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Network pricing games provide a framework for modeling real-world se�ings with two types of strategic

agents: owners (operators) of the network and users of the network. Owners of the network post a price for

usage of the link they own so as to a�ract users and maximize pro�t; users of the network select routes based

on price and level of use by other users. We point out that an equilibrium in these games may not exist, may

not be unique and may induce an arbitrarily ine�cient network performance.

Our main result is to observe that a simple regulation on the network owners market solves all three issues

above. Speci�cally, if an authority could set appropriate caps (upper bounds) on the tolls (prices) operators

can charge, then: the game among the link operators has a unique and strong Nash equilibrium and the users’

game results in a Wardrop equilibrium that achieves the optimal total delay. We call any price vector with

these properties a great set of tolls. As a secondary objective, we want to compute great tolls that minimize

total users’ payments and we provide a linear program that does this. We obtain multiplicative approximation

results compared to the optimal total users’ payments for arbitrary networks with polynomial latencies of

bounded degree, while in the single-commodity case we obtain a bound that only depends on the topology of

the network. Lastly, we show how the same mechanism of se�ing appropriate caps on the allowable prices

extends to the model of elastic demands.

CCS Concepts: •�eory of computation→Algorithmic game theory andmechanism design;�ality
of equilibria; Network games; Exact and approximate computation of equilibria;

1 INTRODUCTION
Network pricing games provide a framework for modeling real-world se�ings with two types

of strategic agents: users of the network and owners (operators) of the network. Owners of the

network post a price for usage of the links they own, while users of the network select routes based

on price and level of use by other users. A landmark example of this type of interaction, that sets

the ground in which we describe our work, occurs in transportation networks. Here, link owners
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are road operators and may toll the usage of their road. Users are travelers that seek to minimize

their travel time plus tolls.

�e challenge in these games is that there are two levels of competition: one, among the owners to

a�ract users to their link so as to maximize pro�t; and second, among users of the network to select

routes that are cheap yet not too congested. In the absence of self-interested link owners, these

games reduce to the well-studied network congestion games—a widely accepted and practically

useful model for sel�sh resource allocation in transportation and communication networks (see, e.g.,

[4, 13, 33] and references therein). In congestion games, self-interested users travel in a network

from their origin to their destination with the goal of minimizing their own travel cost. �e natural

solution concept of the game is the so-called Wardrop equilibrium �ow, under which all users route

along shortest paths, given the strategic choices of other users.

Since sel�sh behavior usually drives systems to socially ine�cient situations, a central authority

is typically interested in optimizing the social welfare for the network users—a task that, in the

absence of self-interested link owners, can be implemented by appropriate marginal tolls [4], which

simply charge each user the negative externality she imposes on the system. However, the presence

of link owners, who set tolls so as to maximize their pro�ts, is at odds with user welfare. For

instance, under marginal tolls, some operators may want to increase their toll in order to make a

higher pro�t. In this regard, an equilibrium for the link owners is a toll vector, such that, a change

in a single toll does not increase the pro�t of the corresponding toll operator (under the implied

user Wardrop equilibrium �ow).

In this more complex game-theoretic environment, (i) an equilibrium may fail to exist; (ii) it

might not be unique and; (iii) the network performance at equilibrium can be arbitrarily ine�cient.

Speci�cally, the only case where an equilibrium is proved to exist is in parallel link networks with

a�ne latency functions [1, 20, 21]. Additionally, equilibria might not be unique [2, 20], implying

that we might not be able to predict the outcome of the game. Further, the network’s performance

at the Wardrop equilibrium �ow under a Nash equilibrium toll vector can be arbitrarily degraded,

which implies that the network can behave arbitrarily worse than the case where tolls (prices) are

completely absent.

In the face of these challenges, we set out to �nd ways to mitigate the e�ect of sel�sh toll operator

behavior. We introduce competition regulation by allowing a regulator to set speci�c price caps on

the toll values that each toll operator can set on her link. Di�erent price caps for di�erent operators

is consistent with the practice in some privately operated networks of highways. For example,

in Santiago de Chile there are currently 12 di�erent operators who set tolls on di�erent urban

highways, as shown in Fig. 1. �e current regulation sets a price cap that is unique to each highway

and the toll operators are allowed to set tolls below the caps [19]. As it turns out, introducing such

regulation can resolve all of the above issues, as there are caps for which the game has a unique

Nash equilibrium, under which the Wardrop equilibrium is optimal.

Contribution
We �rst study the network pricing game in its original form, i.e. without regulation, providing

examples regarding the nonexistence of Nash equilibria and the ine�ciency of the resulting Wardrop

equilibrium �ow. �e �rst example, Example 3.1, shows that Nash equilibria may not exist in the

case of extension-parallel networks
1

with a�ne latencies. Interestingly, the source of the problem

is twofold. On the one hand, the best-response mapping cannot be bounded a priori: there are

instances of the game in which the best response of operators is to increase their toll and thus,

1
Extension-parallel networks are recursively de�ned as a single link or two extension-parallel networks connected in

parallel or a single link connected in series with an extension-parallel network [16].
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Fig. 1. Privately operated highways in Santiago de Chile. Each highway has its own toll cap.

iterated best responses lead to unbounded tolls. On the other hand, and quite surprisingly, the

best-response mapping may turn out to be discontinuous so that iterated best responses actually

cycle. From the la�er it turns out that even if we impose a priori caps on the tolls, equilibria may fail

to exist. �e second example (Example 3.2) provides an instance where a Nash equilibrium exists

yet the network performance, quanti�ed by total users’ delay of the Wardrop �ow, is arbitrarily

worse than optimal.

Since the unregulated network pricing game behaves so poorly, in Section 4 we set out to study

mechanisms to improve it. In particular, we investigate the simple regulatory policy of se�ing

upper bounds (caps) on the toll values that each operator is allowed to set. Note that there is a

tension between the toll charged by the operator and the amount of �ow she will get. It is plausible

for a toll operator to gain from decreasing her toll since her link will a�ract more �ow, which

may result in an overall higher pro�t. For large enough caps it indeed happens that it is optimal

for the operator to set a toll below the cap. Our main result, �eorem 4.4, shows that using such

a vector as toll caps leads to every operator charging precisely the cap. Moreover, we show this

equilibrium is robust to coalitions, a concept known as strong Nash equilibrium. A direct corollary

of this result is that if the caps are set to be the marginal tolls, then the unique Nash equilibrium is

the set of marginal tolls itself, which is known to induce the optimal �ow as a Wardrop equilibrium.

A surprising fact is that even though the �ow on a given link is a decreasing function of the toll on

that link (as we show in Lemmas 4.1 and 4.2), the pro�t of the toll operator as a function of the

toll she charges is an increasing function up to a certain point (Lemma 4.3), which is a key tool to

prove �eorem 4.4. Also, we give an example to show that our results do not extend to the se�ing

in which a regulator owns multiple links of the network.

Inspired by �eorem 4.4 we study great tolls in more detail. �ese are toll vectors that induce

the optimal �ow as a Wardrop equilibrium and when set as caps are themselves the unique Nash

equilibrium. As great tolls are guaranteed to exist and need not be unique, a basic question is that

of �nding the great tolls minimizing the users’ payments. Note that the users’ total delay under

great tolls is �xed, since all great tolls induce the optimal �ow; thus, our question is equivalent to

that of �nding great tolls that minimize the total (delays plus payments) users’ cost. By the results

in Section 4, any vector that induces the optimal �ow and is upper bounded by the marginal toll

vector, is a great set of tolls, yet simple examples show that these are not the only ones. While a

characterization of great tolls seems to be out of reach, by restricting to those which are upper

bounded by marginal tolls we formulate a linear program for optimizing the total users’ cost over

this restricted set of great tolls. Section 5 is devoted to �nding bounds on the performance of

such great tolls in terms of the induced total users’ cost. To this end, we use as a benchmark the
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minimum payment tolls, de�ned as those that while inducing optimal �ows, minimize the total

users’ cost. Minimum payment tolls can also be computed by a linear program.

We prove that the ratio of these linear programs can be bounded in two fundamentally di�erent

ways, and these bounds are tight. First, we prove a functional bound (�eorem 5.2) for instances

where latency functions satisfy a bounded relative growth condition, which for example gives a

(d + 1)-approximation on the total cost incurred by users, when latencies are polynomial functions

of degree at most d . Notice that all the results so far hold for multicommodity instances. Second,

we prove a structural bound (�eorem 5.5) for single-commodity instances that only depends on

the structure of the network but not on the underlying latency functions. As a corollary, we get

that for series-parallel networks the previous ratio is actually one and thus our linear programming

approach is optimal.

To test the robustness of our results, we �nally consider the se�ing with elastic tra�c demands.

Here users have a valuation for traveling through the network and may opt out from traveling if

the travel cost exceeds their valuation. We show that, similar to the �xed demand model, any toll

vector that induces the optimal �ow and is at most equal to the marginal toll vector is a great set of

tolls (�eorem 6.1). Moreover, even though the consumer surplus under great tolls can be arbitrary

worse than the optimal surplus, we prove that it is at least as high as the optimal surplus if each

user had half the original valuation (�eorem 6.5).

Related Work
Acemoglu and Ozdaglar [1] introduced a model of price competition between link operators where

each user has some �xed reservation value for travel. �ey show that increasing competition

among operators from a monopoly to an oligopoly may cause a reduction in e�ciency, measured

as the di�erence between users’ willingness to pay and delay costs, and provide a (tight) bound on

e�ciency in pure strategy equilibria. In a follow up work, Acemoglu and Ozdaglar [2] generalized

the above study to slightly more general topologies in which parallel paths with multiple links may

replace the parallel links. �ey showed that even this slight generalization can make the game

arbitrarily ine�cient, where the e�ciency is measured as mentioned above.

Hayrapetyan et al. [21] considered instances on parallel links where the demand to be routed is

elastic and decreases in a concave way as the cost for using the network increases. �e social cost

in that work is the sum of the players’ pro�ts plus a term that represents the utility gathered by the

tra�c that gets routed. For that game they showed that in a network with parallel links and linear

latencies, there is always a pure Nash equilibrium with the price of anarchy, i.e. the measure for

ine�ciency, being bounded by a constant factor even when the latency functions are relaxed to be

convex. For the case where latencies have zero value under zero �ow, they improve the constant in

the above bound. Following that work, Ozdaglar [29] studied the same model and managed to prove

tight bounds on the e�ciency of that game. Musacchio [26] and Musacchio and Wu [27] rederived

and generalized those (upper) bounds for the case of series-parallel networks via a connection to

electrical circuits; see the survey by Ozdaglar and Srikant [30] for further discussion.

With respect to the congestion model itself, the most closely related work to ours is that of Harks

et al. [20]. �ere, a regulator is able to set a unique price cap for all toll operators. As it turns out

this restricts the regulator enough so that the induced network performance is not always optimal.

For two-link parallel networks this reduction in performance is characterized for di�erent classes

of latency function.

Our price competition model corresponds to Bertrand competition in a network se�ing [15,

Chapter 6]. Under this se�ing Chawla et al. [11] addressed questions regarding the price of anarchy

and price of stability with respect to two objectives: the social welfare of all the players (users
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and sellers), and the total pro�t obtained by all the sellers. �e main di�erences with our work

are that only capacity-based congestion is considered,
2

and no regulation is imposed on the game.

�eir results show a dependence of the price of anarchy/stability on the number of monopolistic

links, namely the links whose removal disconnects an origin-destination pair. In contrast, our

model does not su�er from monopolies: se�ing caps on prices prevents monopolistic links from

charging arbitrarily large prices. Following the same model and focusing on the social welfare of

the consumers as the objective, Chawla and Niu [10] extended the results of Chawla et al. [11].

An interesting and related model is raised by Anshelevich and Sekar [3]. In that work, the edges

of a network correspond to goods, and each edge is owned by a di�erent pro�t maximizing seller.

In the �rst stage of the game, sellers set prices for the use of their edges and have production costs

depending on the level of use. In the second stage, the users of the network, i.e., the buyers, choose

origin to destination paths so as each of them maximizes her utility minus the payments to the

sellers. �e main di�erence with the model presented here (in particular, the extension to the elastic

demand case in Section 6) is that users impose an externality on the sellers, via the production

costs, and not on the other users, as is the case in our model. �is crucially a�ects the equilibrium

pricing and the social welfare (e.g., for single commodity networks, if no monopolies are present,

there is always an optimal equilibrium, which is not the case in our model).

In other related work, Papadimitriou and Valiant [31] consider the case where the routing is

no longer sel�sh, but is controlled by the edges of the network, and each edge either minimizes

its average latency, or announces a suitable price to its neighbors in order to maximize its pro�t.

Caragiannis et al. [8] consider a model of buyers and sellers of a similar product, that under some

reformulation can be seen as a variant of the parallel links model of Acemoglu and Ozdaglar [1]

with heterogeneous buyers but constant latencies. Instead of minimizing tra�c costs, maximizing

the pro�t from tolls, has been considered in the past [7, 9, 24]. �ere, a central authority/unique

owner has control of all the toll-able edges, yet, more importantly, the edge costs are constants

rather than �ow dependent.

�e study of network congestion games where a central operator is allowed to charge tolls in

order to improve e�ciency has a long history, starting with Beckmann et al. [4]. Cole et al. [12] and

Fleischer [17] provided upper bounds on tolls that induce the optimal �ow as an equilibrium, and

Dial [14] considered the objective of minimizing users’ payments among optimal �ow-inducing

tolls. �e study of network users games where for each link a (potentially adversarially chosen)

upper bound on the toll is present was �rst considered by Bonifaci et al. [6] and later by Jelinek

et al. [22] and Fotakis et al. [18]. Results in these papers show that when upper bounds are present,

optimality cannot in general be achieved, yet, on the positive side, algorithms are proposed under

rather restrictive se�ings with provable guarantees regarding the e�ciency of the network.

2 PRELIMINARIES
We study a network pricing game, where nonatomic players, which we call users, sel�shly minimize

their cost (delays plus tolls) across a network; on top of this, each network link is operated by a

di�erent sel�sh agent which maximizes pro�t by charging tolls on users traversing her link.

The Network Users’ Game: Selfish Routing
Let G = (V ,E) be a network, with V the set of nodes, and E the set of directed edges/links of the

network. We consider a multi-commodity �ow instance, described by origin-destination node pairs

{(ok ,dk )}k ∈K , for a �nite set of commodities K . For each commodity k , rk > 0 units of demand

2
Capacity-based congestion corresponds to latency functions which are identically zero until capacity is reached, and then

jump to in�nity.
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need to be routed from ok to dk . For each link e ∈ E, there is a latency function `e : R+ → R+, that

represents the delay experienced by users traversing this link, as a function of the total �ow on the

link; we will assume this function to be strictly increasing, convex and smooth.
3

Paths and Flows. For each commodity k ∈ K , let Pk
denote the set of ok − dk paths and let

P = ∪kP
k

be the union of all these paths. A �ow for commodity k is a nonnegative vector

xk = (xkP )P ∈Pk such that

∑
P ∈Pk x

k
P = r

k
. A �ow x is a vector (xk )k ∈K , where each xk is a �ow for

commodity k . For a �ow x and e ∈ E, let xke =
∑

P ∈Pk :e ∈P x
k
P be the amount of �ow that xk routes

on each link e and let xe =
∑

k ∈K xke be the amount of �ow that x routes on e . With a slight abuse

of notation, we will also denote x = (xe )e ∈E , the link-wise description of a �ow.

Wardrop Equilibria and Optimal Flows. Given �ow x , the delay experienced on e is `e (xe ). In

the case a toll te ≥ 0 is charged for link usage, the combined cost of traversing e is [`e (xe ) + α · te ],

where α represents the trade-o� factor between delay and tolls and is assumed to be identical for all

users. Without loss of generality, we can assume α to be equal to 1 because we can always divide

all tolls by α . A �ow is a Wardrop equilibrium if it is supported on paths of minimum cost. Formally,

x is a Wardrop equilibrium if, for every k , for every path P ∈ Pk
with xkP > 0, and every path

P ′ ∈ Pk
,

∑
e ∈P [`e (xe ) + te ] ≤

∑
e ∈P ′[`e (xe ) + te ]. Given such a �ow, any ok − dk path achieving

the minimum end-to-end cost will be called an active path, and any link that belongs to an active

path will be called an active link.

For any toll vector t ≥ 0, a Wardrop equilibrium exists, moreover it minimizes the convex

Wardrop potential Φt (x ) [4], and thus is given by:

x (t ) , arg min

x ≥0 �ow



Φt (x ) ,

∑
e ∈E

∫ xe

0

(`e (x ) + te ) dx


. (1)

Notice that by our choice of latency functions, Φt is strictly convex, implying that the link-wise

description of the Wardrop equilibrium is unique, and therefore (xe (t ))e ∈E is a well-de�ned function,

which is moreover continuous by Berge’s theorem [5].

Given �ow x , the total delay experienced by users is

∑
e ∈E xe`e (xe ), and it is the standard measure

of network performance. Notice this function is strictly convex in x . �e optimal �ow x∗ is the

�ow that minimizes the total delay. In general, it is known [32] that the untolled Wardrop �ow

x (0) is not necessarily optimal. However, a classical result [4] shows that the vector of marginal

tolls t̂ , de�ned as t̂e = x∗e`
′
e (x
∗
e ), induces the optimal �ow, that is x (t̂ ) = x∗. Any toll vector with

this property will be called optimal.

The Network Operators’ Game: Price Competition on Tolls
In our model, additionally, every link e ∈ E is operated by a di�erent operator: these are the players

of the price competition game. Each player e is allowed to charge a nonnegative toll te for its

usage. Under the resulting toll vector t , each link gets �ow xe (t ) according to the induced Wardrop

equilibrium, and thus the pro�t of player e is given by πe (t ) , texe (t ). We are interested in the

equilibrium outcomes of this game.

Pro�t functions. For each player e ∈ E, her strategy is given by toll te , and her pro�t is given by

πe (te ,t−e ) = texe (te ,t−e ), where we have used the standard game-theoretic notation t = (te ,t−e ).
Whenever t−e is clear from context, we will simply write xe (te ) and πe (te ).

Regulated Network Pricing Game and Nash Equilibria. �e regulated network pricing game

we consider is the following. A central planner may choose a cap vector t̄ ≥ 0 for tolls, and each

3
More general assumptions have been studied in the literature, but we will restrict to this se�ing in order to avoid some

minor technicalities.
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player wants to maximize her own pro�t under this constraint. We study two solution concepts,

(pure) Nash equilibrium and strong (pure) Nash equilibrium. Tolls t are a Nash equilibrium for

the network pricing game if for every e , te is the best response of player e to t−e , i.e. we have

te ∈ BRe (t−e ), where the best response mapping BRe (t−e ) is de�ned as

BRe (t−e ) , arg max{πe (se ,t−e ) : 0 ≤ se ≤ t̄e }.

Tolls t are a strong Nash equilibrium if there is no possible coalition that jointly deviates, resulting

in an improvement of their individual pro�ts. Formally, tolls t are a strong Nash equilibrium if

for any set E∆ ⊂ E (the coalition) and t ′ (the deviation) such that E∆ = {e ∈ E : t ′e , te }, if there

is a player e ∈ E∆
who gains by deviating with πe (t ′) > πe (t ) then there exists another player

f ∈ E∆
who is worse o� with πf (t

′) < πf (t ). Notice that any strong Nash equilibrium is a Nash

equilibrium.

De�nition 2.1 (Cap equilibrium and great tolls). Given an instance of the pro�t maximization

game, we say that a (nonnegative) vector t̄ = (t̄e )e ∈E is

(a) a cap equilibrium if when restricting the strategy space for every player e to tolls se ∈ [0, t̄e ],

then (se )e ∈E = (t̄e )e ∈E is a strong Nash equilibrium;

(b) a great set of tolls if it is optimal (i.e., induces the optimal �ow) and a cap equilibrium.

�e case where t̄e = ∞ for every e ∈ E corresponds to the unregulated game, which will be

the main focus of the next section. Observe that there are situations where the unregulated game

may not have equilibrium at all, for instance in the presence of a monopoly, i.e. a link that cuts

a commodity. In order to avoid such cases, we will assume that each commodity has at least

two disjoint ok − dk paths. Notice this will only be necessary for the unregulated game, as when

imposing caps we immediately prevent monopolies from se�ing arbitrarily large prices.

3 UNREGULATED NETWORK PRICING GAME
We address the question of existence of equilibria in the network pricing game without caps. In

this se�ing, the only case where equilibria are known to exist is for parallel link networks and

a�ne latencies, and, additionally, if one drops the a�ne latencies requirement while keeping the

parallel links topology, then equilibria may fail to exist (see e.g. [1, 20]). To highlight and add on

the bri�leness of existence of equilibria for the unregulated game, we show that if one drops the

network topology requirement, in the simplest nontrivial way, while keeping the a�ne latencies

requirement, then equilibria may again fail to exist. We conclude the section by showing that even

when equilibria exist, the resulting performance may be arbitrarily bad with respect to the social

optimum.

Nonexistence of Equilibria. To begin with, we show that even for a�ne latencies and rather

simple topologies, an equilibrium is not guaranteed to exist.

Example 3.1. Consider the extension-parallel network on the le� side of Figure 2, with vertex

set {o,u,d }, link set E = {e1 = (o,u),e2 = (u,d ),e3 = (u,d ),e4 = (o,d )}, latencies `e1
(x ) = `e3

(x ) =
`e4

(x ) = x and `e2
(x ) = 2, and a single o,d commodity with demand r = 2. �is instance does not

have a Nash equilibrium.
4

4
In this example, as well as in other examples, constant latencies are present. �is violates the assumption that latencies

are strictly increasing, yet this assumption was adopted for technical simplicity in order to have uniqueness of Wardrop

�ow, so that pro�ts are well de�ned. All examples present in our work indeed satisfy such uniqueness, and moreover they

can be modi�ed to satisfy the strictly increasing assumption, e.g. by adding an εx factor to each of the constant latencies

for ε > 0 su�ciently small.
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Fig. 2. On the le�, the network of Example 3.1. On the right, the profit function of player 1 when te2
= 0,

te3
= 3/2 and te4

= (2 +
√

6)/2.

To get an intuition why no Nash equilibrium exists, suppose that te2
= 0, te3

= 3/2 and te4
=

(2 +
√

6)/2. Figure 2 on the right, shows the pro�t function of player 1. Notice that the pro�t

function is not concave and has two maxima, one at (2 +
√

6)/4 and one at (3 +
√

6)/4. �is

implies that the best-response correspondence of player 1 is not convex. Yet, convexity of the

best-response correspondences seems to be a crucial property as, on the one hand, it is necessary

for the existence proof for the parallel links with a�ne latencies case (which is using Kakutani’s

�xed-point theorem), and, on the other hand, it is also absent from other nonexistence examples

with parallel links [1, 20]. �

Unboundedness of Total Delay. Next, we show that even when Nash equilibria exist, the

resulting Wardrop �ows may be arbitrarily ine�cient, in terms of total delay. Our example is a

parallel link network with two links and a�ne latencies.

Example 3.2. Consider a single-commodity instance where r = 1 units of �ow is routed through

a two-link parallel network with `e1
(x ) = Ax and `e2

(x ) = a for 0 < a < A. By direct computation,

we get the optimal �ow x∗ = ( a
2A ,

2A−a
2A ), achieving total delay [4aA − a2

]/[4A].

On the other hand, for any toll vector t , the Wardrop �ow is x (t ) = ([a+te2
−te1

]/A, [A−a−te2
+

te1
]/A) (provided these values lie in [0,1]). By the �rst-order conditions on the pro�t maximization

problem for players 1 and 2, we get a Nash equilibrium (te1
,te2

) = ([a +A]/3, [2A − a]/3), and the

respective Wardrop �ow x (t ) = ([A + a]/[3A], [2A − a]/[3A]), resulting in total delay [A2 + 8Aa −
2a2

]/[9A].

As a consequence, the ratio of the total delay at the Nash equilibrium over the optimal delay is

4[A2+8Aa−2a2
]

9[4aA−a2
]

. Keeping A > 0 �xed and taking a → 0, we have that the ratio diverges. �

4 REGULATED NETWORK PRICING GAME
In this section, we study the pro�t maximization game and some of its structural properties. We

prove that the marginal tolls, when used as caps, are always a Nash equilibrium for the pro�t

maximization game, thus resolving the issues of equilibrium existence, uniqueness and ine�ciency

raised in the previous section. Our main result, presented in �eorem 4.4, strengthens the above by

showing that a potentially larger set of optimal tolls, when used as caps, leads to a unique Nash

equilibrium, which is furthermore robust to coalitions.

We start by studying the behavior of the Wardrop equilibrium �ow as a function of tolls. �e

following result states some monotonicity properties that are standard. Its proof is omi�ed since

we prove a more general result right a�er.

Lemma 4.1 (Monotonicity). Let e ∈ E and t−e be a �xed toll vector for the rest of the players. If
t ′e > te then
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(i) xe (t
′
e ) ≤ xe (te ), and

(ii) `e (xe (t
′
e )) + t

′
e ≥ `e (xe (te )) + te .

In this work we need a generalization of the previous result, establishing how �ows may change

as several tolls decrease. �is generalization is stated and proved below.

Lemma 4.2. Let t ,t ′ ≥ 0 be two toll vectors such that t ≤ t ′ and E< = {e ∈ E : te < t ′e } is nonempty.
�en, there exist e1,e2 ∈ E

< such that:
(i) xe1

(t ′) ≤ xe1
(t ),

(ii) [xe2
(t ′) − xe2

(t )][`e2
(xe2

(t ′)) + t ′e2

− `e2
(xe2

(t )) − te2
] ≤ 0.

Proof. To prove (i) we compare �ows x (t ) and x (t ′) with respect to the Wardrop potentials,

Φt (x ) andΦt ′ (x ) = Φt (x )+
∑

e ∈E< [t ′e−te ]xe . By the optimality of the Wardrop �ow on its respective

potential, we get the following inequalities

Φt (x (t )) ≤ Φt (x (t
′))

Φt (x (t
′)) +

∑
e ∈E<

[t ′e − te ]xe (t
′) ≤ Φt (x (t )) +

∑
e ∈E<

[t ′e − te ]xe (t ).

Combining these inequalities we get∑
e ∈E<

[t ′e − te ][xe (t
′) − xe (t )] ≤ 0,

and thus there must exist e1 ∈ E
<

such that xe1
(t ′) ≤ xe1

(t ), proving (i ).
Let us now prove (ii ). Notice that since x (t ) + (x (t ′) − x (t )) = x (t ′) is a feasible �ow, then

x (t ′) − x (t ) is a feasible direction for x (t ). By the �rst-order optimality conditions,∑
e

[`e (xe (t )) + te ][xe (t ) − xe (t
′)] ≤ 0.

Analogously, x (t ) − x (t ′) is a feasible direction for x (t ′), and thus∑
e

[`e (xe (t
′)) + t ′e ][xe (t

′) − xe (t )] ≤ 0.

Adding up these inequalities, we obtain∑
e ∈E=

[xe (t
′)−xe (t )][`e (xe (t

′))−`e (xe (t ))]+
∑
e ∈E<

[xe (t
′)−xe (t )][`e (xe (t

′))+t ′e −`e (xe (t ))−te ] ≤ 0,

where E= = {e ∈ E : te = t ′e }. Observe now that the �rst summation term is nonnegative, as `e is

increasing for all e . �us,

∑
e ∈E< [xe (t ′) − xe (t )][`e (xe (t ′)) + t ′e − `e (xe (t )) − te ] ≤ 0, implying that

there exists e2 ∈ E
<

such that [xe2
(t ′) − xe2

(t )][`e2
(xe2

(t ′)) + t ′e2

− `e2
(xe2

(t )) − te2
] ≤ 0, proving

(ii ). �

�e following result gives an intriguing inequality satis�ed by any pro�t maximizing toll. �is

property is a consequence of the �rst-order optimality conditions, in combination with the mono-

tonicity properties stated above. We will later see this lemma is crucial for our main result.

Lemma 4.3. Let t ≥ 0 be a toll vector and e ∈ E with te > 0. If te is a local optimum for the pro�t
maximization problem (that is, for objective πe (·,t−e )) then xe (te ) · `

′
e (xe (te )) ≤ te .

Proof. Notice �rst that in the case xe (te ) = 0 the result obviously holds, thus we may restrict

ourselves to the case xe (te ) > 0. In order to use the �rst-order optimality conditions, we need to

ensure that the �ow on e neither suddenly drops to zero nor it remains constant. By continuity,

there exists an interval [te ,te + δ
′
] where xe (·) > 0, with δ ′ > 0; furthermore, by local optimality,
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we may choose 0 < δ < δ ′ so that te is a pro�t maximizing toll on the interval. �is in particular

implies that 0 < xe (se ) < xe (te ) for any se ∈ [te ,te + δ ].

Now, since te is a local maximizer, we can use the �rst-order optimality conditions, D+[πe (te )] ≤
0, where D+[·] is the upper-right Dini derivative.

5
Using the linearity of Dini derivatives, we get

xe (te ) + teD
+

[xe (te )] = D+[πe (te )] ≤ 0; (2)

notice in particular D+[xe (te )] < 0.

On the other hand, since xe (se ) < xe (te ) for any se ∈ [te ,te + δ ], by Lemma 4.1 (ii), we have that

[`e (xe (se )) + se − `e (xe (te )) − te ]/[xe (se ) − xe (te )] ≤ 0. A�er re-arranging terms, we get

`e (xe (se )) − `e (xe (te ))

xe (se ) − xe (te )
≤ −

se − te
xe (se ) − xe (te )

.

Taking lim supse→t+e in the expression above, we get that the le� hand side converges to `′e (xe (te )),

whereas the right hand side converges to − (D+[xe (te )])
−1

(recall the Dini derivative is nonzero);

we conclude that `′e (xe (te )) ≤ −
1

D+[xe (te )]
. �is, in combination with (2), gives

xe (te )`
′
e (xe (te )) ≤ −

xe (te )

D+[xe (te )]
≤ te ,

which proves the result. �

Our main result below shows a strong consequence of the lemma above. Consider tolls that

induce the optimal �ow, and are at most the marginal tolls (in particular, marginal tolls satisfy these

two conditions). �en these tolls, when used as caps, lead to a unique and strong Nash equilibrium.

Theorem 4.4. Let t̄ ≤ t̂ be an optimal toll vector. For the pro�t maximization problem with caps t̄ ,
there exists a unique Nash equilibrium, given by t̄ , which, moreover, is a strong Nash equilibrium.

Proof. First we prove that t̄ is a strong Nash equilibrium for the game. By way of contradiction,

let E<
be a set of links for which the corresponding players, without losing pro�t, deviate to some

smaller toll value and let t ≤ t̄ be the toll vector a�er these deviations. In particular, for all e ∈ E<

we have texe (t ) ≥ t̄exe (t̄ ) > texe (t̄ ), which implies te > 0 along with xe (t ) > xe (t̄ ) and

te ≥
t̄exe (t̄ )

xe (t )
. (3)

By Lemma 4.2 (ii ), there exists e ∈ E<
such that [xe (t̄ )−xe (t )][`e (xe (t̄ ))+ t̄e −`e (xe (t ))−te ] ≤ 0,

which in combination with xe (t ) > xe (t̄ ) gives

`e (xe (t̄ )) + t̄e ≥ `e (xe (t )) + te . (4)

Let e ∈ E<
be a link satisfying (4). We have the following inequalities

`′e (xe (t̄ )) (xe (t ) − xe (t̄ )) ≤ `e (xe (t )) − `e (xe (t̄ )) ≤ t̄e − te ≤ t̄e

(
1 −

xe (t̄ )

xe (t )

)
, (5)

where the �rst inequality follows from convexity of `e , the second from (4), and the third from (3).

Since t̄e ≤ t̂e = `
′
e (xe (t̄ ))xe (t̄ ), we obtain from (5) that

`′e (xe (t̄ )) (xe (t ) − xe (t̄ )) ≤ `
′
e (xe (t̄ ))xe (t̄ )

(
xe (t ) − xe (t̄ )

xe (t )

)
.

Since `′e (xe (t̄ )) > 0 and xe (t ) > xe (t̄ ), we conclude that xe (t ) ≤ xe (t̄ ), a contradiction.

5
Recall the de�nition of the upper-right Dini derivative, D+[f (x )] , lim suph→0

+
f (x+h )−f (x )

h .
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Now that we have proved existence, we show there is a unique Nash equilibrium. By way of

contradiction, suppose there exists another Nash equilibrium t , t̄ for the pro�t maximization

game with caps t̄ . Since all players are playing their best response, we may assume te > 0 for all

players e such that t̄e > 0, and thus we can use Lemma 4.3, concluding that xe (t )`′e (xe (t )) ≤ te for

all e ∈ E< = {e ∈ E : te < t̄e } (nonempty by assumption) which in turn gives

xe (t )`
′
e (xe (t )) ≤ te < t̄e ≤ t̂e = x∗e`

′
e (x
∗
e ) ,

concluding that xe (t ) < x∗e = xe (t̄ ) for all e ∈ E<
. But from Lemma 4.2 (i ) there exists e1 ∈ E<

such that xe1
(t ) ≥ xe1

(t̄ ), a contradiction. �

Remark 4.5. �eorem 4.4 cannot be extended to the se�ing where an operator owns more than one
link. For an example, consider the network of Figure 3 with unit demand and suppose that all links
are owned by a single operator. �e marginal tolls, and thus the caps, are given by (t̂ou , t̂uv , t̂vd ) =
(2/3,1/3,2/3), yielding a total pro�t of 1 for the operator (links (o,v ) and (u,d ) have zero caps). If,
however, the operator charges a toll vector of (tou ,tuv ,tvd ) = (2/3,0,2/3), then it induces a �ow of
2/9 on each of the upper and lower paths, and a �ow of 5/9 on the zig-zag path, gaining a pro�t of
28/27. Hence, the marginal tolls are not a cap equilibrium.

5 MINIMIZING USERS’ COSTS
�eorem 4.4 implies that any opt-inducing toll vector that is not above the marginals is itself a cap

equilibrium, and thus is a great set of tolls. �e fact that great tolls need not be unique, motivates

the question of whether it is possible to compute the great tolls vector that minimizes the total

users’ costs. If all great tolls were not above the marginals, then computing the great tolls vector

that minimizes the total users’ costs would reduce to solving a linear program (see program (BMT)

below). Yet, this is not the case, since, as the following example suggests, there are great tolls that

are above the marginals for some edges and additionally incur smaller costs for the users.

Example 5.1. Consider the Braess network of Figure 3 with unit demand. �e optimal �ow is

obtained by sending one third of the �ow on each of the upper and lower paths, and one third

of the �ow on the zig-zag path; leading to a total delay of 21/9. �e marginal tolls are given by

(t̂ou , t̂uv , t̂vd ) = (2/3,1/3,2/3), yielding a total pro�t of 1. Hence the users’ costs under the marginal

tolls are 21/9 + 1. Notice that the only great tolls that are not above the marginal tolls are the

marginal tolls themselves.

v

o d

ux

2

x

2

x

Fig. 3. The network of Remark 4.5 and Example 5.1. Under unit demand, the optimal flow routes one third of
the flow to each of the upper, zig-zag and lower paths.

Taking S = {o,v} as a cut, we can decrease the tolls by some ε > 0 for outgoing links (namely,

(o,u) and (v,d )) and increase them by ε on incoming links (i.e., (u,v )). �is procedure maintains

optimality of tolls, however it is unclear whether the cap equilibrium property is maintained.

Solving the pro�t maximization problem explicitly for link (u,v ) we have that these modi�ed tolls

are a cap equilibrium if and only if ε ≤ 1/6, and therefore the minimum users’ cost among great

tolls is 21/9 + 5/6. �
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�e mathematical program for obtaining great tolls that minimize users’ costs while keeping x∗

as a Wardrop equilibrium �ow is (BGT stands for Best Great Tolls):

(BGT)




min

∑
e ∈E [`e (x

∗
e ) + te ]x∗e

νku − ν
k
v + te = −`e (x

∗
e ) ∀k, e = (u,v ) : x∗ke > 0

νku − ν
k
v + te ≥ −`e (x

∗
e ) ∀k, e = (u,v ) : x∗ke = 0

t is a cap equilibrium

t ≥ 0,

�e program, in variables (t ,ν ), de�nes a potential νk for each commodity k , in such a way that

any �ow-carrying path is indeed a shortest path. A careful reader may also notice that we included

in the objective the constant term

∑
e `e (x

∗
e )x
∗
e , corresponding to the total delay experienced by

users. �is is of course part of the cost experienced by users, but it also turns out to be important

in order to obtain some of the approximation bounds we are aiming to prove.

In the formulation above, the problem (BGT) does not have any amenable structure for e�cient

methods, particularly due to the cap equilibrium constraint. However, by �eorem 4.4, optimal

tolls upper bounded by the marginal tolls are always a cap equilibrium, thus within this restricted

set of tolls we can write the following LP, that encodes all possible great set of tolls upper bounded

by marginals (BMT stands for Below Marginal Tolls):

(BMT)




min

∑
e ∈E [`e (x

∗
e ) + te ]x∗e

νku − ν
k
v + te = −`e (x

∗
e ) ∀k, e = (u,v ) : x∗ke > 0

νku − ν
k
v + te ≥ −`e (x

∗
e ) ∀k, e = (u,v ) : x∗ke = 0

te ≤ t̂e ∀e ∈ E
te ≥ 0 ∀e ∈ E.

Since by Example 5.1 the value of (BMT) does not necessarily coincide with the value of (BGT),

the next natural question to ask is how e�cient program (BMT) can be. In order to answer this

question, we can use as benchmark the value of Minimum Payment Tolls: �ese are the optimal

tolls that minimize the total payments. �ese tolls can be computed by a similar linear program,

where we only drop the cap equilibrium constraints (MPT stands for Minimum Payment Tolls):

(MPT)




min

∑
e ∈E [`e (x

∗
e ) + te ]x∗e

νku − ν
k
v + te = −`e (x

∗
e ) ∀k,e = (u,v ) : x∗ke > 0

νku − ν
k
v + te ≥ −`e (x

∗
e ) ∀k,e = (u,v ) : x∗ke = 0

te ≥ 0 ∀e ∈ E.

In what follows, t̄ and t∗ are optimal solutions of (BMT) and (MPT), respectively.

5.1 Functional Approximation Bound on Cost
We consider an approximation bound based on properties of the latency functions.

Theorem 5.2. Suppose all latency functions ` in the pro�t maximization game satisfy supx ≥0

x`′ (x )
`(x ) ≤

γ , then val(BMT) ≤ (γ + 1) val(MPT).

Proof. By the assumption on latency functions,

val(BMT) =
∑
e

[`e (x
∗
e ) + t̄e ]x∗e ≤

∑
e

[`e (x
∗
e ) + x

∗
e`
′
e (x
∗
e )]x

∗
e

≤
∑
e

(1 + γ )`e (x
∗
e )x
∗
e ≤ (γ + 1) val(MPT),

proving the result. �
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For polynomial functions with nonnegative coe�cients and degree at most d it is known that

one can choose γ = d above, which gives the following corollary:

Corollary 5.3. For polynomial latency functions of degree at most d and nonnegative coe�cients,
val(BMT)≤ (d + 1) val(MPT).

�e proposed approximation bound looks rather weak. However, this bound is tight even for

single-commodity networks.

5.2 Topological Approximation Bound on Cost
As shown above, having a Braess type subnetwork can lead to a gap between the linear programs

(BMT) and (MPT), and moreover a generalized Braess subnetwork will further worsen this gap.

Notice however that these examples in order to achieve large gaps need both a complex network

structure and large degree latencies. Is it possible that, e.g., simple networks with high-degree

latencies still achieve a small gap? Fortunately, the answer is yes.

In this subsection we will restrict ourselves to single-commodity instances and will assume that,

without loss of generality, they have unit demand. With this, the (BMT) linear program simpli�es

substantially,

(BMT)




min

∑
e ∈E [`e (x

∗
e ) + te ]x∗e

νu − νv + te = −`e (x
∗
e ) ∀e = (u,v ) : x∗e > 0

νu − νv + te ≥ −`e (x
∗
e ) ∀e = (u,v ) : x∗e = 0

te ≤ t̂e ∀e ∈ E
te ≥ 0 ∀e ∈ E.

We start with a structural lemma, which allows us to upper bound the value of (BMT). �is is

naturally important in order to derive an approximation bound. We will �rst need some de�nitions.

Consider a directed network G and the undirected network Gu
that comes from G if we drop the

directions of its links. Any path in Gu
is called an undirected path in G. For an undirected path P ,

the links that are traversed in their actual direction are called forward links, denoted by P+, and

the ones traversed in their reversed direction are called backward links, denoted by P−. Finally, an

undirected path has J alternations if, when traversing it, there are exactly J times where a forward

link is followed by a backward link.
6

Lemma 5.4. �ere exists an undirected o − d path P such that the �rst and the last link of P belong
in P+, all e ∈ P+ are �ow carrying, and the value of (BMT) is equal to∑

e ∈P+
`e (x

∗
e ) −

∑
e ∈P−

[`e (x
∗
e ) + t̂e ].

We make the following assumption on the instance: there exists a J ≥ 0 such that any simple o−d
undirected path has at most J alternations. �e smallest constant J satisfying this condition will be

called the alternation number, and our approximation bound will only depend on this number.

Theorem 5.5. Consider a single-commodity and unit demand instance of the network pricing game
whose underlying network has alternation number J . We have, val(BMT) ≤ (J + 1) · val(MPT).

Proof. By Lemma 5.4, we have val(BMT)=
∑

e ∈P+ `e (x
∗
e ) −

∑
e ∈P−[`e (x

∗
e ) + t̂e ]. Since the alter-

nation number of G is J , we can decompose P in at most J segments of consecutive forward and

backward links, P = A1−B1−A2−B2− . . .−B J −AJ+1, from which val(BMT)≤
∑J+1

j=1

[∑
e ∈Aj `e (x

∗
e )
]
.

Let now (t∗,ν ∗) be an optimal solution for (MPT); since all links e ∈ Aj , j = 1, . . . , J + 1 are �ow

6
For such alternating paths, see also, e.g., [23, 25, 28]
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carrying, for each j = 1, . . . , J + 1, we have

∑
e ∈Aj `e (x

∗
e ) ≤ ν

∗
d − ν

∗
o . Combining the inequalities, we

obtain val(BMT)≤
∑J+1

j=1

[∑
e ∈Aj `e (x

∗
e )
]
≤ (J + 1)[ν∗d − ν

∗
o ] = (J + 1)· val(MPT). �

Since J = 0 for series-parallel networks, we get the following corollary, which implies that our

approach is optimal in this case.

Corollary 5.6. For instances on series-parallel networks, t̄ minimizes the users’ cost and payments.

�e bound obtained in �eorem 5.5 is tight for single-commodity instances and it does not extend

to multi-commodity instances, or even single-source multi-commodity instances.

6 ELASTIC DEMAND
In this section, we assume that the total amount of tra�c for each ok − dk pair is dependent on the

costs the tra�c experiences; the higher the costs, the lower the tra�c. We analyze the elastic tra�c

demand model as introduced by Beckmann et al. [4] and later used for network pricing games

by Hayrapetyan et al. [21] and Ozdaglar [29]. We model elastic demand with a utility function
uk : [0,rk ] → R+ for each k ∈ K , where uk (x ) captures the reservation value for travel of the

particle of the demand (i.e., the in�nitesimally small user) at level x . We assume that uk (·) is

nonincreasing and continuous for each k ∈ K , so that, in a sense, the users are ordered decreasingly

according to their utility for traveling. Let u = (uk )k ∈K be the vector of all utility functions. De�ne

the aggregate utility function U k
: [0,rk ] → R+ by U k (x ) =

∫ x
0
uk (y) dy. By de�nition, this

function is nondecreasing, concave and continuously di�erentiable.

A �ow for commodity k is a nonnegative vector xk = (xkP )P ∈Pk such that

∑
P ∈Pk x

k
P ≤ rk . For

each commodity k ∈ K , let rkx =
∑

P ∈Pk x
k
P be the amount of �ow that is routed on the network by

xk . A �ow x is a vector (xk )k ∈K , where each xk is a �ow for commodity k .

A �ow x is a Wardrop equilibrium if all the routed tra�c goes through shortest paths for the

respective commodity, the utility for each traveling user is at least equal to the common shortest

path cost of her commodity, and the utility of each user not traveling is at most equal to the common

shortest path cost of her commodity. Mathematically, for everyk , for every path P ∈ Pk
with xkP > 0,

and every path P ′ ∈ Pk
,

∑
e ∈P [`e (xe ) + te ] ≤

∑
e ∈P ′[`e (xe ) + te ] and

∑
e ∈P [`e (xe ) + te ] ≤ uk (rkx )

with rkx = r
k

if

∑
e ∈P [`e (xe ) + te ] < uk (rkx ).

For any toll vector t ≥ 0, a Wardrop equilibrium exists, and moreover can be found by solving

the following maximization problem [4]:

x (t ) , arg max

x ≥0 �ow




∑
k ∈K

U k (rkx ) −
∑
e ∈E

∫ xe

0

(`e (x ) + te ) dx


. (6)

Assuming that each `e (xe ) is strictly increasing for each e ∈ E, the link-wise description of

the Wardrop equilibrium is unique, and therefore (xe (t ))e ∈E is a well-de�ned function, which is

moreover continuous by Berge’s theorem [5].

Given �ow x and toll vector t , de�ne the total users’ cost by C (x ,t ) =
∑

e ∈E [`e (xe ) + te ]xe and

the consumer surplus by

CS (x ,t ,u) =
∑
k ∈K

U k (rkx ) −C (x ,t ).

We de�ne the social welfare by

SW (x ,u) =
∑
k ∈K

U k (rkx ) −
∑
e ∈E

`e (xe ) · xe .

Notice that tolls do not appear in the social welfare, as they are transfers from users to toll operators.
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An optimal �ow x∗ (u) is a �ow that maximizes the social welfare w.r.t. to u. Similarly to the �xed

demand model, we have the classical result by Beckmann et al. [4] showing that a �ow x∗ (u) is an

optimal �ow if and only if x∗ (u) = x (t̂ (u)), where t̂e (u) = x∗e (u)`
′
e (x
∗
e (u)). Also, for every network

and demand vector there exist utility functions such that all users travel under the optimal solution,

i.e. rkx ∗ (u ) = r
k

for each k ∈ K . Observe that, in this case, this optimal �ow is the same optimal �ow

as de�ned in Section 2. For a given instance, we denote this particular optimal �ow by x∗.

6.1 Regulated Network Pricing Game
�e elastic tra�c demand model generalizes the �xed demand one. Fortunately, the main result of

Section 4, i.e., �eorem 4.4, can be generalized as well.

Theorem 6.1. Let t̄ ≤ t̂ (u) be an optimal toll vector. For the pro�t maximization problem with caps
t̄ , there exists a unique Nash equilibrium, given by t̄ , which, moreover, is a strong Nash equilibrium.

For a proof, one has �rst to prove an analogue of Lemma 4.2. �at provided, an analogue of

Lemma 4.3 follows directly and the same proof as the one for �eorem 4.4 can be applied.

6.2 Maximizing Consumer Surplus
We now consider the question of which great tolls vector maximizes the consumer surplus. �e

main result in this subsection, �eorem 6.5, only applies to single-source, single-sink networks,

and thus we will restrict ourselves to these instances.

By �eorem 6.1, optimal tolls upper bounded by the marginal tolls are always a cap equilibrium,

thus within this restricted set of tolls we can write the following LP, that encodes all possible great

set of tolls upper bounded by marginals:

(BMT2)




max CS (x∗ (u),t ,u)
νv − νw + te = −`e (x

∗
e (u)) ∀e = (v,w ) : x∗e (u) > 0

νv − νw + te ≥ −`e (x
∗
e (u)) ∀e = (v,w ) : x∗e (u) = 0

νt − νs ≤ u (rx ∗ (u ) ) where the inequality is tight if rx ∗ (u ) < r
te ≤ t̂e (u) ∀e ∈ E
te ≥ 0 ∀e ∈ E.

A natural question to ask is how e�cient our program (BMT2) can be. In order to answer this

question, we can use as benchmark the value of Minimum Payment Tolls: these are the optimal

tolls that minimize the total payments. �ese tolls can be computed by a similar linear program,

where we only drop the cap equilibrium constraints:

(MPT2)




max CS (x∗ (u),t ,u)
νv − νw + te = −`e (x

∗
e (u)) ∀e = (v,w ) : x∗e (u) > 0

νv − νw + te ≥ −`e (x
∗
e (u)) ∀e = (v,w ) : x∗e (u) = 0

νt − νs ≤ u (rx ∗ (u ) ) where the inequality is tight if rx ∗ (u ) < r
te ≥ 0 ∀e ∈ E.

In what follows, tB and tM are toll vectors that belong to some optimal solutions of (BMT2) and

(MPT2), respectively. �e following example shows that when all users travel, the objective of the

maximization problem (BMT2) can be arbitrary higher than the objective of (MPT2).

Example 6.2. Consider the Braess network of Figure 4 with unit demand and u (x ) = 2 for

x ∈ [0,1].

An optimal �ow in this case is to split the demand of one by half among the upper and lower

paths; in particular, no �ow traverses the middle uv link. �is way, marginal tolls are given by
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Fig. 4. The network of Example 6.2.

(t̂ou , t̂uv , t̂vd ) = (1/2,0,1/2), and notice this is the only feasible solution for (BMT2), achieving a

value of 2 − 2 = 0. On the other hand, it is easy to see that the LP solution for (MPT2) just needs to

assign a su�ciently large value for tuv (more precisely, tuv ≥ 1/2) and the rest of the tolls can be

zero, therefore the value of (MPT2) is 2 − 3/2 = 1/2. �

�e main result of this subsection is a comparison in the spirit of the bicriteria bound of Rough-

garden and Tardos [34]: by how much should we decrease the utility function in order to induce

the same level of consumer surplus when comparing (BMT2) to (MPT2). A corollary of the result is

that multiplying the utility function by 1/2 is su�cient. In other words, the consumers’ surplus

under tB is at least as much as the optimal surplus if each of them had half the valuation.

First we need two lemmas:

Lemma 6.3. If rx ∗ (u ) < r , then CS (x∗ (u),t ,u) = U (rx ∗ (u ) ) − rx ∗ (u ) · u (rx ∗ (u ) ) for all optimal t .

Lemma 6.4. Let ũ and u be utility functions so that ũ (x ) = α · u (x ), where 0 < α ≤ 1. �en
(i) rx ∗ (u ) ≥ rx ∗ (ũ ) ,

(ii) CS (x∗ (u),tB ,u) ≥ CS (x∗ (ũ),tB ,ũ),
(iii) CS (x∗ (u),tM ,u) ≥ CS (x∗ (ũ),tM ,ũ).

We are now ready for our main result.

Theorem 6.5. Let C (x∗,tB ) ≤ β ·C (x∗,tM ) for some β ∈ [1,∞).7 �en

CS (x∗ (u),tB ,u) ≥ CS (x∗ (ũ),tM ,ũ),

where ũ (x ) = β
2β−1

· u (x ).

Proof. Recall, x∗ is the optimal �ow when all r units are being routed. By the optimal �ow

characterization of Beckmann et al. [4], we have that rx ∗ (u ) < r for all u with C (x∗, t̂ ) > r · u (r ),

and rx ∗ (u ) = r for all u with C (x∗, t̂ ) ≤ r · u (r ).

We consider the following three cases: (1) u (r ) < C (x∗, t̂ )/r , (2) C (x∗, t̂ )/r ≤ u (r ) <
2β−1

β ·

C (x∗, t̂ )/r and (3) u (r ) ≥
2β−1

β ·C (x∗, t̂ )/r .

Case (1). Assume that u (r ) < C (x∗, t̂ )/r . �en rx ∗ (u ) < r and thus

CS (x∗ (u),tB ,u) = CS (x∗ (u),tM ,u) ≥ CS (x∗ (ũ),tM ,ũ),

where the equality follows by Lemma 6.3 and the inequality by Lemma 6.4.

Case (2). Assume that C (x∗, t̂ )/r ≤ u (r ) <
2β−1

β · C (x∗, t̂ )/r . �en rx ∗ (u ) = r and since ũ (r ) =
β

2β−1
· u (r ) < C (x∗, t̂ )/r , we have rx ∗ (ũ ) < r . �us

CS (x∗ (u),tB ,u) ≥ CS (x∗ (ũ),tB ,ũ) = CS (x∗ (ũ),tM ,ũ),

7
Notice that, �rst, there is always such a β , since if all the demand is routed, the feasible space of MPT2 is at least as big as

that of BMT2, while if the demand is partially routed we assume t B = tM , and, second, if rx∗ (u ) = r , then t B = t BMT

and tM = tMPT
, and so, for particular values of β , one can use �eorem 5.2 and �eorem 5.5.
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where the inequality follows by Lemma 6.4 and the equality by Lemma 6.3.

Case (3). Assume that u (r ) ≥
2β−1

β · C (x∗, t̂ )/r . �en rx ∗ (u ) = r and since ũ (r ) =
β

2β−1
· u (r ) ≥

C (x∗, t̂ )/r , we have rx ∗ (ũ ) = r . �us,

C (x∗,tB ) −C (x∗,tM ) ≤

(
1 −

1

β

)
·C (x∗,tB )

≤

(
1 −

1

β

)
·C (x∗, t̂ )

≤ r ·
β − 1

2β − 1

· u (r ) −

∫ r

0

u (x )dx +

∫ r

0

u (x )dx

≤ −

∫ r

0

ũ (x )dx +

∫ r

0

u (x )dx = U (r ) − Ũ (r ),

where the �rst inequality follows from C (x∗,tB ) ≤ β · C (x∗,tM ), which is true by assumption,

the second from C (x∗,tB ) ≤ C (x∗, t̂ ), the third from
β

2β−1
· u (r ) ≥ C (x∗, t̂ )/r , and the fourth from

r · u (r ) ≤
∫ r

0
u (x )dx and the de�nition of ũ (x ). Rearranging terms yields

CS (x∗ (u),tB ,u) = U (r ) −C (x∗,tB ) ≥ Ũ (r ) −C (x∗,tM ) = CS (x∗ (ũ),tM ,ũ),

as needed. �

Remark 6.6. �eorem 6.5 cannot be extended to multicommodity networks. For an example, consider
the network of Figure 5. Commodities o − d1, o − d2 have a maximum demand of 1. If u1 (x ) = 8

for x ∈ [0,1] and u2 (x ) = 4 for x ∈ [0,1], then the optimal �ow is 3/4 for commodity 1 and 1 for
commodity 2. �e unique optimal toll vector is (3/4,7/4); inducing a consumer surplus of 1/2.

If u1 (x ) = 4 for x ∈ [0,1] and u2 (x ) = 2 for x ∈ [0,1], then the optimal �ow is 0 for commodity 1
and 1 for commodity 2. �e unique optimal toll vector is (0,0); inducing a consumer surplus of 1.

o d1 d2

3 + x x

Fig. 5. The network of Remark 6.6.
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[22] T. Jelinek, M. Klaas, and G. Schäfer. 2014. Computing Optimal Tolls with Arc Restrictions and Heterogeneous Players.

In STACS 2014, Lyon, France, March 5-8, 2014, Proceedings.
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