching network.

Proof. Let G have k commodities. First, we note that for any
i ∈ [k], Gi is a series-parallel network. For otherwise, by
Proposition 1, there is some heterogenous players’ demand
for Commodity i and edge functions forGi such that diversity
hurts. Letting all other commodities have zero demand yields
an instance on G for which diversity hurts, a contradiction.

To prove that G is block-matching, it remains to show
that for any two commodities i and j of G, for any block
B of Gi and any block D of Gj , either E(B) = E(D) or
E(B) ∩E(D) = ∅. To reach a contradiction we assume oth-
erwise, i.e. WLOG we assume that for Commodities 1 and 2
there exist two blocks B of G1 and D of G2 that share some
common edge, and at the same time, WLOG, there is an edge
in B that is not in D. The latter implies that B is not a sin-
gle edge, and thus it must be a parallel combination of two
series-parallel networks.

Let u and v be the endpoints of B. We first prove that all
simple s2–t2 paths of G2 that share an edge with B first tra-
verse an edge starting at u before traversing any other edge
of B (Proposition 3). Then we prove that all s2–t2 sim-
ple paths of G2, that share an edge with B, reach u before
traversing any internal vertex of B (Proposition 4). Since
E(B) ∩ E(D) 6= ∅, there is a simple s2–t2 path of G2 that
shares an edge withB. Proposition 4 implies that this path,Q,

Figure 4: Illustrating why P2 6= P in general in Proposition 3

has a subpath consisting of a simple s2–u path Q1 that shares
no internal vertex with B. A completely symmetric argument
shows that Q has a subpath consisting of a simple v–t2 path
Q3 that shares no internal vertex with B. 5 But then, for any
simple u–v path Q2 inside B, the path Q′ = Q1, Q2, Q3 is a
simple s2–t2 path, and thus it belongs to G2. But this implies
that all the edges ofB belong toG2 and becauseB is a block,
these edges will all be in a single block of G2. This block
must be block D, since by assumption E(B) ∩ E(D) 6= ∅,
contradicting the existence of an edge in B and not in D.
Therefore, once these propositions are proved, the theorem
will follow.

The proofs of these propositions rely on the same idea. For
each proposition, assuming that it does not hold, we construct
instances, i.e. we choose demand and edge functions for G,
such that diversity hurts, contradicting the assumption that
for any instance on G diversity helps. The construction of the
contradicting instances is based on Remark 1.

Proposition 3. Let P be a simple s2–t2 path in G2 which
shares an edge with B. The first edge on P in B departs from
u, i.e. has the form (u, x) for some x in B.

Proof. Let B be the parallel combination of H1 and H2.
WLOG we may assume that P only visits vertices ofG1, plus
s2 and t2, as we may treat subpaths of P that have vertices
that lie outside G1 as simple edges. Let w be the first inter-
nal vertex of P that belongs to B, and WLOG suppose that
w lies in H1. By Lemma 3(ii), the edge of P exiting w will
either go toward t1, i.e. forward, and thus traverse an edge
of B for the first time (recall also Lemma 4(ii)), or will go
toward s1, i.e. backward, either staying in H1 or going back
to one of the preceding blocks of B. If it goes to one of the
preceding blocks of B, then by Lemma 4(i), it has to traverse
an edge ofB departing from u in order to re-enter the internal
portion of B (recall that P has some edge in B) and then the
proposition would hold. The remaining possibility is that the
backward edge leads to another internal vertex of H1. How-
ever, we can only repeat this process finitely often so if the
proposition does not hold, it must be that P eventually tra-
verses a first edge in B that departs from an internal vertex of
H1. In this case we will reach a contradiction by creating an
instance where diversity hurts. This instance will be based on
the instance of Proposition 2.

We would like to use the following construction at this
point. Let P2 be the path P resulting from the discussion in

5For the symmetric argument, simply reverse all the arcs and the
directions of the demand.
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the previous paragraph and let e2 be the first edge on P that
lies inB. Then let P3 be an s1–t1 path through e2. Recall that
e2 lies in H1. Now let P1 be an s1–t1 path that goes through
H2 and let e1 be an arbitrary edge on P1 inB. The intention is
to force the s1–t1 flow to use just paths P1 and P3, while the
s2–t2 flow uses just path P2, at the same time ensuring that
diversity is harmful as in Proposition 2. Consider the follow-
ing edge functions. e1 and e2 receive the same edge functions
as in Proposition 2. The other edges all receive a constant de-
viation function equal to 0. For their latency functions, edges
on P1 and P3 that are in B receive 0 functions. Out-edges
from P1 and P3 that lie in B all receive functions of constant
value N even if they are on P2. All as yet unassigned edges
on P2 receive 0 functions, and the remaining edges are all
given functions of constant value M � N . However, the ex-
ample in Figure 4 shows that there is a zero cost s2–t2 path
(s2, w, z, t2), which defeats the construction.

We fix this problem by defining the path P2 as follows. Let
x be the first vertex on path P (in the example, this is w) such
that there is an edge (x, y) in B and such that there is a y–t2
path Py–t2 which does not go through any earlier vertex on P
(i.e. any vertex from s2 to x inclusive). Then (x, y) is chosen
to be e2, and P2 is defined to be the simple path comprising
the initial portion of P up to x, followed by e2, followed by
Py–t2 (it may be that P2 = P ). Now the above cost functions,
modulo a few details, achieve the desired contradiction.

Proposition 4. All simple s2–t2 paths of G2 that share an
edge with B reach u before any internal vertex of B.

The proof is largely similar to that of Proposition 3.
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When Does Diversity of User Preferences Improve Outcomes in Selfish
Routing??

Richard Cole1, Thanasis Lianeas2, and Evdokia Nikolova2
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Abstract. We seek to understand when heterogeneity in user preferences yields improved outcomes in terms of
overall cost. That this might be hoped for is based on the common belief that diversity is advantageous in many
settings. We investigate this in the context of routing. Our main result is a sharp characterization of the network
settings in which diversity always helps, versus those in which it is sometimes harmful.
Specifically, we consider routing games, where diversity arises in the way that users trade-off two criteria (such as
time and money, or, in the case of stochastic delays, expectation and variance of delay). Our main contributions—a
conceptual and a technical one— are the following:
1) A participant-oriented measure of cost in the presence of user diversity, together with the identification of the
natural benchmark: the same cost measure for an appropriately defined average of the diversity.
2) A full characterization of those network topologies for which diversity always helps, for all latency functions
and demands. For single-commodity routings, these are series-parallel graphs, while for multi-commodity routings,
they are the newly-defined “block-matching” networks. The latter comprise a suitable interweaving of multiple
series-parallel graphs each connecting a distinct source-sink pair.
While the result for the single-commodity case may seem intuitive in light of the well-known Braess paradox, the
two problems are different: there are instances where diversity helps although the Braess paradox occurs, and vice-
versa. But the main technical challenge is to establish the “only if” direction of the result for multi-commodity
networks. This follows by constructing an instance where diversity hurts, and showing how to embed it in any net-
work which is not block-matching, by carefully exploiting the way the simple source-sink paths of the commodities
intersect in the “non-block-matching” portion of the network.

1 Introduction

People are inherently diverse and it is a common belief that diversity helps. In one of the central themes of
algorithmic game theory—the tension between selfish behavior and social optimality—can diversity of user
preferences help to bring us closer to the coveted social optimality? We provide an answer to this question
in the context of non-atomic selfish routing, where diversity naturally arises in the way users trade-off two
criteria, for example, time and money, or, in the presence of uncertain delays, expectation and variance of
delay.

Diversity is reflected in combining the two criteria via different individual coefficients, which we call
the ‘diversity parameters’. We consider a linear combination of the two criteria, as in the literature on tolls
where users minimize travel time plus tolls, e.g., [Beckmann et al., 1956; Fleischer et al., 2004] or the
literature on risk-averse selfish routing where users minimize expected travel time plus variance ([Nikolova
and Stier-Moses, 2014]), or more generally travel time plus a deviation function ([Kleer and Schäfer, 2016]).

We are interested in understanding whether heterogeneity in user preferences improves collective out-
comes or makes them worse. As we shall see, there is no unique answer. Rather, it depends on the setting. To
address our question we need to specify how to measure the cost of an outcome, and define our comparison
point, namely a benchmark setting with no user heterogeneity. As explained above, to measure the cost of
an outcome, we treat a user’s cost as the sum of two terms associated with two criteria: If we let `P denote
the cost of one criterion (e.g., the latency) over a path P , and vP be the cost of the second criterion, then

? Part of this work was completed while the authors were visiting the Simons Institute for the Theory of Computing, Berkeley,
CA. Research partially supported by NSF grants CCF-1527568, CCF-1216103, CCF-1350823, CCF-1331863, CCF 1733832.
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the overall cost is given by `P + r · vP , where r is our diversity parameter. The special case of r = 0 cor-
responds to indifference to the second criterion and results in the classic selfish routing model where users
simply minimize travel time.

A first approach to measuring the effect of diversity might be to compare the cost of an outcome with
r = 0 (i.e., just the total latency) to that with other values of r, including possibly mixed values of r across
the population being routed. However, this approach does not pinpoint the gains and losses from user het-
erogeneity as opposed to user homogeneity; rather, it (mostly) pinpoints the gains and losses depending on
whether players are affected by the second criterion or not. Instead, we focus on the sum of the costs incurred
by the users as measured by their cost functions, and compare costs incurred by a heterogeneous population
of users to those incurred by an equivalent population of homogeneous users. What are equivalent popu-
lations? Suppose the heterogeneous population’s diversity profile is given by a population density function
f(r). Then, we define the corresponding homogeneous population to have the single diversity parameter
r̄ =

∫
rf(r)dr. In addition, we require the two populations to have the same size, in the sense that the total

source-to-sink flows that they induce are equal.
For this setting, we completely characterize the graphs for which user heterogeneity does no harm, in

the sense of only reducing the total cost as perceived by users, for both the case of a single commodity (i.e.
one source-to-sink flow) and for multiple commodities (i.e. flows between multiple source-sink pairs). For
the single-commodity case, these graphs are exactly the series-parallel graphs, with the source being the
“start” vertex of the graph, and the sink being the “terminal” vertex. For the multi-commodity case, each
commodity flows over a series-parallel graph, and further these subgraphs need to overlap in a particular
manner which we specify later, in the formal statement of results. For all other graphs, we provide examples
of desired source-to-sink demands for which the resulting equilibrium flows are more expensive than the
flows in the corresponding homogeneous problem.

Related work. To the best of our knowledge this is the first work that methodically compares the effects
of heterogeneity and homogeneity in user preferences for a self-interested routing population. In fact, in
the broader area of algorithmic game theory, this seems to be the first time that a question of this type has
been considered, with the exception of Chen et al. [2014]. 1 Algorithmic game theory research mentioning
diversity exists in the context of the theory of evolution (e.g., Mehta et al. [2015]; Chastain et al. [2013]),
which is very different from our focus.

Since we provide attitudes to time versus money and time versus risk as motivating examples for user
diversity, we briefly mention related work on tolls and on risk-averse selfish routing. Regarding the latter,
there are multiple ways to model how the behavior of players incorporates risk when uncertainty is present
(see e.g. Rockafellar [2007]). Piliouras et al. [2013] studied the effect that different risk attitudes may have
on a system’s performance at equilibrium. They did so by examining the price of anarchy (i.e. the ratio of
the cost at equilibrium to the optimal cost) for different risk formulations. Nikolova and Stier-Moses [2015]
and Lianeas et al. [2016] studied the degradation of a network’s performance due to risk aversion. This kind
of degradation is captured by the price of risk aversion, which compares the cost of the equilibrium when
players are risk-averse to the equilibrium cost when players are risk-neutral. The above works assumed that
all players have the same risk averse preferences, which we call risk homogeneity; they do not offer any
indication as to whether and under what circumstances risk heterogeneity improves or harms a system’s
performance. In contrast, Fotakis et al. [2015] considered games with heterogeneous risk-averse players.
They showed how uncertainty may and can be used to improve a network’s performance, but the effects of
heterogeneity as opposed to homogeneity were left unexamined. Regarding the related literature on tolls,
early results (e.g., Beckmann et al. [1956]) showed that tolls can help implement the social optimum as an
equilibrium, when users all have the same linear objective function combining time and money. Much more

1 In a different setting, Chen et al. [2014] show how diversity may affect a bound they prove for the price of anarchy on parallel
link networks.



recently, these results were extended to the case where users trade-off travel time and money differently, by
Cole et al. [2003] and Fleischer [2005] for the single commodity case, and by Karakostas and Kolliopoulos
[2004b] and Fleischer et al. [2004] for the multicommodity case. We remark that in the above works, apart
from Cole et al. [2003], the social welfare is defined as the total travel time, whereas in our work we consider
the total user cost, which encapsulates both criteria. This, for example, is also the case for Christodoulou et
al. [2014] and Karakostas and Kolliopoulos [2004a]. We further note that if the social welfare is defined as
the total travel time then there are simple instances on parallel link graphs where diversity is harmful.

Characterizing the topology of networks that satisfy some property is a common theme in computer sci-
ence. Relevant to our work, Epstein et al. [2009] characterized the topology of single-commodity networks
for which all Nash equilibria are social optima (under bottleneck costs), and Milchtaich [2006] characterized
the topology of single-commodity networks which do not suffer from the Braess Paradox for any cost func-
tions. Chen et al. [2015] fully characterized the topology of multi-commodity networks that do not suffer
from the Braess paradox. These characterizations appear similar to ours, although there does not seem to be
any other connection between the two problems, as (i) there are instances where diversity helps while the
Braess Paradox occurs and others where diversity hurts but the paradox does not occur, and (ii) the Braess
Paradox may occur in series-parallel networks when considering selfish routing with heterogeneity in user
preferences, which is not the case for the classic selfish routing model.

In the following works, the characterizing topology for the corresponding question (for a single com-
modity) is similar to ours. Fotakis and Spirakis [2008] considered atomic games and proved that series-
parallel networks are the largest class of networks for which strongly optimal tolls are known to exist.
Nikolova and Stier-Moses [2015] considered homogeneous agents and a social cost function that does not
account for the second criterion; They showed that series-parallel networks admit the best bound on the
degradation of the network due to risk aversion. Theorem 4 of Acemoglu et al. [2016], proves that series-
parallel networks are the characterizing topology for what they call the Informational Braess Paradox with
Restricted Information Sets; this theorem compares the cost of one agent type before and after more infor-
mation is revealed to agents of that type, but does not consider the change in the cost of other agent types.
In contrast, our work considers non-atomic games with heterogeneous agents and bounds the overall costs
faced by the collection of agents. Most relevant to our work is Meir and Parkes [2014] and its Theorem
3.1 as it implies that for series-parallel networks the cost of an agent of average parameter only increases
when switching from the heterogeneous instance to the corresponding homogeneous one and thus for our
sufficiency theorems, one is left to prove that the heterogeneous equilibrium cost is no greater than the cost
of an agent of average parameter (though we give a different proof).

Contribution. We fully characterize the topology of networks for which diversity is never harmful, regard-
less of the demand size and the distribution of the diversity parameter (discrete or continuous). We do so
both for single and multi-commodity networks.

For single-commodity networks it turns out that this topology is that of series-parallel networks. In
Theorem 1, we show that if the network is series-parallel, then diversity only helps for any choice of demand
and edge functions. The key observation is that there is a path for which the homogeneous flow is at least as
large as the heterogeneous flow. As the cost of the homogeneous flow is the same on all used paths, while the
cost of each unit of heterogeneous flow is lowest on the path it uses, one can then deduce that the cost of the
heterogeneous flow is at most that of the homogeneous flow. To show necessity, we first provide an instance
on the Braess graph for which diversity is harmful, and then show how to embed it in any non-series-parallel
graph.

In multi-commodity networks, by the result above, each commodity must route its flow through a series-
parallel subnetwork. But, as Proposition 2 shows, this is not enough, and the way in which these series-
parallel networks overlap needs to be constrained. The necessary constraint is exactly captured by the class



of block-matching networks, defined in this paper. Sufficiency in this case then follows quite easily from the
same result for the single commodity case.

The main technical challenge is to show necessity. To this end, assuming diversity does no harm, we
show, via a case analysis, how the subnetworks of the commodities may overlap. First, in Proposition 2, we
give an instance on a network of two commodities and three paths for which diversity hurts. Then we mimic
this instance on a general network. The difficult part is to choose the corresponding paths for the mimicking,
so that, in the created instance, all the flow under both equilibria goes through these paths. The challenge is
that the commodities’ subnetworks may overlap in subtle ways.

2 Preliminaries

We consider a directed multi-commodity network G = (V,E) with an aggregate demand of dk units of
flow between origin-destination pairs (sk, tk) for k ∈ K. We let Pk be the set of all paths between sk
and tk, and P := ∪k∈KPk be the set of all origin-destination paths. We let [m] denote {1, . . . ,m}. We
assume that K = [m], for some m. The users in the network—i.e., the players of the game—must choose
routes that connect their origins to their destinations. We encode the collective decisions of users in a flow
vector f = (fπ)π∈P ∈ R|P|+ over all paths. Such a flow is feasible when demands are satisfied, as given by
constraints

∑
π∈Pk

fπ = dk for all k ∈ K. For simplicity, we let fe denote the flow on edge e; note that
fe =

∑
π:e∈π fπ. When we need multiple flow variables, we use the analogous notation g, gπ, ge.

The network is subject to congestion that affects two criteria the players consider. These two criteria are
modeled by two edge-dependent functions that take as input the edge flow fe of e, for each edge e: a latency
function `e(x) assumed to be continuous and non-decreasing, and a deviation function σe(x) assumed to
be continuous (but not necessarily non-decreasing). Function `e(·) represents the first criterion while σe(·)
represents the second criterion.

Players choose paths according to a linear combination of the first criterion and the second criterion
along the route. Throughout the paper we refer to the players’ objective as the cost along a route. Formally,
for a given user, on letting `π(f) =

∑
e∈π `e(fe) and σπ(f) =

∑
e∈π σe(fe), for a constant r ≥ 0 that

quantifies the user diversity parameter, the user’s cost along route π under flow f is

crπ(f) =
∑

e∈π
`e(fe) + r

∑

e∈π
σe(fe) = `π(f) + rσπ(f) (1)

We assume that for any edge and for any player’s diversity parameter r, the functions `e and `e+rσe are non-
decreasing. We note that if there is an upper bound rmax on the possible values of the diversity parameter r,
then the latter assumptions do not require σe to be non-decreasing. This is desirable because, for example,
in risk-averse selfish routing where σe models the variance, σe can be a decreasing function of the flow.

Players Heterogeneity. We assume that the diversity parameter distribution rk for each commodity k is
heterogeneous, i.e. there may be more than one value of the diversity parameters r for the players routing
commodity k. We use the term single-minded to refer to players with r = 0.

We consider two cases: where the distribution of the diversity parameter among the players is discrete
and where it is continuous.2 For a discrete distribution of, say, n discrete values rk1 , . . . , r

k
n, the demand

dk is a vector dk = (dk1, . . . d
k
n) where each dki denotes the total demand of Commodity k with diversity

parameter rki . We let dk denote Commodity k’s total demand, dk =
∑n

i=1 d
k
i . For a continuous distribution

with infimum and supremum rkmin and rkmax respectively, the demand dk is given by a density function
ρk : [rmin, rmax] → R≥0 such that for any two values r1 ≤ r2 the total demand with diversity parameter

2 In fact, for our results, we could only focus on the discrete case, though we would first have to prove that any continuous case
instance has a corresponding discrete case instance such that their homogeneous equilibria have the same costs, as do their
heterogeneous equilibria.



r1 ≤ r ≤ r2 has magnitude
∫ r2
r1
ρk(r)dr, and dk =

∫ rkmax

rkmin

ρk(r)dr. Variables f rπ and f re denote the flow of
diversity parameter r on path π and edge e, respectively.

Formally, an instance is described by the tuple (G, {(`e, σe)}e∈E , {(sk, tk)}k∈K , {dk}k∈K , {rk}k∈K)
for the discrete case, where rk = (rk1 , . . . , r

k
n) is the vector of different diversity parameters encountered in

the heterogeneous population, and by the tuple (G, {(`e, σe)}e∈E , {(sk, tk)}k∈K , {ρk}k∈K) in the continu-
ous case.

Equilibrium flows. The Wardrop equilibrium of an instance is a flow f such that for every k ∈ K, for every
path π ∈ Pk with positive flow, and any diversity parameter r on it, the path cost crπ(f) ≤ crπ′(f) for all
paths π′ ∈ Pk .

From here on, we shall refer to the Wardrop equilibrium as the equilibrium. Our goal is to compare the
total user cost at the equilibrium of an instance with a population that has heterogeneous diversity parame-
ters, to the total user cost at the equilibrium of the same instance but with the population of each commodity
keeping its magnitude changed to be homogeneous, with diversity parameter equal to the expected value
of the diversity parameter distribution in the heterogeneous population of the commodity. To differentiate
more easily, for a heterogeneous instance we call the former the heterogeneous equilibrium and the latter the
(corresponding) homogeneous equilibrium. We usually denote the heterogeneous equilibrium by g and the
homogeneous equilibrium by f . The existence of both equilibria is guaranteed by e.g. Schmeidler [1973,
Theorem 2]. We note here that in general we do not need uniqueness of equilibria, neither for the edge costs
nor for the edge flows. Our results hold for any arbitrary pair of heterogeneous and homogeneous equilibria
of the corresponding instances. Also, as for classic routing games, without loss of generality (WLOG) we
may assume that equilibrium flows are acyclic.

Total Costs. For a heterogeneous equilibrium flow vector g, in the discrete case, the heterogeneous total cost
of Commodity k is denoted by Ck,ht(g) =

∑
j=1...n d

k
j c
k,rkj (g) where ck,r

k
j (g) denotes the common cost at

equilibrium g for players of diversity parameter rkj in Commodity k. In the continuous case, the heteroge-

neous total cost of Commodity k is denoted by Ck,ht(g) =
∫ rkmax

rkmin

ρk(r)c
k,r(g)dr, where ck,r(g) denotes the

common cost at equilibrium g for players of diversity parameter r in Commodity k. The heterogeneous total
cost of g is then Cht(g) =

∑
k∈K C

k,ht(g). For the corresponding homogeneous equilibrium flow f , i.e.
the instance with diversity parameter r̄k, where r̄k denotes the average diversity parameter for Commodity
k, players of Commodity k share the same cost cr̄

k
(f). Then, the homogeneous total cost of Commodity

k under f is Ck,hm(f) = dkc
r̄k(f), and the homogeneous total cost of f is Chm(f) =

∑
k∈K C

k,hm(f).
Finally, if Cht(g) ≤ Chm(f), we say that diversity helps; if not, we say that diversity hurts. For our charac-
terization to be meaningful, we assume an average-respecting demand, i.e., a demand where ∀i, j : r̄i = r̄j .
Otherwise, diversity may hurt in simple instances, e.g., with two parallel links and two commodities (see
Appendix A.1 for an example).

Networks. For a network G we let V (G) and E(G) denote its vertex set and edge set, respectively.
A directed s–t network G is series-parallel if it consists of a single edge (s, t), or it is formed by the se-

ries or parallel composition of two series-parallel networks with terminals (s1, t1) and (s2, t2), respectively.
In a series composition, t1 is identified with s2, s1 becomes s, and t2 becomes t. In a parallel composition,
s1 is identified with s2 and becomes s, and t1 is identified with t2 and becomes t. The internal vertices of a
series-parallel network G are all its vertices other than its terminals.

An s–t series-parallel network may be represented using a sequence of networksBj connected in series,
where each Bj is either a single edge or two series-parallel networks connected in parallel3. Given a series-
parallel network H , we can write H = sB1v1B2v2 . . . Bb−1vb−1Bbt, where for any j and triple xBjy,
x and y are the terminals of the series-parallel network Bj , and Bj is either a single edge or a parallel

3 Note that this definition captures the simple case of many edges connected in parallel.



combination of two series-parallel networks. We refer to the Bj’s as blocks, the prescribed representation
as the block representation of H , and the vi’s as separators, as they separate s from t. Two series-parallel
networks G1 and G2 are said to be block-matching if for every block B of G1 and every block D of G2,
either E(B) = E(D) or E(B)∩E(D) = ∅. Note that E(B) = E(D) implies that B and D have the same
terminals and direction, as for either B or D, the source vertex will have only outgoing edges toward the
internal vertices and the target vertex will have only incoming edges from the internal vertices.

For a k-commodity network G, let Gi be the subnetwork of G that contains all the vertices and edges
of G that belong to a simple si–ti path for Commodity i. In other words, Gi is the subnetwork of G for
Commodity i that equilibria flows will consider, as they are, WLOG, acyclic. A multi-commodity network
G is block-matching if for every i, Gi is series-parallel, and for every i, j, Gi and Gj are block-matching.
An example is given in Figure 1.

Fig. 1. A block-matching network of 2 commodities. G1 and G2 are series-parallel and their block representations are G1 =
s1AuBvCwDt1 and G2 = s2EwDt1FuBvGt2. G1 and G2 share exactly blocks B and D and do not share any edge on any
other of their blocks. If we add an edge from s1 to t1, then the network stops being block-matching since G1 will be a block by
itself and it will not match any of the blocks of G2.

3 Topology of Single-Commodity Networks for which Diversity Helps

In this section, we fully characterize the topology of single-commodity networks for which, with any choice
of heterogeneous demand and edge functions, diversity helps. WLOG we may restrict our attention to single-
commodity networks whose edges all belong to some simple source-destination path as only these edges are
going to be used by the (WLOG, acyclic) equilibria and thus all other edges can be discarded. It turns out
that this topology is exactly that of series-parallel networks (Theorems 1 and 2). Ommited proofs can be
found in Appendix A.

3.1 Series Parallel Implies Diversity is Helpful

Throughout this section we will be considering a heterogeneous instance G on an s–t series-parallel network
G. We let F denote the corresponding homogeneous instance. We let g denote an equilibrium flow for G
and f an equilibrium flow for F . Finally, we let Cht(g) denote the cost of flow g and Chm(f) the cost of
flow f . Although redundant, we keep the superscripts as a further reminder of the flow type at hand.

The key observation is that there is a path P used by flow f such that for every edge in P , fe ≥ ge,
and hence for any r ∈ [0, rmax], crp(f) ≥ crp(g) (Lemmas 14 and 2). We then deduce our result: Cht(g) ≤
Chm(f) (Theorem 1).

4 Lemma 1 is similar to [Milchtaich, 2006, Lemma 2], though for completeness we include its proof here.



Lemma 1. Let G be an s–t series-parallel network and let x and y be flows on G that route d1 and d2

units of traffic respectively, with d1 ≥ d2 and d1 > 0. Then, there exists an s–t path P such that for all
e ∈ P, xe > 0 and xe ≥ ye.
Lemma 2. There exists a path P used by f such that for any r ∈ [0, rmax], crp(g) ≤ crp(f).

Proof. Flows f and g have the same magnitude on the series-parallel network G. Applying Lemma 1 with
x = f and y = g implies that there exists an s–t path P such that for all e ∈ P, fe > 0, implying that
WLOG P is used by f , and fe ≥ ge. By assumption, for any r ∈ [0, rmax], `e + rσe is non-decreasing,
and thus for all e ∈ P, `e(fe) + rσe(fe) ≥ `e(ge) + rσe(ge). Consequently,

∑
e∈P

(
`e(fe) + rσe(fe)

)
≥∑

e∈P
(
`e(ge) + rσe(ge)

)
⇔ crp(g) ≤ crp(f) as needed.

Theorem 1. Cht(g) ≤ Chm(f).5

Proof. Since G is a series-parallel network, on setting r̄ = E[r] and then applying Lemma 2, we obtain that
there is a path P used by f such that

`p(f) + r̄σp(f) ≥ `p(g) + r̄σp(g) (2)

WLOG we can assume that the total demand d = 1. We first bound the total cost of g in terms of the
cost of path P under g and then we use (2) to further bound it in terms of the cost of path P under f . The
latter equals the cost of f , as the demand is equal to 1.

Consider the heterogeneous equilibrium flow g. By the equilibrium conditions, for any player of diversity
parameter r, for any r, the cost she incurs with flow g is cr(g) ≤ ∑e∈p `e(ge) + r

∑
e∈p σe(ge). In other

words, there is no incentive to deviate to path P (if not already on it). Thus, if the diversity parameters are
discrete, given by a demand vector (d1, . . . , dk) of diversity parameters (r1, . . . , rk),

Cht(g) ≤
∑

i=1...k

di

(∑

e∈p
`e(ge) + ri

∑

e∈p
σe(ge)

)
= `p(g) + r̄σp(g),

with the last equality following as the total demand is 1 and the average diversity parameter is r̄ =
∑k

i=1 diri.
If instead the diversity parameters are continuously distributed on the demand with density function ρ(r),
with rmin and rmax being their infimum and supremum respectively,

Cht(g) ≤
∫ rmax

rmin

ρ(r)
(∑

e∈p
`e(ge) + r

∑

e∈p
σe(ge)

)
dr = `p(g) + r̄σp(g),

with the last equality following as the total demand is 1, i.e.
∫ rmax

rmin
ρ(r)dr = 1, and the average diversity

parameter is r̄ =
∫ rmax

rmin
rρ(r)dr. In both the discrete and continuous case, as P is used by f , we have

Chm(f) = `p(f) + r̄σp(f), and applying (2) we obtain

Cht(g) ≤ `p(g) + r̄σp(g) ≤ `p(f) + r̄σp(f) = Chm(f).

3.2 The Series Parallel Condition is Necessary

To prove the necessity of the network being series-parallel, we begin by constructing an instance for which
diversity hurts, i.e. the heterogeneous equilibrium has total cost strictly greater than the total cost of the
homogeneous equilibrium (Proposition 1). Then, in Theorem 2, we show how to embed this instance into
any network that is not series-parallel.

Recall the Braess graph GB , shown in Figure 2.
5 The inequality might be strict. Consider the case of 2 parallel links with (`1(x), σ1(x)) = (1, x) and (`2(x), σ2(x)) = (2, 0),

and 1 unit of flow, half with r = 0 and half with r = 2.



Proposition 1. For any strictly heterogeneous demand on the Braess graph GB , there exist edge functions
(`e)e∈E and (σe)e∈E that depend on the demand, for which Cht(g) > Chm(f). In addition, this remains
true if we are restricted to only using affine functions.

Proof. We may assume WLOG that the demand is of unit size.
Let r̄ be the average diversity parameter and let rmin be the infimum of the diversity parameters’ dis-

tribution. Let r0 be any diversity parameter and let d0 be the total demand with diversity parameter ≤ r0.
Suppose that in addition, rmin ≤ r0 < r̄, and the corresponding d0 satisfies d0 > 0. As the demand is
strictly heterogeneous, there must be such an r0. Later on, r0 will be specified further.

In addition, we let h be any continuous, strictly increasing cost function with h(1
2) = 1 and h(1

2 + d0
2 ) =

1 + r̄−r0
2 .

Consider the Braess graph GB = ({s, u, v, t}, {(s, u), (u, t), (u, v), (s, v), (v, t)}) with cost functions
`(s,u)(x) = `(v,t)(x) = h(x), σ(s,u)(x) = σ(v,t)(x) = 0, `(u,t)(x) = `(s,v)(x) = 2 + r̄+r0

2 , and σ(u,t)(x) =
σ(s,v)(x) = 0, and `(u,v)(x) = 1 and σ(u,v)(x) = 1. The instance is shown in Figure 2.

Fig. 2. The Braess network with the edge functions of Proposition 1. The pair a(x), b(x) on each edge denotes the latency and
deviation functions, respectively.

The heterogeneous equilibrium g routes d0 units of flow through the zig-zag path, i.e. path s, u, v, t;
the rest of the flow is split between the upper and lower paths s, u, t and s, v, t. This follows because with
this routing, for players of diversity parameter r ≤ r0, the zig-zag path costs 2(1 + r̄−r0

2 ) + 1 + r ≤
2(1 + r̄−r0

2 ) + 1 + r0 = 3 + r̄ while the other paths cost 1 + r̄−r0
2 + 2 + r̄+r0

2 = 3 + r̄, and for a player of
diversity parameter r ≥ r0, the upper and lower paths cost 1 + r̄−r0

2 + 2 + r̄+r0
2 = 3 + r̄ while the zig-zag

path costs 2(1 + r̄−r0
2 ) + 1 + r ≥ 2(1 + r̄−r0

2 ) + 1 + r0 = 3 + r̄.
To compute Cht(g), first note that players of diversity parameter r > r0, who have total demand equal

to 1−d0, have cost 3 + r̄, and all players of any diversity parameter r ≤ r0 have cost 2(1 + r̄−r0
2 ) + 1 + r ≥

2(1 + r̄−r0
2 ) + 1 + rmin = 3 + r̄+ rmin − r0. The total cost of g is thus Cht(g) ≥ d0(3 + r̄+ rmin − r0) +

(1− d0)(3 + r̄) = 3 + r̄ + d0(rmin − r0).
The homogeneous equilibrium f uses only the upper and lower paths. This follows because with this

routing, for the average diversity parameter, the upper and lower paths cost 1 + 2 + r̄+r0
2 = 3 + r̄+r0

2 , while
the zig-zag path costs 1 + 1 + r̄ + 1 = 3 + r̄ > 3 + r̄+r0

2 . The total cost of f is thus Chm(f) = 3 + r̄+r0
2 .

Now we further specify r0 so as to ensure Cht(g) > Chm(f). By the above computations, it suffices to
prove the existence of an r0 that satisfies rmin ≤ r0 < r̄ and d0 > 0 and in addition satisfies

3 + r̄ + d0(rmin − r0) > 3 +
r̄ + r0

2
⇐⇒ r̄ − r0

2
+ d0(rmin − r0) > 0.

As r0 (which is < r̄) goes to rmin, the strictly positive quantity r̄−r0
2 increases and the non-positive quantity

d0(rmin − r0) goes to 0 (because d0 decreases and r0 goes to rmin). On the other hand, by definition, rmin

is the infimum of the diversity parameters, and thus for any ε > 0, there is a positive demand with diversity
parameter r ≤ rmin + ε. Therefore, there exists an r0 satisfying the above inequality with rmin ≤ r0 < r̄
and d0 > 0, as needed.

The above construction can be extended to only use affine functions. This can be done for example by
changing function h to the linear function that satisfies h(0) = 0, h(1

2) = A and h(1
2 + d0

2 ) = A+ r̄−r0
2 , and



for that A (in fact, A = r̄−r0
2d0

), only changing `(s,v), `(u,t) and `(u,v) to `(s,v)(x) = `(u,t)(x) = 2A + r̄+r0
2

and `(u,v)(x) = A.

Theorem 2. If G is not series-parallel, then for any strictly heterogeneous demand there are cost functions
for which Cht(g) > Chm(f).

We defer the proof to the appendix. Instead, in the next section, we will enter into the more challenging
construction needed for the multi-commodity case.

4 Topology of Multi-Commodity Networks for which Diversity Helps

In this section we fully characterize the topology of multi-commodity networks for which, with any choice
of heterogeneous average-respecting demand and edge functions, diversity helps. Because of Theorem 2, if
we require diversity to help on any instance on G, then for any commodity i, Gi needs to be series-parallel.
Yet, as we shall see in Proposition 2, this is not enough. We also need to understand the overlaps of the Gi’s.
It turns out that the allowable overlaps are exactly captured by the topology of block-matching networks
(Theorems 3 and 4). Ommited proofs can be found in Appendix A.

4.1 Sufficiency

Using Theorem 1, we can obtain an analogous theorem for the multi-commodity case.

Theorem 3. Let G be a k-commodity block-matching network. Then, for any instance on G with average-
respecting demand Cht(g) ≤ Chm(f).

Proof. Consider Commodity i and let Gi = siB1v1 . . . vbi−1Bbiti be its block representation. Consider
an arbitrary Bj with terminals vj−1 and vj . Because G is block-matching, any other Commodity l either
containsBj as a block in its block representation or contains none of its edges. Also, recall that, as explained
in the preliminaries section, ifGl containsBj , it has the same terminals vj−1 and vj . This implies that under
any routing of the demand, either all of l’s demand goes through Bj or none of it does. This means that
under both equilibria g and f , the total traffic routed from vj−1 to vj through Bj is the same which further
implies that, if restricted to the block, the cost of the heterogeneous equilibrium is less than or equal to
that of the homogeneous equilibrium: Cht(g)

∣∣∣
Bj

≤ Chm(f)
∣∣∣
Bj

. For the latter, recall that the demand is

average-respecting and thus f has a single average parameter. On the other hand, if we let B be the set of
all the blocks of all commodities, then Cht(g) =

∑
B∈B C

ht(g)
∣∣∣
B

and Chm(f) =
∑

B∈B C
hm(f)

∣∣∣
B

which
using the previous inequality proves the result.

4.2 Necessity

To derive the necessity we first give an example of a non-block-matching network for which diversity hurts
(Proposition 2). Then, after proving some properties for commodities for which the corresponding Gi are
series-parallel (Lemmas 3 and 4), we mimic the above example to obtain contradicting instances for net-
works that are not block-matching and thereby prove Theorem 4.

Let G be the following 2-commodity network, depicted in Figure 3. G2, the subnetwork for Commodity
2, consists of a simple s2–t2 path P2, while G1, the subnetwork for Commodity 1, is formed from two
simple s1–t1 paths named P1 and P3; P1 and P2 are disjoint, while P2 and P3 share a single edge, named
e2. Finally e1 is an edge on P1 but not on P3.

Proposition 2. There exist edge functions and demands on G for which diversity hurts.



Proof. Let d1 = d2 = 1 be the total demands for Commodities 1 and 2 respectively. Let G1’s demand
consist of 3

4 single-minded players and 1
4 players with diversity parameter equal to 4, and let G2’s demand

consist of players with diversity parameter equal to 1. To all edges other than e1 and e2, assign latency and
deviation functions equal to 0. Assign edge e1 the constant latency function `1(x) = 1 and the constant
deviation function σ1(x) = 2. Assign edge e2 the constant deviation σ2 = 0, and as latency function any `2
that is continuous and strictly increasing, with `2(1) = 3 and `2(5

4) = 9.

Fig. 3. The network for Proposition 2

The equilibrium costs depend only on the flow through edges e1 and e2, as all other edges have cost 0.
Also note that at least 1 unit of flow will go through e2 as this is the only route for G2’s demand.

In the heterogeneous equilibrium g of this instance, 3
4 units of flow are routed through e1, and 1+ 1

4 units
of flow are routed through e2, as then the single-minded players of G1 compute a cost for P1 equal to 1, and
a cost for P3 equal to 9, and thus prefer P1, while the remaining players of G1 compute a cost equal to 9 for
both P1 and P3, and thus stay on P3 (recall that `2 is strictly increasing). Consequently, the cost Cht(g) of
the heterogeneous equilibrium is Cht(g) = 1 · 3

4d1 + 9 · 1
4d1 + 9 · d2 = 12.

In the homogeneous equilibrium f , G1’s demand is all routed through e1. This is because the average
diversity parameter equals 1 and thus P1 and P3 are both computed to cost 3 (recall again that `2 is strictly
increasing). Thus the cost Chm(f) of the homogeneous equilibrium is Chm(f) = 3 · d1 + 3 · d2 = 6.
Consequently, Cht(g) > Chm(f), as needed.

Remark 1. The result would still hold if the common portion of P1 and P3 had a positive cost instead of
zero cost. Again, it would still hold if the portion of P2 after e2 had a positive cost instead of zero cost. This
is close to the way we will mimic this instance in the proof of Theorem 4. The idea, in both equilibria, is
to route all the flow of Commodity 1 through two paths, P1 and P3, each containing one of e1 or e2, and
to route the flow of Commodity 2 through a path, P2, that contains e2. This is done by putting (relatively)
big constants as latency functions on all the edges that depart from vertices of the corresponding paths up to
the point where e1 or e2 is reached, though some caution is needed. Then, the relation of the equilibria costs
will follow as in Proposition 2, as the exact same edge functions will be used for edges e1 and e2. This will
be specified precisely when we give the construction.

Next, we state some useful properties of series-parallel networks that are based on their block structure
(the proofs are in the appendix). They will be used in the proof of Theorem 4.

Lemma 3. Let i be a commodity of network G and suppose that Gi is series-parallel.
(i) Let B1 and B2 be distinct blocks ofGi, with B1 precedingB2. There is no edge inG from an internal

vertex of B1 to an internal vertex of B2.
(ii) Let u and v be vertices in Gi. If (u, v) is an edge of G then there is a simple si–ti path in Gi that

contains both u and v (not necessarily in that order).

Lemma 4. Let i be a commodity of network G and suppose that Gi is series-parallel with block represen-
tation Gi = siB1v1 . . . vb−1Bbti. Let w be a vertex of Bk for some k ∈ [b].



(i) Suppose that w 6= vk−1, and let P be an arbitrary path from a vertex u, in a block A that precedes
Bk in the block representation, to vertex w. Let w′ be the first vertex on P that is an internal vertex in Bk,
if any. Then P must include an edge of Bk exiting vk−1 prior to visiting w′.

(ii) Suppose that w 6= vk. Then any path of G from w to a vertex u in a block succeeding Bk has to first
enter vk through one of its incoming edges that belong to Bk, before going to a block C that succeeds Bk in
the block representation.

(iii) Every simple vk−1–vk path in G is completely contained in Bk.

Theorem 4. Let G be a multi-commodity network. If diversity helps for every instance on G with average-
respecting demand (i.e. for any heterogeneous equilibrium g and any homogeneous equilibrium f ,Cht(g) ≤
Chm(f)), then G is a block-matching network.

Proof. Let G have k commodities. First, we note that for any i ∈ [k], Gi is a series-parallel network. Oth-
erwise, by Proposition 1, there is some heterogenous players’ demand for Commodity i and edge functions
for Gi such that diversity hurts. By letting all other commodities have zero demand we obtain an instance
on G for which diversity hurts, a contradiction.

To prove thatG is block-matching, it remains to show that for any two commodities i and j ofG, for any
blockB ofGi and any blockD ofGj , eitherE(B) = E(D) orE(B)∩E(D) = ∅. To reach a contradiction
we assume otherwise, i.e. WLOG we assume that for Commodities 1 and 2 there exist two blocks B of G1

and D of G2 that share some common edge, and at the same time, WLOG, there is an edge in B that is
not in D. The latter implies that B is not a single edge, and thus it must be a parallel combination of two
series-parallel networks.

Let u and v be the endpoints of B. We first prove that all simple s2–t2 paths of G2 that share an edge
with B first traverse an edge starting at u before traversing any other edge of B (Proposition 3). Then we
prove that all s2–t2 simple paths of G2, that share an edge with B, reach u before traversing any internal
vertex of B (Proposition 4). Since E(B) ∩ E(D) 6= ∅, there is a simple s2–t2 path of G2 that shares an
edge with B. Proposition 4 implies that this path, Q, has a subpath consisting of a simple s2–u path Q1 that
shares no internal vertex with B. A completely symmetric argument shows that Q has a subpath consisting
of a simple v–t2 path Q3 that shares no internal vertex with B.6 But then, for any simple u–v path Q2 inside
B, the path Q′ = Q1, Q2, Q3 is a simple s2–t2 path, and thus it belongs to G2. But this implies that all the
edges ofB belong toG2 and becauseB is a block, these edges will all be in a single block ofG2. This block
must be block D, since by assumption E(B) ∩ E(D) 6= ∅, contradicting the existence of an edge in B and
not in D. Therefore, once these propositions are proved, the theorem will follow.

The proofs of these propositions rely on the same idea. For each proposition, assuming that it does
not hold, we construct instances, i.e. we choose demand and edge functions for G, such that diversity hurts,
contradicting the assumption that for any instance onG diversity helps. The construction of the contradicting
instances is based on Remark 1, which follows Proposition 2.

Proposition 3. Let P be a simple s2–t2 path in G2 which shares an edge with B. The first edge on P in B
departs from u, i.e. has the form (u, x) for some x in B.

Proof. Let B be the parallel combination of H1 and H2. WLOG we may assume that P only visits vertices
ofG1, plus s2 and t2, as we may treat subpaths of P that have vertices that lie outsideG1 as simple edges. Let
w be the first internal vertex of P that belongs to B, and WLOG suppose that w lies in H1. By Lemma 3(ii),
the edge of P exiting w will either go toward t1, i.e. forward, and thus traverse an edge of B for the first
time (recall also Lemma 4(ii)), or will go toward s1, i.e. backward, either staying in H1 or going back to one
of the preceding blocks of B. If it goes to one of the preceding blocks of B, then by Lemma 4(i), it has to

6 For the symmetric argument, simply reverse all the arcs and the directions of the demand.



Fig. 4. Illustrating why P2 6= P in general in Proposition 3

traverse an edge of B departing from u in order to re-enter the internal portion of B (recall that P has some
edge in B) and then the proposition would hold. The remaining possibility is that the backward edge leads
to another internal vertex of H1. However, we can only repeat this process finitely often so if the proposition
does not hold, it must be that P eventually traverses a first edge in B that departs from an internal vertex of
H1. In this case we will reach a contradiction by creating an instance where diversity hurts. This instance
will be based on the instance of Proposition 2.

We would like to use the following construction at this point. Let P2 be the path P resulting from the
discussion in the previous paragraph and let e2 be the first edge on P that lies in B. Then let P3 be an s1–t1
path through e2. Recall that e2 lies in H1. Now let P1 be an s1–t1 path that goes through H2 and let e1 be
an arbitrary edge on P1 in B. The intention is to force the s1–t1 flow to use just paths P1 and P3, while the
s2–t2 flow uses just path P2, at the same time ensuring that diversity is harmful as in Proposition 2. Consider
the following edge functions. e1 and e2 receive the same edge functions as in Proposition 2. The other edges
all receive a 0 deviation. For their latency functions, edges on P1 and P3 that are in B receive 0 functions.
Outedges from P1 and P3 that lie inB all receive functions of constant valueN even if they are on P2. All as
yet unassigned edges on P2 receive 0 functions, and the remaining edges are all given functions of constant
value M � N . However, the example in Figure A.1 shows that there is a zero cost s2–t2 path (s2, w, z, t2),
which defeats the construction.

We fix this problem by defining the path P2 as follows. Let x be the first vertex on path P (in the
example, this is w) such that there is an edge (x, y) in B and such that there is a y–t2 path Py–t2 which does
not go through any ealier vertex on P (i.e. any vertex from s2 to x inclusive). Then (x, y) is chosen to be e2,
and P2 is defined to be the simple path comprising the initial portion of P up to x, followed by e2, followed
by Py–t2 (it may be that P2 = P ). Now the above cost functions, modulo a few details, will achieve the
desired contradiction. These details follow.

Let path P2 be the simple s2–t2 path that follows P up to w and keeps following it after w until for the
first time it finds an edge ofB (and hence ofH1) that departs from a vertex of P and can lead to t2 via a path
P ′ without returning to any of the previously visited vertices. Choose e2 to be this edge and have P2 follow
e2 and then path P ′ to t2. Note that P itself can be P2. Consider an arbitrary s1–t1 simple path P3 that goes
through e2 (and thus through H1) and an arbitrary s1–t1 simple path P1 that goes through H2, and let e1 be
any edge of P1 in H2. These paths and edges are going to mimic the ones of Proposition 2. By using some
large values N and M as latency functions for some of the edges, at both equilibria, we will ensure that all
the flow of G1 goes through the subpaths of P1 and P3 in B, and all the flow ofG2 goes through the subpath
of P2 that starts at s2 and ends with e2.

Let d1 = d2 = 1 be the total demands for Commodities 1 and 2 respectively, and let all other com-
modities have 0 demand. Let G1’s demand consist of 3

4 single-minded players and 1
4 players with diversity

parameter equal to 4, and let the demand ofG2 consist of players with diversity parameter equal to 1. Assign
edge e1 the constant latency function `1(x) = 1 and the constant deviation function σ1(x) = 2. Assign edge



Fig. 5. Sample network for Proposition 3

e2 the constant deviation σ2 = 0, and as latency function any `2 that is continuous and strictly increasing
with `2(1) = 3 and `2(5

4) = 9. Assign all other edges the constant deviation σ2 = 0. Assign to all other
edges of P1 and P3 that lie inside B 0 latency functions. To all edges that depart from a vertex of P1 or
P3 and that lie on P2, assign latency functions equal to some big constant N , say N = 24 (i.e. double the
heterogeneous equilibrium cost of Proposition 2). For all remaining edges on P2, assign 0 latency functions.
Finally, to all remaining edges, assign constant latency functions equal to M , where M is defined to be
2|V (G)| ·N .

Note that all edges other than e2 have constant edge functions. Thus for Commodity 1 under both
equilibria there will be a common cost CB

−
that will be paid on blocks other than B. Futhermore, for

Commodity 2, any path that costs less than M will follow path P2 up to and including e2, for any edge
leaving path P2 either has cost M or is an edge of P3 and by construction these edges do not create a cycle-
free path to t2. Thus if any of the homogeneous or heterogeneous equilibria is to cost less than M then all
the flow of Commodity 2 will go through e2, and from there follow a least cost path to t2 (recall all edges
other than e2 have constant edge functions) with cost Ce

−
2 say. Note that Ce

−
2 will not be more than the cost

of path P2 following edge e2, which is bounded by |V (G)|N = M
2 , and thus the path portion with cost Ce

−
2

is preferable to any path with an edge of cost M . 7

For the heterogeneous equilibrium g of this instance, for Commodity 1 route all the flow through the
shortest s1–u and v–t1 paths, and inside B route 3

4 units of flow through P1 and 1
4 units of flow through

P2, and route all the flow of commodity 2 through e2, via P2 up to e2, and after e2 via a least cost path to
t2. The single-minded players of G1 compute a cost for P1 equal to 1 + CB

−
and a cost for P3 equal to

9 +CB
−

, and thus prefer P1 to P3, while the remaining players of G1 compute a cost equal to 9 +CB
−

for
both P1 and P3, and thus prefer P3 to P1 (recall that `2 is strictly increasing). The other paths have cost at
least N + CB

−
= 24 + CB

−
and thus are not preferred by any type of players. The players of Commodity

2 pay cost equal to 9 + Ce
−
2 (the cost of e2 plus the cost after it) and thus prefer staying on e2 rather than

paying at least M to avoid it (recall Ce
−
2 ≤ M

2 ). Note that on P2 for the vertices before e2 there might be
edges leaving P2 that cost 0 (these are edges of P3) but by the definition of P2 they cannot lead to t2 without
visiting preceding vertices. Putting it all together, this routing is indeed the heterogeneous equilibrium with
cost Cht(g) = 1 · 3

4d1 + 9 · 1
4d1 + d1C

B− + 9d2 + d2C
e−2 = 12 + CB

−
+ Ce

−
2 .

7 For edge e2 this will hold at both equilibria but in any case we can define its latency functions so that this holds in general, e.g.
also set `2(2) = N .



For the homogeneous equilibrium f of this instance, route all the demand of G1 through e1, via P1 and
the shortest s1–u and v–t1 paths, and route all the flow of Commodity 2 through e2, via P2 up to e2 and from
there via a least cost path to t2. The average diversity parameter for Commodity 1’s demand equals 1, and
thus P1 and P3 are both computed to cost 3+CB

−
while all other paths cost at leastN +CB

−
= 24+CB

−

and thus are avoided. In the same way as above, the Commodity 2 players pay cost equal to 3 + Ce
−
2

(the cost of e2 plus the cost of the path portion following e2) and thus prefer staying on e2 rather than
paying at least M to avoid it (recall Ce

−
2 ≤ M

2 ). Thus the cost Chm(f) of the homogeneous equilibrium is
Chm(f) = 3 · d1 + d1 ·CB− + 3 · d2 + d2 ·Ce

−
2 = 6 +CB

−
+Ce

−
2 . Consequently, Cht(g) > Chm(f), as

needed.
The above instance contradicts the assumption that G has the property that diversity helps for all edge

functions. Thus the hypothesis that P , after reaching w (and possibly moving backward while staying in the
internal portion of H1) first traverses an edge of H1 (departing from an internal vertex) does not hold. This
was what needed for the proposition to hold.

Proposition 4. All simple s2–t2 paths of G2 that share an edge with B reach u before any internal vertex
of B.

Proof. Consider an arbitrary simple s2–t2 path P that shares some edge with B. WLOG we may assume,
again, that P only visits vertices of G1 and s2, t2, as we may handle subpaths of P that have vertices that
lie outside G1 as edges. Let B be the parallel combination of H1 and H2 and, assuming that the proposition
does not hold, let w be the first vertex of P (before it reaches u) that belongs to the internal portion of B,
and suppose WLOG that w lies in H1. By Lemma 3(ii) and Proposition 3, the edge of P exiting w cannot
go toward t1, i.e. forward, as then it would traverse an edge of B for the first time that does not depart
from u (recall also Lemma 4(ii)). Thus, it has to go toward s1, i.e. backward, either staying in H1 or going
back to one of the preceding blocks of B. If by going backward it stays in H1 then by the same argument
it has again to move backward. However, we can only repeat this process finitely often and eventually after
possibly hitting some vertices of H1 other than w and after possibly visiting vertices of blocks that precede
B, P hits u. Note that this happens without P having hit any vertex of H2 prior to hitting u (recall Lemma
4(i)). There are two cases.

The first case occurs when on traversing P up to u, there is some edge of B departing from u that does
not lead to t2 without revisiting one of the previously visited vertices. Yet, since P shares an edge with
B, by Proposition 3 there is an edge of B that departs from u and leads to t2 without revisiting one of
the previously visited vertices. Let e1 be the first of the above edges and e2 be the second one. For these
edges, the same contradicting instance as in Proposition 3 can be constructed. Path P1 is an arbitrary simple
s1–t1 path containing e1, path P3 is an arbitrary simple s1–t1 path containing e2, and path P2 is constructed
by following P up to u (instead of some internal vertex of H1 from which e2 was departing) and from
there taking e2 and then a path that leads to t2 without revisiting vertices. The edge function assignment
will be exactly the same. Diversity hurting, and thus the contradiction, will follow in the same way as in
Proposition 3.

The second and more interesting case occurs when on following P up to u, all edges of B departing
from u can lead to t2 without revisiting one of the previously visited vertices. Let e2 be an edge of H2

(departing from u) with this property, let P2 be the simple path that follows P up to u and then follows
some path through e2 to go to t2, and let P3 be a simple s1–t1 path that follows an arbitrary s1–u path and
an arbitrary v–s2 path, and between u and v follows a path that contains e2. Let P1 be any path that follows
an arbitrary s1–u path and an arbitrary v–t2 path, and between u and v follows a path that contains w, and
therefore goes throughH1. Let e1 be the edge of P1 that departs fromw. Note that, because of Proposition 3,
e1 cannot lead to t2 with a simple path, i.e. without visiting vertices on P before w. This is a key fact for the
contradiction to come and relates to the extra caution needed for this proof in comparison with the proof of



Proposition 3. See Figure 6 for a high level description of the instance. The rest of the details can be found
in the appendix, Section A.6.

Acknowledgments

We thank the anonymous referees for their thoughtful feedback that helped improve this work.



Bibliography

D. Acemoglu, A. Makhdoumi, A. Malekian, and A. E. Ozdaglar. Informational braess’ paradox: The effect
of information on traffic congestion. CoRR, abs/1601.02039, 2016.

M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the economics of transportation. Yale Univer-
sity Press, 1956.

E. Chastain, A. Livnat, C. H. Papadimitriou, and U. V. Vazirani. Multiplicative updates in coordination
games and the theory of evolution. In ITCS ’13, 2013.

P. Chen, B. de Keijzer, D. Kempe, and G. Schaefer. Altruism and its impact on the price of anarchy. ACM
Transactions on Economics and Computation, 2, 2014.

X. Chen, Z. Diao, and X. Hu. Excluding braess’s paradox in nonatomic selfish routing. In SAGT ’15, 2015.
G. Christodoulou, Kurt Mehlhorn, and Evangelia Pyrga. Improving the price of anarchy for selfish routing

via coordination mechanisms. Algorithmica, 2014.
R. Cole, Y. Dodis, and T. Roughgarden. Pricing network edges for heterogeneous selfish users. In STOC

’03, 2003.
A. Epstein, M. Feldman, and Y. Mansour. Efficient graph topologies in network routing games. Games and

Economic Behavior, 66, 2009.
L. Fleischer, K. Jain, and M. Mahdian. Tolls for heterogeneous selfish users in multicommodity networks

and generalized congestion games. FOCS ’04, 2004.
L. Fleischer. Linear tolls suffice: New bounds and algorithms for tolls in single source networks. Theoretical

Computer Science, 2005.
Dimitris Fotakis and Paul G. Spirakis. Cost-balancing tolls for atomic network congestion games. Internet

Mathematics, 5(4):343–363, 2008.
D. Fotakis, D. Kalimeris, and T. Lianeas. Improving selfish routing for risk-averse players. In WINE ’15,

2015.
G. Karakostas and S. G. Kolliopoulos. The efficiency of optimal taxes. In CAAN ’04, 2004.
G. Karakostas and S.G. Kolliopoulos. Edge pricing of multicommodity networks for heterogeneous selfish

users. FOCS ’04, 2004.
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APPENDIX

A Ommited proofs

A.1 An instance without average-respecting demand where diversity hurts

Let ` be any strictly increasing function with `(1) = 2 and `(10/9) = 10. Let there be two commodities,
each of unit demand. The first commodity has demand that consists of homogeneous players with parameter
equal to 10. The second commodity has demand that consists of 1/9 players with parameter equal to 9 and
8/9 players with parameter equal to 0. The heterogeneous equilibrium has cost equal to 12 (only single-
minded players are routed through the lower edge) while the homogeneous equilibrium has cost equal to 4
(the first commodity uses only the upper edge and the second uses only the lower edge).

A.2 The proof of Lemma 1

The proof is by induction on the decomposition of the series-parallel network. The base case of G being a
single edge e is trivial as xe = d1 ≥ d2 = ye.

For the inductive step, first suppose thatG is a series combination of two series-parallel networksG1 and
G2. For i = 1, 2, let xi be the restriction of flow x to Gi, and yi the restriction of flow y. By the inductive
hypothesis, there is an s–t path Pi in Gi such that for all e ∈ Pi, x

i
e ≥ yie. It suffices to set P to be the

concatenation of P1 with P2.
Now assume that G is a parallel combination of two series-parallel networks G1 and G2. Again, for

i = 1, 2, let xi be the restriction of flow x to Gi, and yi of flow y. We may assume WLOG that the flow d1
1

that G1 receives in x1 is at least as large as the flow d1
2 that it receives in y1, and further that d1

1 > 0. By the
inductive hypothesis applied to G1 with demands d1

1 and d1
2, we obtain that there exists an s–t path P such

that for all e ∈ P, x1
e ≥ y1

e and this implies that for all e ∈ P, xe ≥ ye, as needed.

A.3 The proof of Theorem 2

If G is not series-parallel then the Braess graph can be embedded in it (see e.g. Milchtaich [2006] or Valdes
et al. [1979]). Thus, starting from the Braess network GB , by subdividing edges, adding edges and extend-
ing one of the terminals by one edge, we can obtain G. Fix such a sequence of operations. For the given
heterogeneous demand, we start from the Braess instance given by Proposition 1 and apply the sequence of
operations one by one. Each time an edge addition occurs, we give the new edge a constant latency function
equal to some large M and deviation equal to 0, each time an extension of the terminal occurs we give the



new edge a constant latency and deviation equal to 0, while each time an edge division occurs, if it is an
edge with latency function M we give both edges latency function equal to M and deviation equal to 0,
otherwise we give one of the two edges the latency and the deviation functions of the edge that got divided
and we give the other one a constant latency and deviation equal to 0.

It is not hard to see that taking M = 2(3 + r̄), i.e. more than double the heterogeneous cost of the
instance of Proposition 1, (or M = 2(3A + r̄) if we must only use affine functions), suffices to ensure that
all edges having latency M and deviation 0 receive zero flow in both the heterogeneous equilibrium g and
the homogeneous equilibrium f . In more detail, the only s–t routes that may have cost < M are those that
starting from s reach, with zero cost, some s′ that corresponds to the s of the instance of Proposition 1, follow
some path that corresponds to one of the upper, zig-zag, or lower paths of the instance of Proposition 1, with
corresponding cost, reach some t′ that corresponds to t of the instance of Proposition 1 and from there
reach t with zero cost. This can be formally proved by induction on the number of embedding steps. Thus,
Cht(g) > Chm(f) can be derived in the same way as in Proposition 1 and that is enough to prove the
theorem.

A.4 The proof of Lemma 3

For (i), if there were such an edge then a simple si–ti path would be created that avoids the separators that
lie between B1 and B2, contradicting the definition of Gi’s block structure.

For (ii), let u and v be two vertices in Gi such that there is no simple si–ti path in Gi that contains both
of them. This implies that there is no edge between them in Gi. Now, in the series-parallel decomposition of
Gi, letB be the smallest series-parallel subnetwork containing both u and v. By the choice of being smallest
and the fact that there is no edge in Gi between u and v, B must be a composition of a B1 containing u and
a B2 containing v. B1 and B2 are not connected in series because then there would be an si–ti path in Gi
containing both u and v. Therefore, B1 and B2 are connected in parallel; thus there cannot be any edge in
G between u and v or else it would belong in some simple si–ti path and therefore belong to Gi, violating
Gi’s series-parallel structure.

A.5 The proof of Lemma 4

The proofs of (i) and (ii) are by induction on the length of path u–w.
For (i), if the path has length equal to 1 then it is a simple edge, i.e. edge (u,w), and thus u = vk−1,

because of Lemma 3(i), and then (i) holds.
Now suppose inductively that the result holds for paths of length up to l−1. Let u–w be a path of length

l. Let (u, x) be the first edge on this path. Note that by Lemma 3(i), x cannot belong to any successor of
Bk (unless u = vk−1 and x = vk, in which case (i) would hold). If x belongs to Bk and is not vk−1, then
by Lemma 3(i), u = vk−1 and thus (i) holds. If x = vk−1 or x does not belong to Bk (which implies it
belongs to a predecessor of Bk) then the inductive hypothesis holds for the length l − 1 path x–w, yielding
the desired edge exiting vk−1. Thus (i) also holds for path u–w.

For (ii), if the path has length equal to 1 then it is a single edge, i.e. edge (w, u), and thus by Lemma
3(i)u = vk, and (ii) holds. Now suppose inductively that the result holds for paths of length up to l − 1. Let
w–u be a path of length l. Let (w, x) be the first edge on this path. Either x = vk or x is an internal vertex in
Bk, by Lemma 3(i). If x = vk then (ii) holds. If x is an internal vertex in Bk, then the inductive hypothesis
applies t the length l − 1 path x–w. Thus t(ii) also holds for path u–w.

(iii) follows from (i) and (ii). Consider an arbitrary simple vk−1–vk path P . Path P does not contain a
vertex from any preceding block, for if it did, then to re-enter Bk so as to reach w, according to (i), it would
go through vk−1 again, and then it would not be a simple path. Also, aside its endpoints, P does not contain
a vertex from any succeeding block, for if it did, then to leave Bk, according to (ii), it would reach vk before



reaching it again at the end, and then it would not be a simple path. Thus, a path that follows some simple
si–vk−1 path, then follows P and then follows some simple vk–ti path is a simple si–ti path. Consequently,
P lies entirely in Bk.

A.6 The complete proof of Proposition 4

Consider an arbitrary simple s2–t2 path P that shares some edge with B. WLOG we may assume, again,
that P only visits vertices ofG1 and s2, t2, as we may handle subpaths of P that have vertices that lie outside
G1 as edges. Let B be the parallel combination of H1 and H2 and, assuming that the proposition does not
hold, let w be the first vertex of P (before it reaches u) that belongs to the internal portion ofB, and suppose
WLOG that w lies in H1. By Lemma 3(ii) and Proposition 3, the edge of P exiting w cannot go toward t1,
i.e. forward, as then it would traverse an edge of B for the first time that does not depart form u (recall also
Lemma 4(ii)). Thus, it has to go toward s1, i.e. backward, either staying in H1 or going back to one of the
preceding blocks of B. If by going backward it stays in H1 then by the same argument it has again to move
backward. However, we can only repeat this process finitely often and eventually after possibly hitting some
vertices of H1 other than w and after possibly visiting vertices of blocks that precede B, P hits u. Note that
this happens without P having hit any vertex of H2 prior to hitting u (recall Lemma 4(i)). There are two
cases.

The first case occurs when on traversing P up to u, there is some edge of B departing from u that does
not lead to t2 without revisiting one of the previously visited vertices. Yet, since P shares an edge with
B, by Proposition 3 there is an edge of B that departs from u and leads to t2 without revisiting one of
the previously visited vertices. Let e1 be the first of the above edges and e2 be the second one. For these
edges, the same contradicting instance as in Proposition 3 can be constructed. Path P1 is an arbitrary simple
s1–t1 path containing e1, path P3 is an arbitrary simple s1–t1 path containing e2, and path P2 is constructed
by following P up to u (instead of some internal vertex of H1 from which e2 was departing) and from
there taking e2 and then a path that leads to t2 without revisiting vertices. The edge function assignment
will be exactly the same. Diversity hurting, and thus the contradiction, will follow in the same way as in
Proposition 3.

The second and more interesting case occurs when on following P up to u, all edges of B departing
from u can lead to t2 without revisiting one of the previously visited vertices. Let e2 be an edge of H2

(departing from u) with this property, let P2 be the simple path that follows P up to u and then follows
some path through e2 to go to t2, and let P3 be a simple s1–t1 path that follows an arbitrary s1–u path and
an arbitrary v–s2 path, and between u and v follows a path that contains e2. Let P1 be any path that follows
an arbitrary s1–u path and an arbitrary v–t2 path, and between u and v follows a path that contains w, and
therefore goes throughH1. Let e1 be the edge of P1 that departs fromw. Note that, because of Proposition 3,
e1 cannot lead to t2 with a simple path, i.e. without visiting vertices on P before w. This is a key fact for the
contradiction to come. See Figure 6.

To create the instance we proceed as in Proposition 3. Let d1 = d2 = 1 be the total demands for
Commodities 1 and 2 respectively and let all other commodities have 0 demand. Let G1’s demand consist of
3
4 single-minded players and 1

4 players with diversity parameter equal to 4, and let the demand of G2 consist
of players with diversity parameter equal to 1. Assign edge e1 the constant latency function `1(x) = 1 and
the constant deviation function σ1(x) = 2. Assign edge e2 the constant deviation σ2 = 0, and as latency
function any `2 that is continuous and strictly increasing with `2(1) = 3 and `2(5

4) = 9. Assign all other
edges the constant deviation σ2 = 0. To all other edges of P1 and P3 that lie inside B assign 0 latency
functions. To all edges that depart from a vertex of P1 or P3 that lies on P2 assign latency functions equal to
some big constant N , say N = 24 (i.e. double the heterogeneous equilibrium cost of Proposition 2). For all
remaining edges on P2, assign 0 latency functions. Finally, to all remaining edges, assign constant latency
functions equal to M , where M is defined to be 2|V (G)| ·N .



Fig. 6. Sample network for Proposition 4

Note that (as in Proposition 3) all edges other than e2 have constant edge functions. Thus for both
equilibria, Commodity 1 will have a common cost CB

−
that will be paid on blocks other than B. Also, for

Commodity 2, any path that costs less thanM will follow path P2 up to and including e2. For this, it suffices
to show that all edges departing from vertices of P1 in between u andw have costM , as then if some portion
of the flow, after visiting u, deviates and follows P1 instead of e2, then in order to avoid edges of cost M
it will reach w which (as mentioned earlier) would be a dead end because of Proposition 3. This is proved
in the next paragraph. Given that, if both the homogeneous and the heterogeneous equilibria are to cost less
than M then all of Commodity 2’s flow will go through e2 and from there follow a shortest path to t2 (recall
that all other edges have constant edge functions) of cost Ce

−
2 say. Now note that Ce

−
2 will not be more than

the cost of path P2 following edge e2, which is bounded by |V (G)|N = M
2 , and thus the path portion with

cost Ce
−
2 is preferable to any path with an edge of cost M .

Let EM be the set of edges that depart from vertices of P1 in between u and w. We want to prove that
edges in EM have cost M . By proposition 3, the vertices of P that belong to P1 in between w and u, w
included, have no departing edge that belongs to B and leads to t2 without traversing preceding vertices of
P . This implies that P and any other simple s2–t2 path that follows P up to u, cannot have some simple u–v
path ofH2 as a subpath — call this PropertyX — otherwise, by letting P ′ be such a path, following P up to
w, then picking any path inside H1 that leads to v, and from there reaching t2 via P ′, creates a simple s2–t2
path that has its first edge in B departing from an internal vertex, thereby contradicting Proposition 3. But if
P2 is to contain some edge in EM then it has to leave H2 and go to H1. The only way to do that and keep its
simplicity, because of Lemmas 3(ii) and 4(i), is by going to a block that succeeds B and then coming back
to H1. But by Lemma 4(ii), going to a block that succeeds B requires going through v first. Thus P2 would
have a complete u–v subpath that does not visit any other block, which by Lemma 4(iii) belongs in B and
thus in H2, contradicting Property X . Thus P2 does not contain any edge in EM .

Now, we compute the costs of the equilibria The heterogeneous equilibrium g, for Commodity 1, routes
all the flow through the shortest s1–u and v–t1 paths, insideB routes 3

4 units of flow through P1, and 1
4 units

of flow through P2, and routes all the flow of Commodity 2 through e2, via P2 up to e2 and after e2 via the
shortest path to t2. The single-minded players of G1 compute a cost for P1 equal to 1 +CB

−
and a cost for

P3 equal to 9 + CB
−

, and thus prefer P1 to P3, while the remaining players of G1 compute a cost equal to
9 + CB

−
for both P1 and P3, and thus prefer P3 to P1 (recall that `2 is strictly increasing). The other paths

have cost at least N + CB
−

= 24 + CB
−

and thus are not preferred by any type of player. The players of
Commodity 2 pay cost equal to 9 + Ce

−
2 (the cost of e2 plus the cost after it) and thus prefer staying on e2



rather than paying at least M to avoid e2 (recall Ce
−
2 ≤ M

2 ). Also recall that on P2, for the vertices before
e2, there might be edges leaving P2 that have cost 0 (these are edges of P1), but because of Proposition 3
they cannot lead to t2 without visiting preceding vertices. Putting it all together this routing is indeed the
heterogeneous equilibrium with costCht(g) = 1· 34d1+9· 14d1+d1C

B−+9d2+d2C
e−2 = 12+CB

−
+Ce

−
2 .

The homogeneous equilibrium f routes all the demand of G1 through e1, via P1 and the shortest s1–u
and v–t1 paths, and routes all the flow of Commodity 2 through e2, via P2 up to e2, and after e2 via the
shortest path to t2. The average diversity parameter for Commodity 1’s demand equals 1, and thus P1 and
P3 are both computed to cost 3 + CB

−
, while all other paths cost at least N + CB

−
= 24 + CB

−
and thus

are avoided. In the same way as above, the players of Commodity 2 pay cost equal to 3 + Ce
−
2 (the cost of

e2 plus the cost after it) and thus prefer staying on e2 rather than paying at least M to avoid it. Thus the cost
Chm(f) of the homogeneous equilibrium isChm(f) = 3·d1+d1 ·CB−+3·d2+d2 ·Ce

−
2 = 6+CB

−
+Ce

−
2 .

Consequently, Cht(g) > Chm(f), contradicting the assumption that G satisfies that under any demand and
edge functions diversity helps. Consequently, the proposition holds. ut


