
https://doi.org/10.1007/s00224-019-09946-8

Improving Selfish Routing for Risk-Averse Players

Dimitris Fotakis1 ·Dimitris Kalimeris2 ·Thanasis Lianeas3

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We investigate how and to which extent one can exploit risk-aversion and modify the
perceived cost of the players in selfish routing so that the Price of Anarchy (PoA)
wrt. the total latency is improved. The starting point is to introduce some small ran-
dom perturbations to the edge latencies so that the expected latency does not change,
but the perceived cost of the players increases, due to risk-aversion. We adopt the
simple model of γ -modifiable routing games, a variant of selfish routing games with
restricted tolls. We prove that computing the best γ -enforceable flow is NP-hard for
parallel-link networks with affine latencies and two classes of heterogeneous risk-
averse players. On the positive side, we show that for parallel-link networks with
heterogeneous players and for series-parallel networks with homogeneous players,
there exists a nicely structured γ -enforceable flow whose PoA improves fast as γ

increases. We show that the complexity of computing such a γ -enforceable flow is
determined by the complexity of computing a Nash flow for the original game. More-
over, we prove that the PoA of this flow is best possible in the worst-case, in the sense
that there are instances where (i) the best γ -enforceable flow has the same PoA, and
(ii) considering more flexible modifications does not lead to any improvement on the
PoA.

Keywords Selfish routing · Uncertainty · Risk-aversion · Restricted tolls ·
Price of anarchy

An extended abstract of this work [8] has appeared in the 11th Conference on Web and Internet
Economics (WINE 2016). Research was supported by the project Algorithmic Game Theory,
co-financed by the European Union (European Social Fund) and Greek national funds, through the
Operational Program “Education and Lifelong Learning” of the National Strategic Reference
Framework - Research Funding Program: THALES, investing in knowledge society through the
European Social Fund, and by grant NSF CCF 1216103. The majority of this work was done while
the second author was at the Department of Informatics and Telecommunications of the University
of Athens.

� Thanasis Lianeas
tlianeas@corelab.ntua.gr

Extended author information available on the last page of the article.

Theory of Computing Systems (2020) 64: –3 033

Published online: 201910 September

9 7

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-019-09946-8&domain=pdf
http://orcid.org/0000-0001-8386-5912
mailto: tlianeas@corelab.ntua.gr

1 Introduction

Routing games provide an elegant and practically useful model of selfish resource
allocation in transportation and communication networks. In the last decades, the
algorithmic properties and the Price of Anarchy (PoA) of routing games, in many
different settings, have been studied extensively and are well understood (see e.g.,
[20]).

The majority of previous work assumes that the players select their routes based on
precise knowledge of edge delays. In most practical applications however, the players
cannot accurately predict the actual delays due to their limited knowledge about the
traffic conditions and due to unpredictable events that affect the edge delays and
introduce uncertainty (see e.g., [1, 15–17] for some concrete examples). Hence, the
players select their routes based only on delay estimations, and most important, they
are fully aware of the uncertainty and the potential inaccuracy of these estimations.
Therefore, to secure themselves from increased delays, whenever this may have a
considerable influence, the players select their routes taking uncertainty into account
(e.g., people take a safe route or plan for a longer-than-usual delay when they head
to an important meeting or to catch a long-distance flight).

Some recent work (see e.g., [1, 15, 16, 18] and the references therein) considers
routing games with stochastic delays and risk-averse players, where instead of the
route that minimizes her expected delay, each player selects a route that guarantees
a reasonably low actual delay with a reasonably high confidence. There have been
different models of stochastic routing games, each modeling the individual cost of
risk-averse players in a slightly different way. In all cases, the actual delay is modeled
(implicitly or explicitly) as a random variable and the perceived cost of the players is
either a combination of the expectation and the standard deviation (or the variance)
of their delay [15, 16] or a player-specific quantile of the delay distribution [1, 17]
(see also [4, 15, 21] about the individual cost functions of risk-averse players).

No matter the precise modeling, we should expect that stochastic delays and risk-
aversion can only deteriorate (or at least, cannot improve) the network performance
at equilibrium (see [1, 15, 16] for upper bounds on the PoA of stochastic routing
games). Interestingly, the work of [16, 18] indicates that in certain settings, stochastic
delays and risk-aversion can actually improve the network performance at equilib-
rium. Motivated by the results of [16, 18], we consider routing games on parallel-link
and series-parallel networks and investigate how one can exploit risk-aversion in
order to modify the perceived cost of the (possibly heterogeneous) players so that the
PoA is significantly improved. Technically, as we discuss later, the model that we
propose can be perceived as a variant of restricted refundable tolls considered in [2,
10] for homogeneous players and in [11] for heterogeneous players.

1.1 Routing Games

To discuss our approach more precisely, we introduce the basic notation and termi-
nology about routing games. A (non-atomic) selfish routing game (or instance) is a
tuple G = (G(V, E), (�e)e∈E, r), where G(V, E) is a directed network with a source
s and a sink t , �e : R≥0 → R≥0 is a non-decreasing delay (or latency) function

Theory of Computing Systems (2020) 64: –3 0339 7340

associated with edge e and r > 0 is the traffic rate. We let P denote the set of simple
s − t paths in G. We say that G is a parallel-link network if each s − t path is a single
edge (or link).

A (feasible) flow f is a non-negative vector indexed by P such that
∑

p∈P fp = r .
We let fe = ∑

p:e∈p fp be the amount of flow that f routes on each edge e. Given
a flow f , the latency of each edge e is �e(f) = �e(fe), the latency of each path p is
�p(f) = ∑

e∈p �e(f) and the latency of f is L(f) = maxp:fp>0 �p(f).
The traffic rate r is divided among an infinite population of players, each trying

to minimize her latency. A flow f is a Nash flow, if all traffic is routed on minimum
latency paths, i.e., for any path p ∈ P with fp > 0 and for all paths p′ ∈ P , �p(f) ≤
�p′(f). Therefore, in a Nash flow f , all players incur a minimum common latency
equal to minp �p(f) = L(f). Under weak assumptions on the delay functions, a
Nash flow exists and is essentially unique (see e.g., [20]).

The efficiency of a flow f is measured by the total latency C(f) of the players, i.e.,
by C(f) = ∑

e∈E fe�e(f). The optimal flow, denoted o, minimizes the total latency
among all feasible flows. The Price of Anarchy (PoA) is the main tool for quantifying
the performance degradation due to selfish behavior of the players, which leads the
network to a Nash flow instead of an optimal flow. The PoA(G) of a routing game G is
the ratio C(f)/C(o) of the total latency of the Nash flow f to that of the optimal flow
o of G. The PoA of a class of routing games is defined as the maximum PoA over all
games in the class. For routing games with latency functions in a class D, the PoA is
equal to PoA(D) = ρ(D) = (1−β(D))−1, where β(D) = sup�∈D,x≥y≥0

y(�(x)−�(y))
x�(x)

and the parameters β and ρ only depend on the class of latency functions D [3, 20].

For example, ρ is 4/3 for linear and 27+6
√

3
23 for quadratic latencies.

1.2 Using Risk-Aversion to Modify Edge Latencies

The starting point of our work is that in some practical applications, we may inten-
tionally introduce variance to edge delays so that the expected delay does not change,
but the risk-averse cost of the players increases. E.g., in a transportation network,
we can randomly increase or decrease the proportion of time allocated to the green
traffic light for short periods, or we can open or close an auxiliary traffic lane. In a
communication network, we might randomly increase or decrease the link capacity
allocated to a particular type of traffic or change its priority. At the intuitive level,
we expect that the effect of such random changes to risk-averse players is similar to
that of refundable tolls (see e.g., [6, 12]), albeit restricted in magnitude due to the
bounded variance in edge delays that we can afford.

More specifically, let us consider an edge e with latency function �e(x) where we
can increase the latency temporarily up to (1 + α1)�e(x) and decrease it temporarily
(and for relatively short time intervals) up to (1 − α2)�e(x). If we implement the
former change with probability p1 and the latter with probability p2 < 1 − p1 (the
probabilities here essentially correspond to proportions of time in which e operates in
each state), the latency function of e in a given time step is a random variable de(x)

with expectation:

E[de(x)] = [p1(1 + α1) + p2(1 − α2) + (1 − p1 − p2)]�e(x)

Theory of Computing Systems (2020) 64: –3 0339 7 341

Adjusting p1 and p2 (and possibly α1 and α2) so that p1α1 = p2α2, we have
E[de(x)] = �e(x), i.e., for any given flow, the expected delay through e does not
change. On the other hand, if the players are (homogeneously) risk-averse and their
perceived delay is given by a (1 − p1 + ε)-quantile of the delay distribution (e.g., as
in [1, 17]), for some ε > 0, the latency perceived by the players on e is (1+α1)�e(x).
Similarly, if the individual cost of the risk-averse players are given by the expectation
plus the standard deviation of the delay distribution (e.g., as in [15]), the latency

perceived by the players on e is

(

1 +
√

p1α
2
1 + p2α

2
2

)

�e(x). In both cases, we can

have a significant increase in the delay perceived by risk-averse players on e, while
the expected delay remains unchanged. A similar result could be achieved with any
delay distribution on e (possibly more sophisticated and with larger support), as long
as its expectation is �e(x).

In most practical situations, the feasible changes in the latency functions are
bounded (and relatively small). The same is particularly true for the proportion of
time in which an edge can operate in an “abnormal” state of increased or decreased
delay. Combined with the particular form of risk-averse individual cost, these fac-
tors determine an upper bound γe on the multiplicative increase1 of the delay on
each edge e. Moreover, the players may evaluate risk differently and be heteroge-
neous wrt. their risk-aversion factors. So, in general, the traffic rate r is partitioned
into k risk-averse classes, where each class i consists of the players with risk-averse
factor ai and includes a traffic rate ri . If we implement a multiplicative increase γe

on the perceived latency of each edge e, the players in class i have perceived cost
(1 + aiγe)�e(f) on each e and

∑
e∈p(1 + aiγe)�e(f) on each path2 p. In the spe-

cial case where the players are homogeneous wrt. their risk-aversion, there is a single
class of players with traffic rate r and risk-averse factor a = 1.

1.3 Contribution

In this work, we assume a given upper bound γ on the maximum increase in the
latency functions and refer to the corresponding routing game as a γ -modifiable
game. We consider both homogeneous and heterogeneous risk-averse players. We
adopt this model as a simple and general abstraction of how one can exploit risk-
aversion to improve the PoA of routing games on parallel-link and series-parallel
networks. Technically, our model is a variant of restricted refundable tolls considered
in [2, 10] for homogeneous players and in [11] for heterogeneous players. However,
on the conceptual side and to the best of our knowledge, this is the first time that
exploiting the risk-aversion of the players is proposed as a means of implementing

1Despite our brief discussion about how such an upper bound γe can be determined, we deliberately avoid
getting into the details of how γe’s are calculated. This depends crucially (and not always in a simple way)
on the particular practical application and cannot be incorporated into a theoretical model.
2To simplify the model and make it easily applicable to general networks, we assume that the latency
modifications (and the resulting individual costs of the players) are separable. This is a relatively standard
simplifying assumption (see e.g., [16, 18]) on the structure of risk-averse individual costs in networks and
only affects the extension of our results to series-parallel networks.

Theory of Computing Systems (2020) 64: –3 0339 7342

restricted tolls, and through this, as a potential remedy to the inefficiency of selfish
routing.

We say that a flow f is γ -enforceable if there is γe-modification on each edge e,
with 0 ≤ γe ≤ γ , so that f is a Nash flow of the modified game, i.e., for each player
class i, for every path p used by class i, and for all paths p′,

∑
e∈p(1+aiγe)�e(f) ≤

∑
e∈p′(1 + aiγe)�e(f). In this work, we are interested in computing either the best

γ -enforceable flow, which minimizes total latency among all γ -enforceable flows,
or a γ -enforceable flow with low PoA.

In Section 3, we consider routing games on parallel links with homogeneous
risk-averse players and show that for every γ > 0, there exists a nicely structured
γ -enforceable flow whose PoA improves significantly as γ increases and is essen-
tially best possible in the worst-case. More specifically, based on a careful rerouting
procedure, we show that given an optimal flow o, we can find a γ -enforceable flow
f (along with the corresponding γ -modification) that “mimics” o in the sense that
if fe < oe, e gets a 0-modification, while if fe > oe, e gets a γ -modification
(Lemma 1). It is interesting that the best γ -enforceable flow, which for parallel-
link games with homogeneous players reduces to the solution of a convex program
[2, Algorithm 1], may not have these properties. Moreover, to the best of our knowl-
edge, this is the first time that the existence of such close-to-optimal γ -enforceable
flows has been studied in the restricted tolls literature. The proof of Lemma 1 implies
that given an optimal flow o, we can compute such a γ -enforceable flow f and
the corresponding γ -modification in time O(|E| TNE), where TNE is the time for
computing a Nash flow of the original parallel-link instance.

Generalizing the variational inequality approach of [3], similarly to [2, Section 4],
we prove (Theorem 1) that the PoA of the γ -enforceable flow f constructed in the
proof of Lemma 1 is at most max{1, (1 − βγ (D))−1}, where D is the class of latency
functions in the original game and

βγ (D) = sup
�∈D,x≥y≥0

y(�(x) − �(y)) − γ (x − y)�(x)

x�(x)

is a natural generalization of the quantity β(D) introduced in [3]. For example, our
analysis implies that for affine latencies, the PoA of the γ -enforceable f is at most
max{1, (1 − (1 − γ)2/4)−1} (Corollary 2), which is significantly less that 4/3 even
for small values of γ (e.g., it is less than 6/5 for γ = 0.1). We also show that the
PoA of such γ -enforceable flows is best possible in the worst-case for γ -modifiable
games with latency functions in class D. Specifically, we present a class of parallel-
link instances with homogeneous risk-averse players where the PoA of the best γ -
enforceable flow is max

{
1, (1 − βγ (D))−1

}
(Theorem 2).

In Section 4, we switch to parallel-link games with heterogenous risk-averse play-
ers. Interestingly, we show that computing the best γ -enforceable flow is NP-hard
for parallel-link games with affine latencies and two classes of heterogeneous play-
ers (Theorem 3). The proof modifies the construction in [19, Section 6], which shows
that the best Stackelberg modification of parallel-link instances is NP-hard. Our
result significantly strengthens [11, Theorem 1], which establishes NP-hardness of
best restricted tolls in general s − t networks with affine latencies. On the positive

Theory of Computing Systems (2020) 64: –3 0339 7 343

side, we show (Theorem 5) that the γ -enforceable flow f of Lemma 1 can be eas-
ily turned into a γ -enforceable flow for parallel-link instances with heterogeneous
risk-averse players by applying [11, Algorithm 1]. Since only the γ -modifications
are adjusted for heterogeneous players, but the flow itself does not change, the PoA
of f is bounded as above (assuming that the minimum risk-averse factor is 1) and
remains best possible in the worst case.

In Section 5, we extend our approach of finding an efficiently computable γ -
enforceable flow that “mimics” the optimal flow to series-parallel networks. Series-
parallel networks have received considerable attention in the literature of refundable
tolls, see e.g., [5, 7], but to the best of our knowledge, they have not been explicitly
considered in the setting of restricted tolls. We extend the rerouting procedure of
Lemma 1 and combine it with a continuity argument for γ -enforceable Nash flows
in series-parallel networks. Hence, we show that for routing games in series-parallel
networks with homogeneous players, there is a γ -enforceable flow with PoA at most
max{1, (1 − βγ (D))−1} (Lemma 2 and Theorem 6). Moreover, we prove that that
such a γ -enforceable flow and the corresponding γ -modifications can be computed
in time polynomially related to the time needed for computing Nash flows in series-
parallel networks (Lemma 3). An interesting open question is whether this result can
be extended to heterogeneous risk-averse players.

In Section 6, we consider a generalization of γ -modifiable games where the p-
norm of the vector (γe)e∈E of edge modifications is at most γ . We refer to this
class as (p, γ)-modifiable games. This generalization captures applications where
the total variance introduced in the network (instead of the variance per edge)
should be bounded by γ . (p, γ)-modifications on m parallel links include γ / p

√
m-

modifications as a special case and could potentially lead to an improved PoA.
We prove that for routing games with latency functions in class D, the worst-case
PoA under (p, γ)-modifications is essentially identical to the worst-case PoA under
γ / p

√
m-modifications (Theorem 8). Therefore, even for (p, γ)-modifiable games, the

PoA of the γ / p
√

m-enforceable flow of Lemma 1 is essentially best possible.

1.4 PreviousWork

On the conceptual side, our work is closest to those considering the PoA of stochastic
routing games with risk-averse players, such as [1, 15, 18]. In this direction, Nikolova
and Stier-Moses [16] recently introduced the price of risk-aversion (PRA), which is
the worst-case ratio of the total latency of the Nash flow for risk-averse players to
the total latency of the Nash flow for risk-neutral players. They proved that for the
mean-variance (separable) cost and general networks with homogeneous players, the
PRA is at most 1 + aκη, where a is the risk-aversion, κ is the maximum variance-to-
mean ratio on some edge, and η is a parameter of the network (η = 1 for parallel-link
and series-parallel networks). This bound was proven to be tight by Lianeas et al.
[14] and later by Kleer and Schäfer [13] who also generalized it to the single source
(or single sink) multicommodity instances case. Interestingly though, PRA can be
smaller than 1 and as low as 1/ρ(D) for stochastic routing games on parallel-links
(i.e., risk-aversion can improve the PoA to 1 for certain instances). This observation
served as part of the motivation for this work.

Theory of Computing Systems (2020) 64: –3 0339 7344

On the technical side, our work is closest to those investigating the properties
of restricted refundable tolls for selfish routing games [2, 10, 11]. In this direction,
Bonifaci et al. [2] proved that for parallel-link networks with homogeneous players,
computing the best γ -enforceable flow reduces to the solution of a convex program
(and can be computed efficiently e.g., for linear delays). Moreover, they presented a
tight bound of max

{
1, (1 − βγ (D))−1

}
on the PoA of a γ -enforceable flow for rout-

ing games with latency functions in class D. In this work, we introduce an efficiently
computable and nicely structured class of γ -enforceable flows, generalize their anal-
ysis and extend the PoA bound to parallel-link games with heterogeneous players.
Recently, Jelinek et al. [11] considered restricted tolls for heterogeneous players and
proved that computing the best γ -enforceable flow for s − t networks with affine
latencies is NP-hard. On the positive side, they proved that for parallel-link games
with heterogeneous players, deciding whether a given flow is γ -enforceable (and
finding the corresponding γ -modification) can be performed in polynomial time.
Moreover, they showed how to compute the best γ -enforceable flow for parallel-
link games with heterogeneous players if the maximum allowable modification on
each edge is either 0 or infinite. In this work, we prove that computing the best γ -
enforceable flow is NP-hard for parallel links with affine latencies and show how to
compute a γ -enforceable flow with best possible worst-case PoA for heterogeneous
players.

2 TheModel and Preliminaries

The basic model of routing games and most of the notation are introduced in
Section 1. Next, we introduce some general notation and terminology and the classes
of γ -modifiable and (p, γ)-modifiable games. In the following, for a positive integer
k, we let [k] = {1, . . . , k}.

2.1 γ -Modifiable Routing Games

A selfish routing game with heterogeneous players in k classes is a tuple G =
(G(V, E), (�e)e∈E, (ai)i∈[k], (ri)i∈[k]), where G is a directed s − t network with
m = |E| edges (or links), ai is the aversion factor of the players in class i and
ri is the amount of traffic with aversion ai . Wlog., we assume that a1 = 1 and
a1 < a2 < . . . < ak . In the special case that the players are homogeneous, we have
a single class of players with risk aversion a1 = 1 and traffic rate r . If the players are
homogeneous, we usually denote an instance simply as G = (G, �, r).

Given a flow f , we let f ai

p be the flow with aversion ai on path p and fp =
∑

i f ai

p be the total flow on path p. Similarly, f ai

e = ∑
p:e∈p f ai

p denotes the flow

with aversion ai on edge e and fe = ∑
i f ai

p is the total flow on edge e. We let ae(f)

denote the aversion factor of some arbitrary player on edge e under f . If e is not
used by f , we let ae(f) = ak . We let amin

e (f) (resp. amax
e (f)) be the smallest (resp.

largest) aversion factor in e under f . We say that an edge e (resp. path p) is used by
players of type ai if f ai

e > 0 (resp. for all e ∈ p). To simplify notation, we may use j

Theory of Computing Systems (2020) 64: –3 0339 7 345

in the subscript, instead of ej , and i in the superscript instead of ai . We also write �e,
instead of �e(f) or �e(fe), and aj , instead of aj (f), when f is clear from the context.

We say that a routing game G is γ -modifiable if we can select a γe ∈ [0, γ] for
each edge e and change the edge latencies perceived by the players of type ai from
�e(x) to (1+aiγe)�e(x) using small random perturbations, as discussed in Section 1.
Any vector
 = (γe)e∈E , where γe ∈ [0, γ] for each edge e, is a γ -modification of
G. Given a γ -modification
, we let G
 denote the γ -modified routing game where
the perceived cost of the players is changed according to the modification
.

A flow f is a Nash flow for the modified game G
 , if it routes all traffic on paths
of minimum perceived cost, i.e., if for every path p and any aversion type ai with
f i

p > 0 and every path p′,
∑

e∈p(1 + aiγe)�e(f) ≤ ∑
e∈p′(1 + aiγe′)�e′(f). Given

a routing game G, we say that a flow f is γ -enforceable, or simply enforceable, if
there exists a γ -modification
 of G such that f is a Nash flow of G
 . We sometimes
let L(G) denote the common perceived cost of the players in the (unique) Nash flow
of a routing game G.

Our main assumption is that γ -modifications do not affect the expected latency.
Therefore, the (expected) total latency of f in both G
 and G is C(f) =∑

e∈E fe�e(f). Hence, the optimal flow o of G is also an optimal flow of G
 . A flow
f is the best γ -enforceable flow of G if for any other γ -enforceable flow f ′ of G,
C(f) ≤ C(f ′). The Price of Anarchy PoA(G
) of the modified game G
 is equal to
C(f)/C(o), where f is the Nash flow of G
 . For a γ -modifiable game G, the PoA of
G under γ -modifications, denoted PoAγ (G), is C(f)/C(o), where f is the best γ -
enforceable flow of G. For routing games with latency functions in class D, PoAγ (D)

denotes the maximum PoAγ (G) over all γ -modifiable games G with latencies in D.

2.2 (p, γ)-Modifiable Routing Games

For a generalization of γ -modifiable games, we consider an integer p ≥ 1, select

a modification γe ≥ 0 for each edge e so that ‖(γe)e∈E‖p = p

√∑
e∈E γ

p
e ≤

γ and change the perceived edge latencies as above. We refer to such games
as (p, γ)-modifiable. Clearly, γ -modifiable games are (∞, γ)-modifiable. The
notation and the notions introduced for γ -modifiable games can be naturally gen-
eralized to (p, γ)-modifiable games. In particular, the PoA of a game G under
(p, γ)-modifications, denoted PoAp

γ (G), is C(f)/C(o), where f is the best (p, γ)-
enforceable flow of G. Similarly, PoAp

γ (D) is the maximum PoA of all (p, γ)-
modifiable games with latency functions in class D.

2.3 Series-Parallel Networks

A directed s − t network G(V, E) is series-parallel if it either consists of a single
edge (s, t) or can be obtained from two series-parallel graphs with terminals (s1, t1)

and (s2, t2) composed either in series or in parallel. In a series composition, t1 is
identified with s2, s1 becomes s, and t2 becomes t . In a parallel composition, s1
is identified with s2 and becomes s, and t1 is identified with t2 and becomes t . A
series-parallel network can be completely specified by its decomposition tree, which
is a rooted tree with a leaf for every edge. Each internal node of the decomposition

Theory of Computing Systems (2020) 64: –3 0339 7346

tree represents either a series or a parallel component obtained from series (resp.
parallel) compositions of the networks represented by its subtrees. The root of the tree
represents the entire network. The decomposition tree of a series-parallel network
G(V, E) can be computed in O(|V | + |E|) time (see e.g. [22] for more details).

3 Modifying Routing Games in Parallel-Link Networks

We proceed to study γ -modifiable games on parallel-link networks with homoge-
neous risk-averse players. We first discuss a characterization of instances where
the optimal flow is γ -enforceable. If the optimal flow is not enforceable, we show
how to find a γ -enforceable flow that is close to optimal (in a sense made precise
in Lemma 1). Furthermore, we provide an upper bound on the PoA achieved by
such γ -enforceable flows and show that this bound is essentially best possible, in
the sense that there are instances where no γ -enforceable flow can achieve a better
PoA.

The following is a corollary of [2, Theorem 1] (and also of the main result in e.g.,
[6, 12]), applied to the special case of parallel links.

Proposition 1 Let G be a γ -modifiable game on parallel links and let o be the opti-
mal flow of G. Then, o is γ -enforceable in G if and only if for any link e with oe > 0
and all links e′ ∈ E, �e(o) ≤ (1 + γ)�e′(o).

Proof Let o be γ -enforceable and let
 = (γe)e∈E be a γ -modification that turns o

into a Nash flow of G
 . Wlog., we consider any pair of links e and e′ with oe > 0
and �e′(o) ≤ �e(o). Since o is a Nash flow of G
 , (1 + γe)�e(o) ≤ (1 + γe′)�e′(o),
which implies that

�e(o) ≤ (1 + γe)�e(o) ≤ (1 + γe′)�e′(o) ≤ (1 + γ)�e′(o)

For the converse, let �max(o) = maxe:oe>0 �e(o) be the maximum latency among
all used edges in o. By hypothesis, for any link e, �max(o) ≤ (1 + γ)�e(o). For
each edge e used by o, we let γe = �max(o)−�e(o)

�e(o)
. We observe that γe ≤ γ , because

�max(o) ≤ (1 + γ)�e(o). For each edge e with oe = 0, we let γe = 0. For any link e

with oe > 0, we have that (1 + γe)�e(o) = �max(o). Moreover, for any link e′ with
oe′ = 0, the optimality conditions of o (see e.g., [20, Corollary 2.4.6]) imply that
�e′(o) ≥ �max(o). Specifically, since oe′ = 0, it must be (oe′�e′(o))′ ≥ (oe�e(o))′ for
any link e with oe > 0 and �e(o) = �max(o) (here (x�e(x))′ denotes the derivative
of x�e(x)). Using that (oe′�e′(o))′ = �e′(o), because oe′ = 0, and that (oe�e(o))′ =
�e(o)+oe(�e(o))′ ≥ �max(o), because we consider non-decreasing latency functions,
we conclude that �e′(o) ≥ �max(o). Therefore, o is enforceable by the particular
γ -modification.

We next show that for any instance G with optimal flow o, there exist a flow
f mimicking o and a γ -modification enforcing f as a Nash flow of the modified

Theory of Computing Systems (2020) 64: –3 0339 7 347

instance. Given the optimal flow o, the proof indicates an approach for computing
f and the appropriate γ -modification. The running time is polynomial if we can
compute the optimal flow o and a Nash flow of the original instance in polynomial
time. Moreover, we later show that such a flow f achieves a best possible PoA in the
worst case.

Lemma 1 Let G = (G, �, r) be a γ -modifiable instance on parallel-links with homo-
geneous risk-averse players and let o be the optimal flow of G. There is a feasible
flow f and a γ -modification
 of G such that

(i) f is a Nash flow of the modified instance G
 .
(ii) for any link e, if fe < oe, then γe = 0, and if fe > oe, then γe = γ .

Proof Let o be the optimal flow of G. If o is γ -enforceable, there is a γ -modification
that turns o into a Nash flow of G
 . Clearly, the lemma holds in this case, if we set
fe = oe, for all links e. If o is not γ -enforceable, we use induction on the number of
links in G.

In the base case of a single link, for any flow rate r , f and o coincide and the
lemma holds under any modification. For the inductive step, let m be a used link
with maximum latency in o. Removing link m and decreasing the total traffic rate by
om > 0, we obtain an instance G−m = (G−m, �, r − om) with one link less than G.
By induction hypothesis, the lemma holds for G−m. So, there is a flow f ′ and a γ -
modification
′ = (γ ′

e)e∈E−m so that (i) f ′ is the Nash flow of G
′
−m and (ii) for any

link e ∈ E−m, if f ′
e < oe, then γ ′

e = 0, and if f ′
e > oe then γ ′

e = γ (note that the
restriction of o to E−m is an optimal flow for G−m).

Now we restore link m and the traffic rate to r . If there is a modification γm so
that (1 + γm)�m(o) = L(f ′), we add γm to
′ and obtain modification
. Setting
fm = om and fe = f ′

e , for the remaining links e
= m, and using the induction
hypothesis for f ′ and
′, we obtain the desired flow f and the corresponding γ -
modification
. Otherwise, we have that �m(o) > L(f ′), since for any used link e

under f ′, with f ′
e < oe, �e(f

′) ≤ �e(o) ≤ �m(o), and for any used link e′ with
f ′

e′ ≥ oe′ , �e(f
′) = (1 + γe′)�e′(f ′) ≥ �e′(f ′), by properties (i) and (ii) of the

induction hypothesis.
To deal with the case where �m(o) > L(f ′), we carefully reroute flow from link

m to the remaining links while maintaining properties (i) and (ii) in G−m. We do
so until the latency of m becomes equal to the cost of the equilibrium flow that we
maintain (under rerouting) in G−m . In order to maintain property (ii), we should pay
attention to links e where the flow f ′

e reaches oe for the first time and to links e′
where γ ′

e′ reaches γ for the first time. For the former, we stop increasing flow and
start increasing γ ′

e , so that the equilibrium property is maintained. For the latter, we
stop increasing γ ′

e′ and start increasing the flow again.
More formally, we partition the links in E−m in three classes, according to prop-

erty (ii) and to the current equilibrium flow f ′ and modification
′. Specifically,
we let E1 = {e ∈ E−m : f ′

e < oe and γ ′
e = 0}, E2 = {e ∈ E−m : f ′

e =
oe and γ ′

e < γ } and E3 = {e ∈ E−m : f ′
e ≥ oe and γ ′

e = γ }. By property (ii)

Theory of Computing Systems (2020) 64: –3 0339 7348

and the induction hypothesis, E1, E2 and E3 form a partitioning of E−m. We let
L = (1 + γ ′

e)�e(f
′), where e is any link with f ′

e > 0, be the cost of the current
equilibrium flow f ′ in G−m . Moreover, we let L1 = mine∈E1 �e(o) be the minimum
cost of an equilibrium flow in G−m that causes some links of E1 to move to E2, let
L2 = mine∈E2(1 + γ)�e(o) be the minimum cost of an equilibrium flow in G−m that
causes some links of E2 to move to E3, and let L′ = min{L1, L2} ≥ L, where the
inequality follows from the definition of E1 and E2.

We reroute flow from link m to the links in E1 ∪E3 and increase γ ′
e’s for the links

in E2 so that we obtain an equilibrium flow in E−m with cost L′. To this end, we let
xe be such that L′ = (1 + γ ′

e)�e(f
′
e + xe), for all e ∈ E1 ∪ E3. Namely, xe is the

amount of flow3 we need to reroute to a link e ∈ E1 ∪ E3 so that its cost becomes
L′. For each link e ∈ E2, we let xe = 0 and increase its modification factor so that
L′ = (1 + γ ′

e)�e(o). So the total amount of flow that we need to reroute from E−m is
x = ∑

e∈E−m
xe. Next, we distinguish between different cases depending on the flow

and the latency in link m after rerouting.
If x < om and �m(om−x) ≥ L′, we update the flow on link m to om−x, the flow on

each link e ∈ E−m to f ′
e+xe, and the modification factors of all links in E2 and apply

the rerouting procedure again (in fact, if �m(om − x) = L′, the procedure terminates
with the desired γ -enforceable flow and the corresponding γ -modification). We note
that by the definition of L′, every time we apply the rerouting procedure, either some
links e move from E1 to E2 (because after the update f ′

e = oe) or some links e′ move
from E2 to E3 (because after the update γ ′

e = γ). Since links in E3 cannot move to
a different class, this rerouting procedure can be applied at most 2m times (in total,
for all induction steps).

If x < om and �m(om − x) < L′, by continuity (see also [9, Section 3]), there
is some L′′ ∈ (L, L′) such that updating the flow and the modification factors with
target equilibrium cost L′′ (instead of L′) reroutes flow x′ ≤ x < om from link m

to the links in E−m so that �m(om − x′) = L′′ and L′′ is the cost of any used link
in E−m. Hence, we obtain the desired γ -enforceable flow f and the corresponding
modification
. Such a value L′′ can be found (either by binary search or) by com-
puting the (unique) equilibrium flow4 f for the links in E1 ∪ E3 ∪ {m} with total
traffic rate om + ∑

e∈E1∪E3
f ′

e and modifications γe = 0 for all links e ∈ E1 ∪ {m}
and γe = γ for all links e ∈ E3 (note also that by the definition of L′, the link par-
titioning E1, E2 and E3 does not change if we reroute flow with target equilibrium
cost L′′ ∈ (L, L′)). Moreover, for all links e ∈ E2, we let fe = oe and set γe so that
L′′ = (1 + γe)�e(oe), where γe ≤ γ , because L′′ ≤ L′ (and by the definition of L′).

3Note that if �e(x) is not strictly increasing, xe may not be uniquely defined (and it may be L′ = L).
Then, for each e ∈ E1, we let xe be the largest value such that f ′

e + xe ≤ oe and L′ = �e(f
′
e + xe) (i.e.,

if L′ = �e(oe), xe becomes oe − f ′
e so that e moves from E1 to E2). For each e ∈ E3, we let xe be the

smallest value such that L′ = �e(f
′
e + xe).

4Before rerouting, the equilibrium cost for the links in E1 ∪ E3 (with traffic rate
∑

e∈E1∪E3
f ′

e) is L < L′
and �e(om) > L. After we reroute x units of flow from link m to E1 ∪ E3, the equilibrium cost for the
links in E1 ∪ E3 (with traffic rate

∑
e∈E1∪E3

(f ′
e + xe)) is L′ > L and �e(om − x) < L′ < L. Hence, by

continuity and due to the parallel link structure of the network, the unique equilibrium flow has equilibrium
cost L′′ ∈ (L,L′).

Theory of Computing Systems (2020) 64: –3 0339 7 349

If x = om and �m(0) < L′, the target equilibrium cost L′′ lies between L and L′
and we apply the same procedure as above. If x = om and �m(0) ≥ L′, we let γm = 0
and fm = 0. Then, we apply rerouting as above and set fe = f ′

e and γe = γ ′
e for

the remaining links e ∈ E−m (where f ′
e and γ ′

e are the values after the update of the
flow and the modification factors). Thus, we obtain the desired enforceable flow f

and the corresponding γ -modification.
If x > om and �m(0) ≥ L′, the target equilibrium cost L′′ lies between L and

L′ and link m is not used at equilibrium. So, we let γm = 0 and fm = 0, compute
the equilibrium flow f for the links in E1 ∪ E3 with traffic rate r − ∑

e∈E2
oe and

modifications γe = 0 for all e ∈ E1 and γe = γ for all e ∈ E3. If L′′ ∈ (L, L′) is the
cost of this equilibrium flow, for all links e ∈ E2, we let fe = oe and set γe so that
L′′ = (1 + γe)�e(oe).

If x > om and �m(0) < L′, the target equilibrium cost L′′ again lies between L and
L′, but now link m may be used at equilibrium. Hence, we apply the same procedure
but with link m now included in E1. With this case, we have covered all the cases
and have concluded the proof of the lemma.

The proof of Lemma 1 implies that if the optimal flow and the Nash equilibrium
flow can be computed efficiently, we can efficiently compute such a γ -enforceable
flow f and the corresponding modification
.

Corollary 1 Let G = (G, �, r) be a γ -modifiable instance on parallel-links with
homogeneous risk-averse players. Given the optimal flow of G, we can compute a fea-
sible flow f and a γ -modification
 of G with the properties (i) and (ii) of Lemma 1
in time O(mTNE), where TNE is the complexity of computing the Nash flow of any
given γ -modification of G.

Proof In the proof of Lemma 1, we need to compute the equilibrium flow of a subin-
stance of G, with a given γ -modification, at most once in each induction step. To see
this, notice that the equilibrium computation step for the links in E1 ∪E2 ∪{m} (or in
E1 ∪ E2) always concludes the proof of the induction step. Moreover, the computa-
tion of the values xe for links in E1 ∪ E3 can be reduced to a Nash flow computation
on parallel links, a new link with constant latency function L′ and the links in E1∪E3
with latency functions (1 + γ ′

e)�e(f
′
e + x) and with traffic rate sufficiently large. We

need to compute such values xe at most 3m times in total, once at the beginning of
each induction step and at most 2m times after some link moves either from E1 to E2
or from E2 to E3. Therefore, we need O(m) Nash flow computations in total.

3.1 Price of Anarchy Analysis

The γ -enforceable flow f of Lemma 1 has a simple and nice structure and is
fast and simple to compute. We highlight that it is different, in general, from the
best γ -enforceable flow computed by [2, Algorithm 1]. We next show an upper
bound on the PoA of f , which also serves as an upper bound on the PoAγ of

Theory of Computing Systems (2020) 64: –3 0339 7350

the best γ -enforceable flow. Moreover, we show that the PoA of f is best possi-
ble in the worst-case (see Theorem 2). The approach is conceptually similar to that
of [3] and exploits the properties (i) and (ii) of Lemma 1. The improvement on
the PoA due to γ -modifications is quantified by the term −γ (x − y)�(x) which
appears in sup�∈D,x≥y≥0

y(�(x)−�(y))−γ (x−y)�(x)
x�(x)

. The results are similar to the results
in [2, Section 4], although our approach and the γ -modification that we consider here
are different.

Theorem 1 For γ -modifiable instances on parallel-links with latency functions in
class D,

PoAγ (D) ≤ ργ (D) = 1

1 − βγ (D)
,

where βγ (D) = sup
�∈D,x≥y≥0

y(�(x) − �(y)) − γ (x − y)�(x)

x�(x)

Proof Let G = (G, �, r) be an instance on parallel-links with latency functions in
class D and let o be the optimal solution of G. We consider the γ -enforceable flow f

and the corresponding modification
 = (γe)e∈E that exist for G, due to Lemma 1.
By definition, PoAγ (G) ≤ PoA(G
). We next establish an upper bound on PoA(G
).

Similarly to the proof of Lemma 1, we partition the links used by f into sets E1,
E2 and E3 defined as E1 = {e ∈ E : 0 < fe < oe}, E2 = {e ∈ E : fe = oe > 0}
and E3 = {e ∈ E : fe > oe}. We first show that:

∑

e∈E

fe�e(f) ≤
∑

e∈E

oe�e(o) +
∑

e∈E3

(oe(�e(f) − �e(o)) − γ (fe − oe)�e(f)) (1)

Using the fact that f is a Nash flow of G
 , we have that

∑

e∈E

fe(1 + γe)�e(f) ≤
∑

e∈E

oe(1 + γe)�e(f) (2)

Since all links not in E1 ∪ E2 ∪ E3 have fe = 0 (i.e., they are not used by f) and
since, by Lemma 1, all links e ∈ E1 have γe = 0 and all links e ∈ E3 have γe = γ ,
the lhs of (2) becomes:
∑

e∈E

fe(1 + γe)�e(f) =
∑

e∈E1

fe�e(f) +
∑

e∈E2

fe(1 + γe)�e(f) +
∑

e∈E3

fe(1 + γ)�e(f)

(3)
Similarly, and since for any link e with 0 = fe < oe, γe = 0, by Lemma 1, the rhs

of (2) becomes:
∑

e∈E

oe(1+γe)�e(f) =
∑

e
∈E2∪E3

oe�e(f)+
∑

e∈E2

oe(1+γe)�e(f)+
∑

e∈E3

oe(1+γ)�e(f)

(4)

Theory of Computing Systems (2020) 64: –3 0339 7 351

Combining (2) with (3) and (4), we obtain that:
∑

e∈E

fe�e(f) ≤
∑

e∈E

oe�e(f) −
∑

e∈E2

γe(fe − oe)�e(f) −
∑

e∈E3

γ (fe − oe)�e(f)

≤
∑

e∈E

oe(�e(f) − �e(o)) +
∑

e∈E

oe�e(o) −
∑

e∈E3

γ (fe − oe)�e(f)

≤
∑

e∈E

oe�e(o) +
∑

e∈E3

(oe(�e(f) − �e(o)) − γ (fe − oe)�e(f))

For the second inequality, we use that for all links e ∈ E2, fe = oe. For the third
inequality, we use that for all links e
∈ E3, fe ≤ oe and thus, �e(f) − �e(o) ≤ 0.
This concludes the proof of (1).

Using the definition of βγ (D) as βγ (D) = sup�∈D,x≥y≥0
y(�(x)−�(y))−γ (x−y)�(x)

x�(x)
,

we obtain that:
∑

e∈E

fe�e(f) ≤
∑

e∈E

oe�e(o) + βγ (D)
∑

e∈E3

fe�e(f)

Thus, PoAγ (G) ≤ PoA(G
) =
∑

e∈E fe�e(f)∑
e∈E oe�e(o)

≤ ργ (D). Therefore, for the class of

instances with latency functions in class D, PoAγ (D) ≤ ργ (D).

Next we give upper bounds on the PoAγ (D) for γ -modifiable instances with
polynomial latency functions. These bounds apply to the γ -enforceable flow f of
Lemma 1 and to the best γ -enforceable flow (see also the similar PoA bounds in
[2, Section 4]).

Corollary 2 For γ -modifiable instances on parallel links with polynomial latency
functions of degree d and non-negative coefficients, we have that PoAγ (d) = 1, for
all γ ≥ d , and

PoAγ (d) ≤ 1

1 − d
(

γ+1
d+1

) d+1
d + γ

, for all γ ∈ [0, d) .

For affine latency functions, in particular, PoAγ (1) = 1, for all γ ≥ 1, and

PoAγ (1) ≤ 1

1 − (1 − γ)2/4
, for all γ ∈ [0, 1) .

Proof Let G = (G, �, r) be a γ -modifiable instance on parallel links with homoge-
neous risk-averse players and polynomial latency functions of degree d and let o be
the optimal flow of G. It is well known (see e.g., [20]) that o is the equilibrium flow
of a routing game on the same underlying network G and with the same traffic rate
r , but with latency functions (x�e(x))′, instead of �e(x). Therefore, for polynomials
of degree d , o is the equilibrium flow of instance G′ = (G, � + x�′, r), where the
latency function of a link e is

∑d
i=0(i + 1)ae(i)x

i , instead of
∑d

i=0 ae(i)x
i , where

all ae(i) are nonnegative.

Theory of Computing Systems (2020) 64: –3 0339 7352

If γ ≥ d ,
∑d

i=0(i + 1)ae(i)x
i ≤ (1 + γ)

∑d
i=0 ae(i)x

i . Thus, there exist γe’s so
that for any link e,

∑d
i=0(i +1)ae(i)(oe)

i = (1+γe)
∑d

i=0 ae(i)(oe)
i , which implies

that the optimal flow of G is γ -enforceable.
If γ < d , we bound βγ (d). We observe that y(�(x)−�(y))−γ (x−y)�(x)

x�(x)
=

y
x

(
1 + γ − �(y)

�(x)

)
−γ . If �(x) is a polynomial of degree d , �(x) = ∑d

i=0 aix
i . Hence,

for all y ≤ x, �(y)
�(x)

≥ yd

xd , because yd−i ≤ xd−i and thus,
∑

aiy
ixd ≥ ∑

aix
iyd .

Therefore, y
x

(
1 + γ − �(y)

�(x)

)
− γ ≤ y

x

(
1 + γ − yd

xd

)
− γ . The rhs is maximized for

y satisfying (yd+1)′ = (1 + γ)xd , which gives y = d

√
γ+1
d+1 x. Thus, we obtain that

βγ (d) = d
(

γ+1
d+1

) d+1
d − γ and that ργ (d) =

(
1 − d(

γ+1
d+1)

d+1
d + γ

)−1
.

To quantify the improvement due to γ -modifications, we observe that for affine
latency functions, the worst-case PoAγ (1) with γ -modifications decreases fast as γ

grows from 0 to 1.
Finally, we show that our bounds on the PoAγ are best possible in the worst-case.

Theorem 2 For any class of latency functions D and for any ε > 0, there is a γ -
modifiable instance G on parallel links with homogeneous risk-averse players and
latencies in class D so that PoAγ (G) ≥ ργ (D) − ε.

Proof Let ε > 0 and consider a γ -modifiable instance G on two parallel links, e1 and
e2, with traffic rate rε , which will be determined later, and homogeneous risk-averse
players. As for latency functions, the latency function of link e1 is �1(x) = �ε(x),
where �ε(x) is a latency function in D that will be determined later, and the latency
function of link e2 is the constant function �2(x) = (1 + γ)�ε(rε).

We consider any γ -modification
 = (γ1, γ2) and the corresponding equilibrium
flow f of G
 . Then, all traffic goes through link e1 and thus C(f) = rε�ε(rε). At the
optimal flow o, let o1 be the traffic routed on link e1. Then, C(o) = (rε − o1)(γ +
1)�ε(rε) + o1�ε(o1). Therefore,

PoA(G
) = rε�ε(rε)

(rε − o1)(γ + 1)�ε(r) + o1�ε(o1)
= 1

1 − o1(�ε(rε)−�ε(o1))−γ (rε−o1)�ε(rε)
rε�ε(rε)

Since o is the optimal flow of G, o1 ∈ [0, rε] is chosen so that C(o) is minimized,
or equivalently, that the term rε�ε(rε)

(rε−o1)(γ+1)�ε(rε)+o1�ε(o1)
is maximized. Therefore, o1

maximizes
o1(�ε(rε) − �ε(o1)) − γ (rε − o1)�ε(rε)

rε�ε(rε)
(5)

We recall that βγ (D) = sup�∈D,x≥y≥0
y(�(x)−�(y))−γ (x−y)�(x)

x�(x)
. Using the defini-

tion of sup, we let �ε be any latency function in D such that for some x0 ,

sup
x0≥y≥0

y(�ε(x0) − �ε(y)) − γ (x0 − y)�ε(x0)

x0�ε(x0)
≥ βγ (D) − ε(1 − βγ (D))2

1 − ε(1 − βγ (D))

Theory of Computing Systems (2020) 64: –3 0339 7 353

Setting rε = x0, and since o1 maximizes (5), we obtain that

o1(�ε(rε) − �ε(o1)) − γ (rε − o1)�ε(rε)

rε�ε(rε)
≥ βγ (D) − ε(1 − βγ (D))2

1 − ε(1 − βγ (D))

Therefore,

PoAγ (D) ≥ PoA(G
) ≥ 1

1 − βγ (D) + ε(1−βγ (D))2

1−ε(1−βγ (D))

= ργ (D) − ε

4 Modifying Parallel-Link Games with Heterogeneous Players

In contrast to the case of homogeneous players, where we can compute the best
γ -enforceable flow in polynomial time (at least for affine latencies, see [2, Algo-
rithm 1]), we next show that computing the best γ -enforceable flow for heteroge-
neous risk-averse players is NP-hard. This holds even for affine latencies and only
two classes of risk-averse players.

Theorem 3 Given an instance G on parallel links with affine latencies and two
classes of risk-averse players, a γ > 0, and a target cost C > 0, it is NP-complete to
determine whether there exists a γ -enforceable flow of G of total latency at most C.

Proof Given a feasible flow, we can in polynomial time check if it is a γ -enforceable
flow (e.g. using Algorithm 1 and Theorem 5 of [11]) and compute and compare its
cost with C. This settles the problem in NP. The NP-hardness proof is a modification
of the construction in [19, Section 6], which shows that the best Stackelberg mod-
ification on parallel link networks with affine latencies and two classes of players
(selfish and coordinated) is NP-hard. Intuitively, the players with low aversion fac-
tor a1 (resp. high aversion factor a2) in our construction correspond to selfish (resp.
coordinated) players in the construction of [19, Section 6].

Formally, we reduce (1/3, 2/3)-PARTITION to the best γ -enforceable flow. An
instance of (1/3, 2/3)-PARTITION consists of n positive integers s1, s2, . . . , sn, so
that S = ∑n

i=1 si is a multiple of 3. We seek to determine whether there exists a
subset X so that

∑
i∈X si = 2S/3.

For every instance I of (1/3, 2/3)-PARTITION, we create a routing game G con-
sisting of n + 1 parallel links, with affine latencies �i(x) = (x/si) + 4, for all
i ∈ {1, 2, . . . , n}, and �n+1(x) = 3x/S. The traffic rate is r = 2S, partitioned into
two classes with traffic r1 = 3S/2 and r2 = S/2. We set γ = 2/17. For clarity, we
first show NP-hardness for the case where a1 = 0 and a2 = 1, i.e., the first class con-
sists of risk-neutral players and the second class consists of risk-averse players. At the
end of the proof, we discuss how to extend the proof to the case where 1 = a1 < a2.
We next show that I admits a (1/3, 2/3)-partition if and only if the routing game G
admits a γ -enforceable flow f of total latency at most 35S/4.

Theory of Computing Systems (2020) 64: –3 0339 7354

Let I be a YES-instance of (1/3, 2/3)-PARTITION and let X be a subset such that∑
i∈X si = 2S/3. Given X, we construct a γ -enforceable flow f as follows: For

risk-neutral players, we set f 1
i = 0, for i ∈ X, f 1

i = si/4, for i ∈ {1, . . . , n} \ X

and f 1
n+1 = 17S/12. For risk-averse players, we set f 2

i = 3si/4, for i ∈ X, and 0,
otherwise. It is easy to see that f is the Nash flow of the γ -modification with γi = 0,
for i ∈ X, γi = γ = 2/17, for i
∈ X. Then, the delay (and the perceived cost of the
risk-neutral players) is 17/4 for any edge not in X (including edge n + 1) and 19/4
for any edge in X. The perceived cost of risk-averse players is 19/4 on all edges.
Therefore, C(f) = 35S/4.

Now, let I be a NO-instance of (1/3, 2/3)-PARTITION. We will show that any
γ -enforceable flow f has total latency greater than 35S/4. To this end, we fix an
arbitrary γ -enforceable flow f (along with the corresponding γ -modification that
turns f into a Nash flow) and partition the edges into two sets: X1 consists of all
edges i with positive risk-neutral traffic in f , i.e., with f 1

i > 0, and X2 consists of
the remaining edges i with f 1

i = 0. The total traffic on the edges of X1 is r(X1) =∑
i∈X1

fi = (3/2 + τ)S, where τ ≥ 0 corresponds to the risk-averse traffic routed
through X1. We also let r(X2) = ∑

i∈X2
fi = (1/2 − τ)S be the total traffic through

X2. We observe that edge n + 1 must be in X1. Otherwise, �n+1(f) ≤ 3/2 < 4
and risk-neutral players could profitably deviate to edge n + 1. For convenience,
we let fn+1 = (3/2 − μ)S be the total traffic on edge n + 1 and let (μ + τ)S be
the total traffic on the remaining edges of X1. We can assume that μ ≥ 0, since
otherwise �n+1(f) > 9/2 and C(f) > (9/2)(3S/2) + 4(S/2) = 35S/4. We also let
tS = ∑

i∈X1\{n+1} si and (1 − t)S = ∑
i∈X2

si .
Since all edges in X1 include some risk-neutral traffic and since all risk-neutral

players must have the same latency in f (because γ -modifications do not affect risk-
neutral players), all edges in X1 must have latency equal to �n+1(f) = 9/2 − 3μ.
Therefore, the total cost of the (risk-neutral and risk-averse) players routed through
X1 is (9/2 − 3μ)(3/2 + τ)S. Moreover, for any edge i ∈ X1, i
= n + 1, it must
be 4 + fi/si = 9/2 − 3μ, which implies that fi = (1/2 − 3μ)si . Hence, τ + μ =
(1/2 − 3μ)t , which implies that 1 − t = 1 − τ+μ

1/2−3μ
and that 0 ≤ τ+μ

1/2−3μ
≤ 1. Using

the latter, we obtain that μ ≤ 1/8.
To minimize the total latency of risk-averse traffic through X2, the remaining traf-

fic of (1/2 − τ)S is routed on the edges of X2 so that all of them have the same
latency,5 which must be equal to 4 + 1/2−τ

1−t
. Therefore, the total latency of f is:

C(f) =
(

9
2 − 3μ

) (
3
2 + τ

)
S +

(
4 + 1/2−τ

1−t

) (
1
2 − τ

)
S (6)

where t = τ+μ
1/2−3μ

∈ [0, 1], τ ≥ 0, μ ∈ [0, 1/8]. Moreover, since f is γ -enforceable,
we have that

4 + 1/2−τ
1−t

≤
(

9
2 − 3μ

) (
1 + 2

17

)
⇒ 1/2−τ

1−t
≤ 35−114μ

34 ,

5For that, recall that the flow that minimizes the total latency is an equilibrium for the game where the
latency on every edge e has been changed from �e(x) to (x�e(x))′. But since all latency functions of edges
in X2 are affine and share the same constant (recall �i(x) = (x/si) + 4), equal latencies with respect to
(x�e(x))′ is equivalent to equal latencies with respect to �e(x). Thus the optimal total latency is achieved
when the edges in X2 are at equilibrium, sharing the same latency.

Theory of Computing Systems (2020) 64: –3 0339 7 355

so that the risk-averse players do not profitably deviate from the edges of X2 to the
edges of X1.

Under the constraints above, C(f) is minimized for τ = 0 and μ = 1/12,
for which give t = 1/3 and C(f) = 35S/4. However, since I is NO-instance of
(1/3, 2/3)-PARTITION, t
= 1/3. Therefore, we have either that τ = 0 and μ
= 1/12
or τ > 0. In both cases, C(f) > 35S/4. This concludes the proof for the case
of two player classes, one with risk-neutral players and the other with risk-averse
players.

A technical subtlety is that the minimum total latency C(f) can decrease if we
have a1 > 0 (i.e., if we have 3S/2 players of low risk-aversion a1 > 0 and S/2
players of high risk-aversion a2 > a1). This is because we can use γ -modifications
for players with aversion a1 so that we improve the total latency of their routing
through X1. Applying the same analysis as above but with a1 > 0, we obtain that for
any edge i ∈ X1, i
= n+1, (1/2−3μ)si −O(a1si) ≤ fi ≤ (1/2−3μ)si +O(a1si),
where a factor γi ≤ 2/17 is also hidden in the O-notation. Therefore, (1/2 − 3μ)t −
O(a1S) ≤ τ + μ ≤ (1/2 − 3μ)t + O(a1S), which implies that τ+μ

1/2−3μ
− O(a1S) ≤

t ≤ τ+μ
1/2−3μ

+ O(a1S). Using the latter, we obtain that μ ≤ 1−O(a1S)

6(4/3−O(a1S))
. The

possible decrease in t and the possible increase in μ, both by O(a1S), at τ = 0,
imply a decrease in C(f) by O(a1S), due to a1 > 0, which allows for a decrease in
the flow and the latency of edge n+1. On the other hand, if t
= 1/3, |t −1/3| ≥ 1/S,
and the increase in the cost of C(f) due to t
= 1/3 is
(1/S). So, if we select a1

appropriately small, e.g., setting a1 = O(1/S3) suffices, the decrease in C(f) due to
a1 > 0 is strictly less than the increase in C(f) due to t
= 1/3. So, the NP-hardness
proof extends to the case where 0 < a1 < a2 = 1. Then, multiplying si’s, a1 and a2

by 1/a1, we can show that computing the best γ -enforceable flow remains NP-hard
if 1 = a1 < a2.

4.1 Finding a γ -Enforceable Flowwith Good Price of Anarchy

Since the best enforceable flow is NP-hard, we proceed to establish the existence
of an enforceable flow that “mimics” the optimal flow o, in the sense described by
the properties (i) and (ii) in Lemma 1 and achieves a PoA as low as in Theorem 1.
In the following, we assume that the links are indexed in increasing order of �i(f),
i.e. i < j ⇒ �i(f) ≤ �j (f), with ties broken in favor of links with fe > 0. We
also recall that for the risk-aversion factors of the players, we assume wlog. that
1 = a1 < a2 < . . . < ak . We begin with a necessary and sufficient condition for
a flow f to be γ -enforceable. [11, Algorithm 1] shows how to efficiently compute a
γ -modification for any flow f that satisfies the following.

Theorem 4 [11, Theorem 5] Let G be a γ -modifiable instance on parallel links with
heterogeneous players, let f be a feasible flow of G, and let μ be the maximum
index of a link used by f . Then, f is γ -enforceable if and only if (i) for any link
i ∈ [μ], γ �i(f) ≥ ∑μ−1

l=i
�l+1(f)−�l(f)

amin
l+1

and (ii) for all links i and j , if �i(f) < �j (f),

then ai(f) ≤ aj (f) (i.e., more risk-averse players are routed on links with higher
latency).

Theory of Computing Systems (2020) 64: –3 0339 7356

To obtain a γ -enforceable flow f for an instance with heterogeneous players,
we combine Lemma 1 with Theorem 4 and [11, Algorithm 1]. Specifically, we first
ignore player heterogeneity and compute, using Lemma 1 and Corollary 1, a γ -
enforceable flow f and the corresponding modification
 so that f is a Nash flow
of the modified instance G
 when all players have the minimum risk-averse factor
a1 = 1. Assuming that the links are indexed in increasing order of their latencies in
f , since f is γ -enforceable with risk-averse factor a1 = 1 for all players, Theorem 4
implies that for any link i ∈ [μ], (1 + γ)�i(f) ≥ �μ(f).

Next, we greedily allocate the heterogeneous risk-averse players to f , taking their
risk-averse factors into account, so that each link i receives flow fi and property (ii)
in Theorem 4 is satisfied (this is always possible). Finally, we use [11, Algorithm 1]
and compute a γ -modification that turns f into an equilibrium flow for the modified
instance with heterogeneous players. This is possible because, by construction, f

satisfies condition (i) of Theorem 4. Specifically, for link i ∈ [μ],

γ �i(f) ≥ �μ(f) − �i(f) =
μ−1∑

l=i

(�l+1(f) − �l(f)) ≥
μ−1∑

l=i

�l+1(f) − �l(f)

amin
l+1

The first inequality holds because f is γ -enforceable when all players are homo-
geneous and have risk-averse factor a1 = 1 and the last inequality holds because
amin
l+1 ≥ 1, for any link l.

Moreover, since f satisfies the properties of (i) and (ii) in Lemma 1, the PoA of
f can be bounded as in Theorem 1 and (in Corollary 2, for polynomial and affine
latencies). Hence, we obtain the following.

Theorem 5 Let G = (G, �, (ai)i∈[k], (ri)i∈[k]) be a γ -modifiable instance on
parallel-links with heterogeneous risk-averse players. Given the optimal flow of
G, we can compute a feasible flow f and a γ -modification
 of G in time
O(mTNE), where TNE is the complexity of computing the Nash flow of any given γ -
modification of G with homogeneous risk-averse players. Moreover, the PoAγ , under
γ -modifications, achieved by f is upper bounded as in Theorem 1 and Corollary 2.

5 Modifying Routing Games in Series-Parallel Networks

In this section, we consider γ -modifiable instances on series-parallel networks with
homogeneous players and generalize the results of Section 3. We start with a suf-
ficient and necessary condition for the optimal flow o to be γ -enforceable. The
following generalizes Proposition 1 and is a corollary of [2, Theorem 1].

Proposition 2 Let G be a γ -modifiable instance on a series-parallel network and let
o be the optimal flow of G. Then, o is γ -enforceable if and only if for any pair of
internally vertex-disjoint paths p and q with common endpoints (possibly different
from s and t) and with oe > 0 for all edges e ∈ p, �p(o) ≤ (1 + γ)�q(o).

Theory of Computing Systems (2020) 64: –3 0339 7 357

We proceed to generalize Lemma 1 to series-parallel networks. The proof of
the following is based on an extension of the rerouting procedure used in the
proof of Lemma 1 combined with a continuity property of γ -enforceable flows in
series-parallel networks.

Lemma 2 Let G = (G, �, r) be a γ -modifiable instance with homogeneous risk-
averse players on a series-parallel network G and let o be the optimal flow of G.
There is a feasible flow f and a γ -modification
 of G such that

(i) f is a Nash flow of the modified instance G
 .
(ii) for any edge e, if fe < oe, then γe = 0, and if fe > oe, then γe = γ .

Proof The proof is by induction on the structure of the series parallel network G and
generalizes the proof of Lemma 1. For the base case of a single edge e, the lemma
holds without any modifications.

For the inductive step, assume that G is the result of a series composition of series-
parallel networks G1 and G2. Using the induction hypothesis, for i ∈ {1, 2}, we let
fi be a γ -enforceable flow and
i be a γ -modification of the corresponding instance
Gi such that fi is the Nash flow of G
i

i . Any s − t path p of G is a concatenation of
source-sink paths p1 of G1 and p2 of G2. Thus, by letting
 be the combination of

1 and
2 and f be the combination of f1 and f2, we obtain a γ -enforceable flow
f and the corresponding modification
 that satisfy the lemma, due to the induction
hypothesis.

The interesting case is where G is the result of a parallel composition of series-
parallel networks G1 and G2. By induction hypothesis, for i ∈ {1, 2}, we let fi be a
γ -enforceable flow of rate ri , with r1 +r2 = r , and
i be a γ -modification of Gi such
that fi is the Nash flow of G
i

i . In the following, we let Li = L(fi) be the equilibrium
cost of flow fi through network Gi with latency functions modified according to
i .

If L1 = L2, i.e., G
1
1 with traffic rate r1 and G
2

2 with traffic rate r2 have the
same equilibrium cost, then combining f1 and f2 to a feasible flow f of G and
combining
1 and
2 to γ -modifications
, we obtain a γ -enforceable flow f and a
modification
 that satisfy the lemma, due to the induction hypothesis.

Otherwise, we assume wlog. that L1 > L2. To deal with this case, we generalize
the rerouting procedure of Lemma 1. Starting with f1 and f2, we reroute flow from
some used paths of G

1
1 to G

2
2 , maintaining the equilibrium property on both G

1
1

and G

2
2 and trying to equalize their equilibrium cost. As in Lemma 1, we have also

to maintain property (ii), by paying attention to edges e where the flow fe reaches oe

for the first time and to edges e′ where γe′ reaches γ for the first time. For the former,
we stop increasing the flow through any paths including e and start increasing γe, so
that the equilibrium property is maintained. For the latter, we stop increasing γe′ and
start increasing again the flow through paths that include e′.

The idea of the proof is similar to the induction step in Lemma 1. However, since
G1 and G2 are (possibly large) series-parallel networks connected in parallel, and
not just two parallel links, we need a continuity property about the changes in the
equilibrium flow of a network when the traffic rate slightly increases or decreases.

Theory of Computing Systems (2020) 64: –3 0339 7358

This property essentially follows from [9, Section 3], but below we give its formal
proof.

Formally, let 0 ≤ xmax ≤ r1 be the maximum value (amount of flow) such that:

(a) There exist a γ -modification
′
1 of subinstance G1 such that with traffic rate

r1 −xmax, the Nash flow f ′
1 of G
′

1
1 is such that for any edge e ∈ G1: if f1e > oe,

then f1e ≥ f ′
1e ≥ oe and γ ′

e = γe(= γ), if f1e ≤ oe and γe = 0, then f ′
1e ≤

f1e(< oe) and γ ′
e = γe(= 0), if f1e = oe and γe > 0, then f ′

1e = f1e(= oe)

and 0 ≤ γ ′
e ≤ γe.

(b) There exist a γ -modification
′
2 of subinstance G2 such that with traffic rate

r2 +xmax, the Nash flow f ′
2 of G
′

2
2 is such that for any edge e ∈ G2: if f2e ≥ oe

and γe = γ , then f ′
2e ≥ f2e(≥ oe) and γ ′

e = γe(= γ), if f2e < oe, then f2e ≤
f ′

2e ≤ oe and γ ′
e = γe(= 0), if f2e = oe and γe < γ , then f ′

2e = f2e(= oe) and
γe ≤ γ ′

e ≤ γ .
(c) L(G1, (1 +
′

1)�, r1 − xmax) ≥ L(G2, (1 +
′
2)�, r2 + xmax)

Claim The set X of all x that satisfy (a), (b) and (c) is closed subset of R≥0 and thus
the supremum lies inside X. Moreover, the maximum xmax ∈ X is positive and if
xmax < r1, its corresponding γ -modification and Nash flows are such that for some
edge e, either inequality (c) is tight or one of the crucial inequalities in (a) or (b) is
tight, i.e. [e ∈ G1 and (f1e > oe and f ′

1e = oe) or (f1e = oe and γe > 0 and γ ′
e = 0)]

or [e ∈ G2 and (f2e < oe and f ′
2e = oe) or (f2e = oe and γe < γ and γ ′

e = γ)].

The proof is essentially a consequence of the more general results in [9, Section 3].
Since here we have a slightly different setting with restricted edge modifications, we
give a formal proof of this claim. Before we prove the claim, let us see that it indeed
implies the lemma.

If inequality (c) is tight, then we are done as combining f ′
1 with f ′

2 and
′
1 with
′

2,
we get the flow-moficiation pair (f,
) for which properties (i) and (ii) hold (because
of (a) and (b)).

If inequality (c) is not tight and xmax < r1, then we set f1 = f ′
1 and f2 = f ′

2,
r1 = r1 − xmax and r2 = r2 + xmax,
1 =
′

1 and
2 =
′
2 and repeat the procedure.

The above steps are finite and in the final step, inequality (c) holds with equality
or G1 is empty of flow (xmax = r1). To see this, let an edge be optimal under f if
fe = oe and observe that at any step (that ended without (c) being tight and without
G1 being empty of flow), because of the claim, at least one edge e ∈ G1 got from
non-optimal flow to optimal flow by losing flow, or got its γe = 0 and is “allowed”
to become non-optimal again (in later steps) by losing flow,6 or at least one edge
e ∈ G2 got from non-optimal to optimal by gaining flow, or got its γe = γ and is
“allowed” to become non-optimal again (in later steps) by gaining flow.7 Thus, in a
finite number of steps, if none of these steps ended with (c) tight, all the edges of G1
will have f ′

1e ≤ oe and γe = 0 and all the edges of G2 will have f ′
2e ≥ oe and γe = γ

6Note that such edges will remain non-optimal, because in later steps, they may only lose more flow.
7Note that such edges will remain non-optimal, because in later steps, they may only gain more flow.

Theory of Computing Systems (2020) 64: –3 0339 7 359

and thus the rerouting may continue unrestricted (without any crucial inequality from
(a) or (b)) and eventually stop either with L(G1, (1+
′

1)�, r1 −xmax) = L(G2, (1+

′

2)�, r2 + xmax) or with xmax = r1 (which leaves G1 empty of flow).
The case where L(G1, (1 +
′

1)�, r1 − xmax) = L(G2, (1 +
′
2)�, r2 + xmax) is

resolved earlier, the combination
 of
′
1 and
′

2 together with the combination f of
f ′

1 and f ′
2 satisfy properties (i) and (ii) of the lemma, because of conditions (a) and

(b). This also works for the case where xmax = r1 and L(G1, (1+
′
1)�, r1 −xmax) >

L(G2, (1 +
′
2)�, r2 +xmax), again because of conditions (a) and (b) and because G1

has no flow.
Thus, to complete the proof of the lemma, we have only to prove the claim.
Proof of Claim First we prove that: (I) if we have a flow f ′ and a γ -modification

(combination of a
′
1 and a
′

2) that satisfy (a) and (b) of the set X and inequality (c),
without any of the crucial inequalities of (a) and (b) or inequality (c) being tight,

then we can reroute an amount of flow ε > 0 (small enough) from G1 to G2 and
change some of the γ ′

e’s of some edges of the edges with fe = oe so as the new flow,
combined with the new γ -modification also satisfies inequalities in (a) and (b) and
inequality (c).

Consider graph G

′

1
1 and remove any edge e that has f ′

e = oe and 0 < γ ′
e . Consider

graph G

′

2
2 and remove any edge e that has f ′

e = oe and γ ′
e < γ . Call these graphs

G

′

1
1 and G

′
2

2 respectively. Let the set of removed edges be Er . Remove also the flow
that goes through the paths containing the removed edges. Let he be the flow that
is missing (was removed) from edge e because of the above flow removal (he = 0

for the edges that didn’t lose flow). For all edges e ∈ G

′

1
1 or e ∈ G

′
2

2 let �′
e(x) =

�e(x + he). Change all cost functions of G

′

1
1 and G

′
2

2 from �e(x) to �′
e(xe). Flow

f ′′ : f ′′
e = f ′

e −he is a Nash flow for G

′

1
1 and G

′
2

2 (with the changed cost functions).
For an ε > 0 small enough, because of continuity, we can suitably remove from

G

′

1
1 a flow of volume ε and push it through G

′
2

2 resulting to f ∗, so as under f ∗ all

flow carrying paths in G

′

1
1 share equal costs, all flow carrying paths in G

′
2

2 share

equal costs and for any any edge e ∈ G

′

1
1 it is (f ′′

e > oe ⇒ f ′′
e ≥ f ∗

e ≥ oe) and

(f ′′
e ≤ oe ⇒ f ∗

e ≤ f ′′
e ≤ oe) and for any any edge e ∈ G

′
2

2 it is (f ′′
e ≥ oe ⇒ f ∗

e ≥
f ′′

e ≥ oe) and (f ′′
e < oe ⇒ f ′′

e ≤ f ∗
e ≤ oe).8

Now we put back again the edges that we removed from G

′

1
1 and G

′
2

2 . We will
put them back so as they get the same flow as in f ′ and, by changing their γ ′

e value,
they do not destroy the equilibrium property in none of the two networks.

If we put back the edges of G

′

1
1 with the γ ′

e they had initially, change the flow from

f ∗ to f ∗ +h and bring back the latency functions they had in G

′

1
1 , then, because the

cost of the Nash flow only may got smaller (in G

′

1
1), the costs of the paths that go

8For completeness, one can give a detailed proof of this statement by induction on the decomposition of
G

1
1 and G

2
2 .

Theory of Computing Systems (2020) 64: –3 0339 7360

through edges of Er (in G

′

1
1) will have cost greater or equal to the Nash flow cost

and if we put them back with γ ′
e = 0, then the costs of the paths that go through

edges of Er (in G

′

1
1) will have cost smaller or equal to the Nash flow cost, for ε

small enough. By induction on the decomposition of G

1
1 , by continuity and because

0 < γ ′
e for edges in Er and G

1
1 , there are 0 ≤ γ ′′

e ≤ γ ′
e for all edges in Er and G

′
1

1

so as f ∗ + h is a Nash flow in G

′′

1
1 , where
′′

1 is the γ -modification that considers
γ ′′
e ’s and agrees with
′

1 in all other edges

Similarly, if we put back the edges of G

′

2
2 with the γ ′

e they had initially, change

the flow from f ∗ to f ∗ + h and bring back the latency functions they had in G

′

2
2 ,

then, because the cost of the Nash flow only may got bigger (in G

′

2
2), the costs of

the paths that goes through edges of Er (in G

′

2
2) will have cost smaller or equal than

the Nash flow cost and if we put them back with γ ′
e = γ , then the costs of the paths

that go through edges of Er (in G

′

2
2) will have cost greater or equal to the Nash flow

cost, for ε small enough. By induction on the decomposition of G

2
2 , by continuity

and because γ ′
e < γ for edges in Er and G

′
2

2 , there are γ ′
e ≤ γ ′′

e ≤ γ for all edges in

Er and G

′

2
2 so as f ∗ + h is a Nash flow in G

′′
2

2 , where
′′
2 is the γ -modification that

considers γ ′′
e ’s and agrees with
′

2 in all other edges.
Initially inequality (c) was not tight and so for ε small enough (c) holds under

f ∗ + h and
′′.
Thus (I) is proved.
To prove that the supremum xmax of X is xmax > 0 we set
′ =
, f ′

1 = f1
and f ′

2 = f2 and we have an Nash flow f ′ (combination of f ′
1 and f ′

2) and a γ -
modification (combination of a
′

1 and a
′
2) that satisfy (a) and (b) of the set X,

without any of the crucial inequalities of (a) and (b) being tight and thus (I) can be
applied.

To prove that xmax ∈ X, one can check that all convergent sequences of X con-
verge to a point inside X (or else there would be an x0 close enough to xmax, for
which one of the inequalities of (a) or (b) wouldn’t hold). Thus, X is a closed set.

Moreover, if xmax < r1, there exist a γ -modification
′ that may differ from

only in the optimal edges such that either (c) is tight or it makes f ′
1 the Nash flow of

G

′

1
1 and f ′

2 the Nash flow of G

′

2
2 with one crucial inequality being tight, i.e. there is

an edge: [e ∈ G

′

1
1 with (f1e > oe & f ′

1e = oe) or (f1e = oe & γe > 0 & γ ′
e = 0)] or

[e ∈ G

′

2
2 with (f2e < oe & f ′

2e = oe) or (f2e = oe & γe < γ & γ ′
e = γ)], with f ′

1
and f ′

2 differing from f1 and f2 only in the non optimal edges. This is true, as in a
different case, by (I), we would be able to make xmax strictly greater (by pushing an
extra ε > 0 amount of flow from G1 to G2).

The last step concludes the proof of the claim and the proof of the lemma.

Next, we observe that the proof of Theorem 1 does not use the parallel-link struc-
ture of the network, it just uses the properties (i) and (ii) of Lemmas 1 and 2. Hence,

Theory of Computing Systems (2020) 64: –3 0339 7 361

we obtain the same upper bound on the PoA for the γ -enforceable flow f of Lemma 2
and also on the PoAγ of the best γ -enforceable flow for series-parallel networks with
homogeneous players.

Theorem 6 For γ -modifiable instances on series-parallel networks with homoge-
neous players and latency functions in class D,

PoAγ (D) ≤ ργ (D) = 1

1 − βγ (D)
,

where βγ (D) = sup
�∈D,x≥y≥0

y(�(x) − �(y)) − γ (x − y)�(x)

x�(x)

Moreover, given the optimal flow of an instance G on a series-parallel network, we
show how to compute a γ -enforceable flow f and the corresponding modification
so that we achieve the upper bound on the PoA established by Theorem 6. Given o,
the running time is determined by the time required to compute a Nash flow of the
original instance.

We first use Proposition 2 and determine whether the optimal flow o is γ -
enforceable. To this end, we remove from G all edges unused by o and check the
feasibility of the following linear system.

0 used edges

1 max
0

used paths ()

If the linear system (Oγ) is not feasible, then o is not γ -enforceable, by Proposi-
tion 2. Otherwise, using the solution of (Oγ) as γe’s for the edges of G used by o and
setting γe = 0 for the unused edges9 e, we enforce o as a Nash flow of the modified
game G
 .

If (Oγ) is not feasible and o is not γ -enforceable, we exploit the constructive
nature of the proof of Lemma 2 and find a γ -enforceable flow in time dominated by
the time required to compute a Nash flow in series-parallel networks.

Lemma 3 Let G be a γ -modifiable instance on a series-parallel network with homo-
geneous players. Given the optimal flow of G and for any ε > 0, we can compute
a feasible flow f and a γ -modification
 of G with the properties (i) and (ii) of
Lemma 2 in time O(m2TNE log(r/ε)), where TNE is the complexity of computing the
Nash flow of any given γ -modification of G and ε is an accuracy parameter.

Proof Following the inductive proof of Lemma 2, we modify the optimal flow o from
the leaves to the root of the series parallel decomposition tree of the series-parallel

9Any (unused) path p with an unused edge has �p(o) ≥ maxp:op>0 �p(o). Moreover, the perceived cost
of p can only increase due to edge modifications. Since the modifications corresponding to the solution of
(Oγ) make the perceived cost of all used paths equal to maxp:op>0 �p(o), o becomes a Nash flow of G
 .

Theory of Computing Systems (2020) 64: –3 0339 7362

network G. As a result, at any node of the decomposition tree, we keep a flow and a
γ -modification for the subnetwork corresponding to this node that satisfy properties
(i) and (ii) of Lemma 2.

Let us first consider the series composition of subnetworks G1 and G2, for which,
by induction, we have computed a γ -enforceable flow fi and a modification
i , for
i ∈ {1, 2}, that satisfy properties (i) and (ii) of Lemma 2. Then, we just combine f1
with f2 and
1 with
2 and obtain a γ -enforceable flow f and a modification
 that
satisfy properties (i) and (ii) of Lemma 2 for the subinstance corresponding to the
composition of G1 and G2 in series.

For the parallel composition of subnetworks G1 and G2, again, by induction, we
have computed, for i ∈ {1, 2}, a γ -enforceable flow fi of rate ri , with r1 + r2 = r ,
and a modification
i that satisfy properties (i) and (ii) of Lemma 2. Then, we follow
the steps in the proof of the claim, in proof of Lemma 2. We repeatedly compute
xmax of the arising set X, and eventually (as proved in the claim), we obtain flow-
modification pairs (f ′

1,

′
1) and (f ′

2,

′
2) that make (c) tight, or get G1 empty of flow.

Combining f1 with f2 and
1 with
2 , we finally obtain a flow-modification pair
(f,
) for which properties (i) and (ii) of Lemma 2 are satisfied.

We compute xmax using binary search. Next, we discuss how to perform binary
search for xmax ∈ X in the interval [0, r1]. For x = xlow+xhigh

2 ∈ [xlow, xhigh], for a

[xlow, xhigh] ⊆ [0, r1], we compute the Nash flow in subinstance G
1
1 with flow r1 −x

and in subinstance G
2
2 with flow r2 +x, without the “locked” edges, i.e. edge set Er .

If for any edge, one of the inequalities of (a) or (b) is violated or if (c) is violated, then

we move to the interval
[
xlow,

xlow+xhigh
2

]
. Otherwise, we compute (e.g, via Linear

Programming) the modifications γe’s for edges in Er so that the equilibrium property
is not destroyed. If for the edges in Er , one of the inequalities of (a) or (b) is violated

by some γe, then we move to the interval
[
xlow,

xlow+xhigh
2

]
, else we move to interval

[
xlow+xhigh

2 , xhigh

]
. We continue in the same manner until we find an x for which (c)

and all inequalities of (a) and (b) are satisfied and at least one of them is tight within a
chosen accuracy parameter ε > 0, i.e., it is practically tight, provided that ε is chosen
small enough.

We next show how to find the suitable flow-modification pair (f,
). Let f ′
1,
′

1
and f ′

2,
′
2 be the pairs found by the above binary search. If x = r1 or (c) is tight, then

we have found a flow f , that is a combination of f ′
1 and f ′

2, and a γ -modification
,
that is a combination of
′

1 and
′
2, which satisfy properties (i) and (ii) of Lemma 2.

If inequality (c) is not tight and x < r1, we set f1 = f ′
1 and f2 = f ′

2, r1 = r1 − x

and r2 = r2 + x,
1 =
′
1 and
2 =
′

2 and repeat the procedure.
The time complexity of the above steps is strongly related to the time complexity

of computing the Nash flow for each x during the binary search process, which in
turn, is closely related to the class of latency functions in G. Let TNE denote the time
complexity of an algorithm that computes a Nash flows in series-parallel networks
with the latency functions as in G.

To compute a specific xmax, at any step of the above procedure, the Nash flow
algorithm is called log(r/ε) times if we want to specify xmax within accuracy ε. A
computation of xmax for parallel compositions is performed at most 2m times (see

Theory of Computing Systems (2020) 64: –3 0339 7 363

also proof of Lemma 2), since the decomposition tree of G has at most m nodes
and thus, at most m parallel compositions occur during the whole procedure. Thus,
assuming the time complexity TNE of the Nash flow algorithm dominates the time
required for the computation of the edge modifications γ ′

es of edges in Er ’s, we get
a total running time of O(m2TNE log(r/ε)), as required.

6 Parallel-Link Games with RelaxedModification Restrictions

In this section, we consider (p, γ)-modifiable games on parallel links with hetero-
geneous risk-averse players. Observing that any γ / p

√
m-modification is a (p, γ)-

modification for a (p, γ)-modifiable game, we next show an upper bound on the PoA
under such modifications.

Theorem 7 For any (p, γ)-modifiable instance G on m parallel links with heteroge-
neous risk-averse players and latency functions in class D,

PoA
p
γ (G) ≤ PoAγ0(G) ≤ ργ0(D), where γ0 = γ / p

√
m.

Proof We observe that {
0|
0 is a γ0-modification of G} ⊆ {
p|
p is a (p, γ)-
modification of G}, because ‖
0‖p ≤ γ for every γ0-modification
0. Therefore, by
definition, we have that

PoAp
γ (G) = min{PoA(G
p)|
p is a(p, γ)-modification of G}

≤ min{PoA(G
0)|
0 is a γ0-modification of G}
= PoAγ0(G)

Theorem 1 provides the second part of the inequality and completes the proof.

The above bound is tight under weak assumptions on the class D of latency func-
tions. More specifically, we say that a class of latency functions D is of the form D0 if
(a) � is continuous and twice differentiable in (0, +∞), (b) �′(x) > 0, ∀x ∈ (0, +∞)

or � is constant, (c) � is semi-convex, i.e. x�(x) is convex in [0, +∞) and (d) if � ∈ D,
then (� + c) ∈ D, for all constants c ∈ R such that for all x ∈ R≥0, �(x) + c ≥ 0.10

Then we obtain the following.

Theorem 8 For any class D of the form D0 and any ε > 0, there is an instance G on
m parallel links with homogeneous players and latency functions in class D, so that
PoAp

γ (G) ≥ ργ0(D) − ε, where γ0 = γ / p
√

m.

Proof We consider an instance Im, with m parallel links, where the first m − 1
links have the same latency function � ∈ D (to be fixed later) and link m has the
constant latency function (1 + γ1)�(

r
m−1), where γ1 = γ /

p
√

m − 1. The instance

10Property (d) requires that D should be closed under addition of constants, as long as the resulting
function remains nonnegative.

Theory of Computing Systems (2020) 64: –3 0339 7364

has homogeneous risk-averse players with risk-aversion a1 = 1. Also we let γ0 =
γ / p

√
m.

The proof follows in three steps as given by the claims below, which are proved
afterwards.

Claim 1 For every m ≥ 2 and any � ∈ D with �(0) = 0, PoAp
γ (Im) = PoAγ1(Im).

In words, Claim 1 states that the best (p, γ)-modification for the instance Im is
the one that splits γ equally to the first m − 1 edges.

Its proof applies KKT optimality conditions.

Claim 2 For every m ≥ 2 and any ε > 0,
there is a latency function �ε,m with �ε,m(0) = 0 such that setting � = �ε,m in the

instance Im results in PoAγ1(Im) ≥ ργ1(D) − ε/2.

The proof of Claim 2 is similar to the proof of Theorem 2, with the instance now
consisting of m parallel links, instead of 2.

Claim 3 For every class of latency functions D, any ε > 0 and any γ , there exists an
mε ≥ 2 such that ργ1(D) ≥ ργ0(D) − ε/2.

The proof is based on the fact that γ1 tends to γ0 as the number of parallel links m

grows.
Since �ε,m(0) = 0, we can combine Claims 1 and 2 and obtain that for any m ≥ 2

and any ε > 0, PoAp
γ (Im) ≥ ργ1(D) − ε/2, if we use the latency function �ε,m.

Combining this with Claim 2 we get that, for all ε > 0, there are an mε and a
latency function �ε,mε such that PoAp

γ (Imε) ≥ ργ0(D) − ε, as needed. What remains
is to prove the claims.

Proof of Claim 1 To begin with, there is a function � ∈ D with �(0) = 0 because D
is of the form D0 and thus by assumption ∀ g(x) ∈ D ⇒ �(x) := (g(x) − g(0)) ∈ D
and �(0) = 0.

Since the difference between PoAp
γ (Im) and PoAγ1(Im) lies in the cost of the best

possible equilibrium it is sufficient to show that the best equilibrium of Im, in terms of
social cost, under any (p, γ)-modification and under any γ1-modification coincide.

To do so, let us consider the convex program that minimizes the social cost objec-
tive among feasible flows in equilibrium. We only care for equilibrium that can route
flow through em. If we know a priory that the last edge can not receive flow the
claim holds trivially. So the equilibrium condition is (1 + γe)�(fe) = L, ∀e, where

L = (1 + γ1)�
(

r
m−1

)
, i.e. the cost of the last edge.

min C(f) =
∑

e∈E

fe�e(fe)

∑

e∈E

fe − r = 0 (h) (7)

− fe ≤ 0 ∀e ∈ E (ge) (8)

Theory of Computing Systems (2020) 64: –3 0339 7 365

p

√∑

e∈A

γ
p
e − γ ≤ 0 (ν) (9)

− γe ≤ 0 ∀e ∈ A (μe) (10)

(1 + γe)�(fe) − L = 0 ∀e ∈ A (ωe) (11)

where A = E \ {em}, meaning the set of edges with non-constant latency functions.
Obviously, there is no point in modifying the cost of the last edge because it has

a constant cost so increasing it can only worsen the quality of the equilibrium. So all
the (p, γ) andγ -modifications only affect the first m − 1 edges but not the last one.

The stationarity conditions together with dual feasibility are given by

�(fe) + fe�
′(fe) + h − ge + ωe(1 + γe)�

′(fe) = 0 ∀e ∈ A (12)

L + h − gem = 0 (13)

ν

⎛

⎜
⎝

γe

p

√∑
e∈A γ

p
e

⎞

⎟
⎠

p−1

− μe + ωe�(fe) = 0 ∀e ∈ A (14)

ge, μe, ν ≥ 0 (15)

and the complementary slackness conditions are given by

gefe = 0 ∀e ∈ E (16)

μeγe = 0 ∀e ∈ A (17)

ν

⎛

⎝ p

√∑

e∈A

γ
p
e − γ

⎞

⎠ = 0 (18)

If gem > 0 then from (16) we get that fem = 0 and as we already mentioned the
claim holds trivially. So we now focus in the case with gem = 0.

Since �(0) = 0 there is no feasible solution with fe = 0, e ∈ A because then (11)
cannot hold. Thus, from complementary slackness ge = 0, ∀e ∈ A.

Additionally from the stationarity conditions we get:

• h = −L.
• ωe = L−�(fe)−fe�

′(fe)
(1+γe)�′(fe)

, where �′(fe) > 0 since D is of the form D0 and � is not a
constant.

If there exists μe > 0 for some e, then from (17) we get γe = 0. So from (14), (15)
and because �(fe) > 0 since fe > 0, we get that ωe > 0. But, since γe = 0, from (11)
we get that �(fe) = L ⇒ ωe < 0, which is a contradiction. Thus, μe = 0, ∀e ∈ A.

Now, if γe = 0 for some e, then ωe = 0. So �(fe) + fe�
′(fe) = L = (1 +

γe)�(fe) ⇒ fe�
′(fe) = 0 which is impossible since fe, �

′(fe) > 0. Thus, γe >

0, ∀e ∈ A.
Additionally if ν = 0 ⇒ ωe = 0, ∀e and �(fe) > 0 because fe > 0. But in that

case �(fe) + fe�
′(fe) = L ⇒ fei

= fej
, ∀ei, ej ∈ A and thus fe ≤ r

m−1 . So, from
(11) γe = γ1 and fe = r

m−1 , ∀e ∈ A and the claim holds.
It remains to examine the case with ν > 0 ⇒ ωe < 0, ∀e.

Theory of Computing Systems (2020) 64: –3 0339 7366

From (18) it is p

√∑
e∈A γ

p
e = γ , so from (14) we get that ν = −ωe�(fe)

(
γ
γe

)p−1
.

We use the equilibrium condition of primal feasibility, (11), to eliminate γe and we

get that ν = �p+1(fe)
�(fe)+fe�

′(fe)−L
L�′(fe)

γ p−1

(L−�(fe))
p−1 .

Now, let us symbolize with f0 the flow so that �(f0) + f0�
′(f0) = L. Since ωe <

0, ∀e ∈ A we know that fe > f0, ∀e ∈ A. Note that this implies that r > (m−1)f0.
If r ≤ (m − 1)f0 then we know a priory that no flow can be routed through em in
equilibrium and as we already mentioned the proof of the claim is trivial.

Now we will show that N(fe) = �p+1(fe)
�(fe)+fe�

′(fe)−L
L�′(fe)

γ p−1

(L−�(fe))
p−1 is strictly

increasing and thus one-to-one function for fe ≥ f0. It is trivial to see that

N1(fe) = �p+1(fe) and N2(fe) = γ p−1

(L−�(fe))
p−1 are strictly increasing for strictly

increasing � and fe > 0. For N3(fe) = �(fe)+fe�
′(fe)−L

L�′(fe)
we have N ′

3(fe) =
2(�′(fe))

2+�′′(fe)(L−�(fe))

L(�′(fe))
2 .

We will exploit the fact that � is semi-convex to prove that N ′
3(fe) ≥ 0, ∀fe ≥ f0.

So, we know that (x�(x))′′ = 2�′(x) + x�′′(x) ≥ 0 ⇔ �′′(x) ≥ − 2�′(x)
x

for x > 0.

Now, since �(x) ≤ L because of equilibrium condition we get that 2
(
�′(fe)

)2 +
�′′(fe)(L−�(fe)) ≥ 2

(
�′(fe)

)2− 2�′(x)
x

(L−�(fe)) = 2�′(fe)
fe

(
�(fe) + fe�

′(fe) − L
)
.

We only care about the sign of �(fe) + fe�
′(fe) − L since 2�′(fe)

fe
≥ 0, ∀fe > 0

because � is strictly increasing. Now remember that �(f0) + f0�
′(f0) = L and since

fe�(fe) is convex it follows that (fe�(fe))
′ = �(fe) + fe�

′(fe) is increasing. So for
fe > f0 ⇒ �(fe) + fe�

′(fe) ≥ �(f0) + f0�
′(f0) = L ⇒ �(fe) + fe�

′(fe) − L ≥
0 ⇒ N ′

3(fe) ≥ 0.
Now N(fe) = N1(fe)N2(fe)N3(fe) and N1(f0), N2(f0), N3(f0) ≥ 0 so their

product is also strictly increasing for fe ≥ f0.
Demanding N(fe) = ν, ∀e ∈ A and respecting primal feasibility, we get that the

only available solution is fe = r
m−1 , ∀e ∈ A, fm = 0 and γe = γ1 = γ

p
√

m−1
, ∀e ∈

A, because N is one-to-one function.
So, finally we proved that the vector u0 = ((fe)e∈E, (γe)e∈A) =

(r
m−1 , . . . , r

m−1 , 0, γ1, . . . , γ1) is the only KKT point of the mathematical
program stated above. Since C(f) is a continuous function in a compact
set we know that it receives a minimum value. Apart from that the set
{∇h(u0), ∇gm(u0), ∇ν(u0), ∇ωe(u0)} is linearly independent for any m ≥ 3, so we
know that the necessary KKT conditions hold in the point the minimizes C(f). Thus
u0 minimizes C(f).

The case for m = 2 is trivial and does not require KKT conditions.
Now note that u0 can be achieved by a γ1-modification, and since it consists

the best (p, γ)-modification it is also the best γ1-modification. Thus PoAp
γ (Im) =

PoAγ1(Im).
Proof of Claim 2 Let ε > 0 and consider a γ1-modifiable instance G of m parallel

links, flow rate rε,m (to be fixed later) of aversion type a1 = 1 and cost functions:
an arbitrary cost function �1(x) = �ε,m(x) (to be fixed later) in class D for the first
m − 1 links and the constant function �2(x) = (1 + γ1)�ε,m(

rε,m
m−1) for the last link.

Theory of Computing Systems (2020) 64: –3 0339 7 367

Let f min denote the best Nash flow under any γ1-modification of Im. In f min the
last edge cannot carry flow, so the optimal configuration is to split equally the flow
in the rest of the edges. Thus C(f min) = rε,m�ε,m(r

m−1).
Additionally, let o denote the optimal flow for Im. The first m − 1 edges receive

equal amount of flow denoted by o1 and the rest of the flow is routed through the
last edge. That is because the first m − 1 edges have the same marginal cost tolls,
�ε,m(x) + x�′

ε,m(x). So to obtain equilibrium we need to route the same amount of
traffic, o1 through every edge. Then

PoAγ1(Im) =
rε,m�ε,m

(
rε,m
m−1

)

(m − 1)o1�ε,m(o1) + [rε,m − (m − 1)o1](1 + γ1)�ε,m(
rε,m
m−1)

Setting u = rε,m
m−1 we simplify the notation and we get

PoAγ1(Im) = 1

1 − o1(�ε,m(u)−�ε,m(o1))−γ1(u−o1)�ε,m(u)

u�ε,m(u)

Flow o is optimal and thus o1 ∈
[
0,

rε,m
m−1

]
is exactly the value that minimizes

social cost and eventually maximizes PoAγ1(Im) and so maximizes

o1(�ε,m(u) − �ε,m(o1)) − γ1(u − o1)�ε,m(u)

u�ε,m(u)
(19)

Recall that βγ1(D) = sup�∈D,x≥y≥0
y(�(x)−�(y))−γ1(x−y)�(x)

x�(x)
. Using the def-

inition of sup, let �ε,m be a cost function such that for some x0 it is

supx0≥y≥0
y(�ε,m(x0)−�ε,m(y))−γ1(x0−y)�ε,m(x0)

x0�ε,m(x0)
≥ βγ1(D) − ε

2 (1−βγ1 (D))2

1− ε
2 (1−βγ1 (D))

.

Additionally, we can assume that �ε,m(0) = 0 because if �ε,m(0) > 0 then for

gε,m(x) := �ε,m(x)−�ε,m(0) we have supx0≥y≥0
y(gε,m(x0)−gε,m(y))−γ1(x0−y)gε,m(x0)

x0gε,m(x0)
≥

supx0≥y≥0
y(�ε,m(x0)−�ε,m(y))−γ1(x0−y)�ε,m(x0)

x0�ε,m(x0)
and gε,m(0) = 0.

Setting rε,m = x0, and because o1 maximizes (19), it is
o1(�ε,m(u)−�ε,m(o1))−γ1(u−o1)�ε,m(u)

u�ε,m(u)
≥ βγ1(D) − ε

2 (1−βγ1 (D))2

1− ε
2 (1−βγ1 (D))

and thus

PoAγ1(Im) ≥ 1

1 − βγ1(D) + ε
2 (1−βγ1 (D))2

1− ε
2 (1−βγ1 (D))

= ργ1(D) − ε

2

Proof of Claim 3 It is βγ0(D) = sup�∈D,x≥y≥0
y(�(x)−�(y))−γ0(x−y)�(x)

x�(x)
=

sup
�∈D,x≥y≥0

y(�(x) − �(y)) − γ1(x − y)�(x) + γ1(x − y)�(x) − γ0(x − y)�(x)

x�(x)
=

sup
�∈D,x≥y≥0

(
y(�(x) − �(y)) − γ1(x − y)�(x)

x�(x)
+ (γ1 − γ0)(x − y)

x

)

≤

sup
�∈D,x≥y≥0

y(�(x)−�(y))−γ1(x−y)�(x)

x�(x)
+ sup

�∈D,x≥y≥0

(γ1−γ0)(x−y)

x
= βγ1(D)+(γ1−γ0)

Let δ(m) := γ1 − γ0 = γ
p
√

m−1
− γ

p
√

m
= γ

m1/p−(m−1)1/p

[m(m−1)]1/p , m ≥ 2.

Theory of Computing Systems (2020) 64: –3 0339 7368

Now we can write clearly the previous inequality as

βγ1(D) ≥ βγ0(D) − δ(m)

�
1

1 − βγ1(D)
≥ 1

1 − βγ0 + δ(m)
(20)

δ(m) is strictly decreasing for m ≥ 2 and limm→+∞ δ(x) = 0. So, by definition

∀ η > 0 ∃m0 : δ(m0) ≤ η. Selecting η := η(ε) =
ε
2 (1−βγ0 (D))2

1− ε
2 (1−βγ0 (D))

, for ε small enough

so that η(ε) > 0 for a given γ , we get that:

For any ε > 0, small enough there is mε ≥ 2 such that δ(mε) ≤ η(ε).

Inequality (20) for m = mε becomes

1

1 − βγ1(D)
≥ 1

1 − βγ0 + δ(mε)
≥ 1

1 − βγ0 + η(ε)

= 1

1 − βγ0

− ε

2
⇐⇒ ργ1(D) ≥ ργ0(D) − ε/2

Since the claims are proved, the proof of the theorem is complete.

References

1. Angelidakis, H., Fotakis, D., Lianeas, T.: Stochastic congestion games with risk-averse players. In:
Proc. of the 6th international symposium on algorithmic game theory (SAGT ’13), vol. 8146 of LNCS,
pp. 86–97 (2013)

2. Bonifaci, V., Salek, M., Schäfer, G.: Efficiency of restricted tolls in non-atomic network routing
games. In: Proceedings of the 4th international symposium on algorithmic game theory (SAGT ’10),
volume 6982 of LNCS, pp. 302–313. Springer-Verlag (2011)

3. Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Selfish routing in capacitated networks. Math. Oper.
Res. 29(4), 961–976 (2004)

4. Fiat, A., Papadimitriou, C.H.: When the players are not expectation maximizers. In: Proceedings of
the 3th international symposium on algorithmic game theory (SAGT ’10), volume 6386 of LNCS, pp.
1–14 (2010)

5. Fleischer, L.: Linear Tolls Suffice: New Bounds and Algorithms for Tolls in Single Source Networks.
Theor. Comput. Sci. 348, 217–225 (2005)

6. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity net-
works and generalized congestion games. In: Proc. of the 45th IEEE Symp. on Foundations of
Computer Science (FOCS ’04), pp. 277–285 (2004)

7. Fotakis, D., Spirakis, P.: Cost-balancing tolls for atomic network congestion games. In: Proceedings
of the 3rd international workshop on internet and network economics (WINE ’07), pp. 179–190.
Springer-Verlag (2007)

8. Fotakis, D., Kalimeris, D., Lianeas, T.: Improving selfish routing for risk-averse players. In: Evangelos
Markakis and Guido Schȧfer, editors, Web and Internet Economics - 11th International Conference,
WINE 2015, Amsterdam, The Netherlands, December 9-12 Proceedings, volume 9470 of Lecture
Notes in Computer Science, pp. 328–342. Springer (2015)

9. Hall, M.A.: Properties of the Equilibrium State in Transportation Networks. Transp. Sci. 12(3), 208–
216 (1978)

10. Hoefer, M., Olbrich, L., Skopalik, A.: Taxing subnetworks. In: Proceedings of the 4th international
workshop on internet and network economics (WINE ’08), vol. 5385 of LNCS, pp. 286–294. Springer-
Verlag (2008)

Theory of Computing Systems (2020) 64: –3 0339 7 369

11. Jelinek, T., Klaas, M., Schäfer, G.: Computing optimal tolls with arc restrictions and heteroge-
neous players. In: Proceedings of the 31st annual symposium on theoretical aspects of computer
science (STACS ’14), volume 25 of LIPIcs, pages 433–444. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2014)

12. Karakostas, G., Kolliopoulos, S.: Edge pricing of multicommodity networks for heterogeneous users.
In: Proceedings of the 45th IEEE Symp. on Foundations of Computer Science (FOCS ’04), pp. 268–
276 (2004)

13. Kleer, P., Schäfer, G.: The impact of worst-case deviations in non-atomic network routing games.
In: Martin Gairing and Rahul Savani, editors, Algorithmic Game Theory - 9th International Sympo-
sium, SAGT 2016, Liverpool, UK, September 19-21 Proceedings, volume 9928 of Lecture Notes in
Computer Science, pp. 129–140. Springer (2016)

14. Lianeas, T., Nikolova, E., Stier Moses, N.E.: Asymptotically tight bounds for inefficiency in
risk-averse selfish routing. In: Kambhampati, S. (ed.) Proceedings of the 25th international joint
conference on artificial intelligence, IJCAI 2016, pp. 338–344. IJCAI/AAAI Press, New York (2016)

15. Nikolova, E., Stier Moses, N.: Stochastic selfish routing. In: Proceedings of the 4th international
symposium on algorithmic game theory (SAGT ’11), volume 6982 of LNCS, pp. 314–325 (2011)

16. Nikolova, E., Stier-Moses, N.: The burden of risk aversion in mean-risk selfish routing. In: Proceed-
ings of the 16th ACM conference on electronic commerce (EC ’15), pp. 489–506 (2015)

17. Ordóñez, F., Stier Moses, N.: Wardrop equilibria with risk-averse users. Transp. Sci. 44(1), 63–86
(2010)

18. Piliouras, G., Nikolova, E., Shamma, J.S.: Risk sensitivity of price of anarchy under uncertainty. In:
Proceedings of the 14th ACM conference on electronic commerce (EC ’13), pp. 715–732 (2013)

19. Roughgarden, T.: Stackelberg scheduling strategies. SIAM J.Comput. 33(2), 332–350 (2004)
20. Roughgarden, T.: Selfish routing and the price of anarchy. MIT Press (2005)
21. Tversky, A., Kahneman, D.: Prospect theory: An analysis of decision under risk. Econometrica 47(2),

263–291 (1979)
22. Valdez, J., Tarjan, R.E., Lawler, E.L.: The Recognition of Series-Parallel Digraphs. SIAM J. Comput.

11(2), 298–313 (1982)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Dimitris Fotakis1 ·Dimitris Kalimeris2 ·Thanasis Lianeas3

Dimitris Fotakis
fotakis@cs.ntua.gr

Dimitris Kalimeris
kalimeris@g.harvard.edu

1 Electrical and Computer Engineering, National Technical University of Athens,
Iroon Politexneiou 9, Zografou, Attiki, 15780, Greece

2 School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street,
Cambridge, MA, 02138, USA

3 Electrical and Computer Engineering, University of Texas at Austin, 1616 Guadalupe St.,
Austin, TX, 78705, USA

Theory of Computing Systems (2020) 64: –3 0339 7370

http://orcid.org/0000-0001-8386-5912
mailto: fotakis@cs.ntua.gr
mailto: kalimeris@g.harvard.edu

	Improving Selfish Routing for Risk-Averse Players
	Abstract
	Introduction
	Routing Games
	Using Risk-Aversion to Modify Edge Latencies
	Contribution
	Previous Work

	The Model and Preliminaries
	-Modifiable Routing Games
	(p,)-Modifiable Routing Games
	Series-Parallel Networks

	Modifying Routing Games in Parallel-Link Networks
	Price of Anarchy Analysis

	Modifying Parallel-Link Games with Heterogeneous Players
	Finding a -Enforceable Flow with Good Price of Anarchy

	Modifying Routing Games in Series-Parallel Networks
	Parallel-Link Games with Relaxed Modification Restrictions
	References
	Affiliations

