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Abstract. Selfish routing is a central problem in algorithmic game
theory, with one of the principal applications being that of routing in
road networks. Inspired by the emergence of routing technologies and
autonomous driving, we revisit selfish routing and consider three pos-
sible outcomes of it: (i) θ-Positive Nash Equilibrium flow, where every
path that has non-zero flow on all of its edges has cost no greater than
θ times the cost of any other path, (ii) θ-Used Nash Equilibrium flow,
where every used path that appears in the path flow decomposition has
cost no greater than θ times the cost of any other path, and (iii) θ-Envy
Free flow, where every path that appears in the path flow decomposi-
tion has cost no greater than θ times the cost of any other path in the
path flow decomposition. We first examine the relations of these out-
comes among each other and then measure their possible impact on the
network’s performance. Right after, we examine the computational com-
plexity of finding such flows of minimum social cost and give a range
for θ for which this task is easy and a range of θ for which this task is
NP-hard for the concepts of θ-Used Nash Equilibrium flow and θ-Envy
Free flow. Finally, we propose strategies which, in a worst-case approach,
can be used by a central planner in order to provide good θ-flows.

1 Introduction

Two Sides of the Coin: Social Welfare vs Selfishness. A fundamental
problem arising in the management of road-traffic and communication networks
is routing traffic to optimize network performance. In the setting of road-traffic
networks the average delay incurred by a unit of flow quantifies the cost of a
routing assignment. From a collective perspective minimizing the average cost
translates to maximizing the welfare obtained by society. Starting from the sem-
inal works of Wardrop [24] and Beckman et al. [2], the literature on network
games has differentiated between (1) the objective of a central planner to min-
imize average cost and thus find a socially optimal (SO) flow, and (2) the self-
ish objectives of users minimizing their respective costs. In the latter case, the
network users acting in their own interest are assumed to converge to a Nash
Equilibrium (NE) flow as further rerouting fails to improve their own objective.

The tension between the central planner and individual users has been an
object of intense study and solutions such as toll placement or Stackelberg rout-
ing (e.g., [2,15,19]) have been proposed in the past, each facing criticism in terms
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V. Bilò and M. Flammini (Eds.): SAGT 2017, LNCS 10504, pp. 147–159, 2017.
DOI: 10.1007/978-3-319-66700-3 12



148 S. Basu et al.

of implementation and fairness towards various users. To mitigate this tension
in a way that is more fair to the users, we set out to explore the properties of
alternative solution concepts where users under some reasonable incentive con-
dition adopt a more “socially desirable” routing of traffic in between the Nash
equilibrium (which has high social cost) and the social optimum (which may
be undesirable/unfair to users on the longer paths) [20]. The advent of routing
applications and the growing dependence of users on these applications places
us at an epoch when such new ideas in mechanism design may be more relevant
and also more readily integrated to practice.

Consider the scenario where some routing application presents the unin-
formed users with routes alongside the guarantees of “relative fairness” and
“reasonable delay” and the users adopt the paths. In this scenario, one may nat-
urally bring forth the questions of whether there exist solutions (flows) where
good social welfare is achieved under an appropriate incentive condition for the
users and if such solutions can be efficiently computed. An example of such a
solution could be enforcing a θ-approximate Nash equilibrium of low social cost,
where users are guaranteed to get assigned a path of cost no greater than θ times
the cost of the shortest path and as such, the solution is “relatively fair”.1 Yet,
other solution concepts seem to arise naturally and are introduced below.

Selfishness and Envy. To achieve the coveted middle ground between the
social optimum and Nash equilibrium, by combining good social welfare with
satisfied users, we consider equilibria notions related to: (1) selfishness and (2)
envy. First, we consider selfishness where users tend to selfishly improve their
own cost. Here we make the distinction between positive paths, i.e. paths that
have positive flow in all of their edges (note, this is independent of the path
flow decomposition), and used paths, i.e. paths that appear in the path flow
decomposition with positive flow. With these definitions we define a θ-Positive
Nash Equilibrium (θ-PNE)2 to be a flow in which the length of any positive path
in the network is less than or equal to θ times the length of any other path,
and a θ-Used Nash Equilibrium (θ-UNE) to be a flow in which the length of
any used path in the network is less than or equal to θ times the length of any
other path. As we shall see, the set of θ-PNE flows is in general a strict subset
of the set of θ-UNE flows, though for θ = 1 these sets coincide. The definition
of θ-approximate Nash equilibrium [9] corresponds to that of θ-UNE.

Next, we consider the notion of envy where for the same source and desti-
nation a user experiences envy against another user if the latter incurs smaller
delay compared to the former under a given path flow. Similarly to the approxi-
mate Nash equilibrium flow we can consider a notion of approximately envy free
flows where in a θ-Envy Free (θ-EF) flow, the ratio of any two used paths in

1 The concept of fairness in selfish routing has been considered in the past, with the
two main approaches defining fairness as: (1) the ratio of the maximum path delay
in a given flow to the average delay under Nash equilibrium [20] and (2) the ratio of
the maximum path delay to the minimum path delay in a given flow [11].

2 In the literature, PNE is typically used for abbreviating Pure Nash Equilibrium, but
we always use it to denote Positive Nash Equilibrium, as defined here.
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the network is upper bounded by θ, for some θ ≥ 1. Note, the difference from
the θ-UNE definition is that a used path’s cost is compared only to other used
paths’ costs. Envy free flows arise naturally once we consider the routing appli-
cations setup where users only collect information about the routes provided by
the application. On the one hand, the possible costs for the current users in some
sense compare to the costs of the users that have already used the network. On
the other hand, routes for which there is no (sufficient) information, i.e., routes
that have not been chosen in the past (sufficiently many times), potentially may
never appear as an option. Another motivation for a θ-EF flow arises from the
literature on imitation games, e.g. [14], where users imitate other users with
lower delay and jointly reach a fixed point which is a 1-EF flow.

An example of how the concepts of θ-PNE, θ-UNE, and θ-EF may differ from
each other is illustrated in Fig. 1, with the details discussed in Sect. 3, where these
notions are formally introduced.

Related Work. Starting from the seminal work of Koutsoupias and Papad-
mitriou [18], quantifying the worst case inefficiency of various non-cooperative
games, including routing games, quickly became an intense area of research. In
a routing game with arbitrary latency functions the ratio between the cost of
a Nash equilibrium (NE) flow to the cost of a socially optimal (SO) flow may
grow unbounded, as shown by Roughgarden and Tardos [22]. A series of papers
have focused on developing techniques for bounding the inefficiency of the NE
flow (e.g., [12,16,22]).

Considering the generalization to approximate NE flows, Caragiannis
et al. [5–7] provided existential and computational results regarding approxi-
mate equilibria in weighted and unweighted atomic congestion games. Feldmann
et al. [13] also considered computational issues for approximate equilibria and
applied the method of randomized rounding to analyze which approximation
guarantees can be achieved for atomic congestion games with latency functions in
specific classes. Chen and Sinclair [8], focusing again on atomic congestion games,
studied questions related to convergence times to approximate Nash equilibria.
Christodoulou et al. [9] studied the performance of approximate Nash equilibria
for atomic and non-atomic congestion games with polynomial latency functions
by considering how much the price of anarchy worsens and how much the price
of stability improves as a function of the approximation factor θ.

In a related thread of research, Jahn et al. [17] formalized the notion of con-
strained system optimal, where additional constraints were added along with the
flow feasibility constraints. The additional constraints were introduced to reduce
the unfairness of the resulting flow. Further, useful insights were obtained by
Schulz and Stier-Moses [23] about the social welfare and fairness of these con-
strained system optimal flows. Recently, there have been efforts [3,4] in quan-
tifying the inefficiency needed to guarantee fairness among users. The authors
there defined the ‘price of fairness’ as the proportional decrease of utility under
fair resource allocation. As mentioned earlier, in routing games the fairness of
socially optimal flows under different but related definitions has been studied by
Roughgarden [20] and Correa et al. [10]. Further, Correa et al. [11] considered
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the fairness and efficiency of min-max flows, where the objective is to minimize
the maximum length of any used path in the network and noted how different
path flows affect the fairness in the network even when the induced edge flows
are identical.

Contribution. When users ask their routing devices for good origin to destina-
tion paths, they care about the end-to-end delay on their paths without (directly)
caring about local (subpath) optimality conditions. This highlights that the path
flows may play a key role in achieving the full potential for route planning mech-
anisms. On the conceptual side, through the study of the proposed solution
concepts, i.e., the θ-PNE, θ-UNE and θ-EF, we clearly differentiate path flows
from edge flows and study their varied effects in the balance between fairness
and social cost.

On the technical side, we start by observing that the 1-UNE and the 1-
PNE are indeed identical, which explains why the ‘used’ and the ‘positive’ paths
have not been explicitly differentiated before this work. Beyond the case of θ =
1, we notice that θ-PNE, θ-UNE and θ-EF flows are progressively larger sets,
each containing the previous one, with promise of better tradeoff between the
social welfare and fairness. In order to grasp the large separation between these
concepts note that for some networks the θ-UNE is not contained in Ω(nθ)-PNE,
where n is the number of nodes in the network (Lemma1).

Motivated from the classical study of the price of anarchy (PoA) of equilib-
rium flows we investigate the PoA of θ-UNE and θ-EF. In general we expect that
as we move from θ-PNE to θ-EF flows, from a worst case perspective, we will
encounter flows with larger social cost. As a worst case example we show that
the PoA can be unbounded for 1-EF flows. However, the PoA upper bounds for
both θ-PNE and θ-UNE turn out to be identical (Lemma 3). Our PoA bound
generalizes the PoA bound of 1-PNE from [16]. Through a similar reasoning we
show that the price of stability is non increasing from θ-PNE to θ-EF flows.

We next focus on computing a θ-PNE, a θ-UNE or a θ-EF flow with low
social cost. The convex optimization approach for computing a socially optimal
flow fails due to the non-convexity of the sets of θ-PNE, θ-UNE and θ-EF flows
for θ > 1 (Proposition 1). Formally, we prove (Theorem1) that obtaining the
best θ-UNE or the best θ-EF flow is NP-hard. Indeed given a socially optimal
flow it is NP-hard to decide whether it admits a path flow decomposition which
is θ-UNE (θ-EF) for arbitrarily large θ (assuming arbitrary latency functions).
However, we leave open the complexity of finding the best θ-PNE flow (θ > 1).

In the positive direction, we provide an approximation algorithm, based on a
modified potential function, for designing a θ-PNE flow—which generates θ-EF
and θ-UNE flows—with social cost guarantees. We explicitly derive the approx-
imation ratio upper bound for solving minimization of social cost under the
solution concepts for θ ≥ 1 for two classes of latency functions which are used
in congestion networks, namely (1) polynomials with positive coefficients, (2)
M/M/1 delay function (Theorem3). This modified function approach was used
by Christodoulou et al. [9] to derive upper bound for PoS(θ-UNE) with polyno-
mial latency functions.
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2 Preliminaries

Network and Flows. Consider a directed graph G = (V,E) and a set of com-
modities K with K = |K|. Each commodity k ∈ K is associated with a source
sk, a sink tk, and a demand dk > 0. Each edge e ∈ E is given a latency function
�e(x), assumed to be standard, i.e. nonnegative, differentiable, and nondecreas-
ing. We consider the standard nonatomic network congestion game, where each
user routes an infinitesimal amount of flow. Let Pk be the set of simple paths
from sk to tk, and denote P = ∪k∈KPk. A feasible flow can be represented as
a path flow vector f = (fπ)π∈P that satisfies all demands, i.e.

∑
π∈Pk fπ = dk

for all k ∈ K. The set of feasible path flow vectors is denoted by Dp. A feasible
path flow vector f , induces a feasible edge flow vector in the network given as
x = (xk

e =
∑

π∈Pk:e∈π fπ)e∈E,k∈K. The congestion through edge e is the aggre-
gate flow xe =

∑
k∈K xk

e , for all e ∈ E. There may exist multiple feasible path
flows, denoted as the set Dp(x), that give the same edge flow x. We denote the
set of feasible edge flows by DE .

Used and Positive Paths. Given a commodity k ∈ K and an edge flow vector
x, path π ∈ Pk is positive for commodity k if for all edges e ∈ π, xk

e > 0.
(Edge flow xe is insufficient for this definition.) Given a commodity k ∈ K and
a path flow vector f , path π ∈ Pk is used by commodity k if fπ > 0 and unused
otherwise. For each commodity k ∈ K, we define the set of positive paths under
edge flow x as Pk

+(x) and the set of used paths under path flow f as Pk
u(f).

Note that a used path is always positive but a positive path may be unused.

Costs and Socially Optimal Flow. Under a path flow f ∈ Dp, the cost
(latency) of a path π is defined to be the sum of latencies of edges along the
path: �π(f) = �π(x) =

∑
e∈π �e(xe) for f ∈ Dp(x). The social cost (SC) of an

edge flow x ∈ DE is SC(x) =
∑

e∈E xe�e(xe). The social cost of a path flow is the
social cost of its corresponding edge flow. The socially optimal edge/path flow is
the flow that minimizes social cost among all feasible edge/path flows. The set
of socially optimal edge/path flows is denoted by SOE = {x ∈ arg min SC(x)}
and SOp = {f ∈ arg min SC(f)}, respectively.

Nash Equilibrium and Efficiency. A path flow f is a Nash Equilibrium if
for any commodity k ∈ K and any used path p ∈ Pk

u(f) we have �p(f) ≤ �q(f),
for all paths q ∈ Pk. The efficiency of an equilibrium is often measured via the
price of anarchy and the price of stability. Here we generalize them for arbitrary
set of flows as in the following definitions. Given a set of path flows F and
socially optimal edge flow x∗ ∈ SOE , the price of anarchy (PoA) and the price
of stability (PoS) are defined as

PoA(F) = max
{

SC(f)
SC(x∗)

: f ∈ F
}

, PoS(F) = min
{

SC(f)
SC(x∗)

: f ∈ F
}

.

3 Solution Concepts

Here we give the formal definition of the solution concepts we introduced in
Sect. 1. We also provide an example to illustrate their differences, and prove
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that each solution concept may correspond to a non-convex set of flows. We
begin with the definitions of the solution concepts:

Definition 1 (θ-PNE, θ-UNE, and θ-EF).

1. An edge flow x is a θ-Positive Nash Equilibrium (θ-PNE) flow if for any
commodity k ∈ K, any positive path p ∈ Pk

+(x), and all paths q ∈ Pk, we
have �p(x) ≤ θ�q(x).

2. A path flow f is a θ-Used Nash Equilibrium (θ-UNE) flow if for any com-
modity k ∈ K, any used path p ∈ Pk

u(f), and all paths q ∈ Pk, we have
�p(f) ≤ θ�q(f).

3. A path flow f is θ-Envy Free (θ-EF) if for any commodity k ∈ K, any used
path p ∈ Pk

u(f), and all used paths q ∈ Pk
u(f), we have �p(f) ≤ θ�q(f).

For simplicity, we use θ-PNE, θ-UNE or θ-EF to describe the set of θ-PNE,
θ-UNE or θ-EF flows, respectively. Also, we refer to them as θ-fair flows. To see
how these concepts may differ from each other, we give an example in Fig. 1.

1

1x

x

s t

π1

π2

(a) Paths π1 and π2 have 1/2 unit of
flow. This path flow assignment is a so-
cial optimum.

1

1x

x

s t

Any used path 
has length 1.5

(b) The path flow assignment in Fig-
ure 1(a) is 1-EF but not 1-UNE.

1

1x

x

s t

Any used path 
has length 1.5

Shortest path
has length 1

(c) The path flow assignment in Fig-
ure 1(a) is 1.5-UNE but not 1.5-PNE.

1

1x

x

s t

Longest positive 
path has length 2

Shortest path
has length 1

(d) The path flow assignment in Fig-
ure 1(a) is 2-PNE.

Fig. 1. Example illustrating the three solution concepts θ-UNE, θ-PNE and θ-EF.

Our goal is to examine the properties of θ-fair flows and provide ways to
obtain such flows with good social cost. Regarding the second direction, in gen-
eral, the sets of θ-PNE, θ-UNE, and θ-EF flows may not be convex and may
contain multiple path flows, which raises the level of difficulty for computing
good or optimal such flows. Next, we present an example that demonstrates the
non-convexity of these sets (Fig. 2).

Proposition 1 (Non-convexity of θ flows). There exists an instance such
that the sets θ-PNE, θ-UNE, and θ-EF are not convex, for some θ > 1.
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x

x

u

s t

v

s-u-v-tf1: with flow 1

s-u-tf2: with flow 2/3
s-v-t with flow 1/3

f3: s-u-v-t with flow 1/2
s-u-t with flow 1/3
s-v-t with flow 1/6

Fig. 2. Non-convexity of θ-flows. Both f1 and f2 are 3/2-PNE/UNE/EF, but their
convex combination (with even weights) f3 is not.

The following two lemmas establish the hierarchy among the proposed solu-
tion concepts by showing a crisp containment of various flows. Due to space
constraints, the proofs are presented in the full version [1], Sect. 4.

Lemma 1 (Hierarchy of θ-flows). Given a multi-commodity network, for
θ′ > θ ≥ 1, F ∈ {PNE, UNE, EF} satisfies θ-F ⊆ θ′-F . Further, for any
θ ≥ 1, θ-PNE ⊆ θ-UNE ⊆ θ-EF holds. On the other hand, for any θ ≥ 1, there
exists a network such that 1-EF �⊂ θ-UNE.

In the following lemma, we further demonstrate the relationship between the
θ-UNE and θ-PNE. We can see that 1-UNE and 1-PNE both coincide with the
familiar Nash equilibrium.

Lemma 2 (θ-UNE and θ-PNE). Given a multi-commodity network with n
nodes, for any path flow f and its induced edge flow x, f ∈ 1-UNE if and only
if x ∈ 1-PNE. Further, for any θ > 1, θ-UNE ⊂ ((n − 1)θ)-PNE holds. On
the other hand, for any θ ≥ 1.5, there exists a network such that θ-UNE �⊂
((n − 3)θ/3)-PNE.

We next analyze the cost of the θ-flows. Note that the θ flows are not unique
for θ > 1 and this implies that potentially under each solution concept we can
have a range of attainable costs. From the containment relations of the θ flows
(Lemma 1, Part 2), it follows that for any θ ≥ 1,

PoA(θ-EF) ≥ PoA(θ-UNE) ≥ PoA(θ-PNE),
PoS(θ-EF) ≤ PoS(θ-UNE) ≤ PoS(θ-PNE).

Further, we present upper bounds on the PoA for θ-UNE and θ-PNE flows,
and show that the PoA for 1-EF flow is unbounded. In that effort, we generalize
techniques presented in [16] which was used for bounding PoA(1-PNE). We need
the following definitions in order to bound PoA:

ω(L, λ) = sup
�∈L

sup
x,x′≥0

(�(x) − λ�(x′)) x′

x�(x)
, Λ(θ) = {λ ∈ R

+ : ω(L, λ) ≤ 1/θ}.

The following lemma summarizes the PoA results for the solution hierarchies.
For the proof refer to the full version [1], Sect. 5.
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Lemma 3 (PoA of θ-flows). For latency functions in class L, PoA(θ-UNE)
≤ infλ∈Λ(θ) θλ(1 − θω(L, λ))−1. On the other hand, there exists a network with
linear latency functions for which the PoA(1-EF) is unbounded.

4 Optimal θ-Flows: Complexity and Approximation

In this section, we first discuss the possibility of designing a flow that balances
the fairness and the social cost in the network under the new solution concepts.
The standard convex optimization approaches fail to find socially optimal θ flow
as the sets of θ-PNE, θ-UNE and θ-EF flows are all non-convex. We formally
prove that finding socially optimal θ-UNE or θ-EF flows is NP hard. Then, using
a modified potential function technique we provide approximation guarantees for
two common classes of latency functions used in congestion network modeling,
namely (1) polynomial and (2) M/M/1.

Consider the instance in Fig. 3. The next proposition states that though the
socially optimal flow—uniquely determined by the edge flow—is unfair in the
worst case, there exist path flows which are fair or almost fair under the concepts
of UNE and EF flows. The proof is in the full version [1], Sect. 7.1.

SO flow: On each stage, 
• flow in upper link.

• flow in lower link. 

Fig. 3. Improved balance: example.

Proposition 2 (Balanced path flows). For the n-stage instance depicted in
Fig. 3 with nε = 2, the socially optimal edge flow is a 2-PNE. Moreover, the
socially optimal flow admits path flows which are 1-EF or (1 + 1/n)-UNE.

4.1 Existence and Complexity

The previous motivating example naturally leads to the following computational
problems given a θ ≥ 1.

– (P1) Find a θ-EF path flow with the minimal social cost.
– (P2) Find a θ-UNE path flow with the minimal social cost.
– (P3) Find a θ-PNE edge flow with the minimal social cost.

Existence of Polynomial-Size Solutions. An observation to Problem (P1)
and (P2) is that the outputs of these two problems are path flow vectors, which
are potentially of exponential size relative to the problem instances. The follow-
ing lemma proves the existence of polynomial sized path flows, in absence of
which there is no hope to find a polynomial time algorithm for these problems.
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Lemma 4 (Existence of polynomial-size solutions). Given a θ-EF (or a
θ-UNE) path flow f , there exists a θ-EF (resp., a θ-UNE) path flow f ′ that uses
at most |E| paths for each source-sink pair and has the same edge flow as f .

Computational Complexity. We show that for large θ, the socially opti-
mal flow is guaranteed to be contained in those θ-flows, and hence the optimal
θ-flows can be computed efficiently. However, for small θ, we will show that solv-
ing Problem (P1) and Problem (P2) is NP-hard, while it remains open whether
Problem (P3) can be computed efficiently. More precisely, for a latency class
L, this particular threshold is γ(L) = min{γ : �∗(x) ≤ γ�(x),∀� ∈ L,∀x ≥ 0},
where �∗(x) = �(x) + x�′(x). The main result of this section is:

Theorem 1 (Computational Complexity of (P1)–(P3)). For any multi
commodity instance with latency functions in any class L, there is a polynomial
time algorithm for solving Problem (P1)–(P3) for θ ≥ γ(L). On the other hand,
it is NP-hard to solve Problem (P1) for θ ∈ [1, γ(L)) and Problem (P2) for
θ ∈ (1, γ(L)), for arbitrary single commodity instances with latency functions in
an arbitrary class L.

The first part of Theorem 1 follows easily from the following lemma in [11].

Lemma 5 (P1)–(P3) for θ ≥ γ(L) are easy [11]). For an instance with
latency functions in L, any socially optimal path flow f ∈ SOp is γ(L)-PNE.

For the proof of the second part of Theorem1, we consider the class of poly-
nomial functions of degree at most p, denoted by Lp. We note that γ(Lp) = p+1.
We show that when the latency functions are in Lp, then the related decision
problems we state in Theorem 2, stated below, have polynomial-time reductions
from the NP-complete problem PARTITION.

Theorem 2 (NP-hardness of (P1) and (P2)). For an arbitrary single com-
modity instance with latency functions in class Lp for p ≥ 1, it is NP-hard to

1. decide whether a socially optimal flow has a θ-UNE path flow decomposition
for θ ∈ (1, p + 1).

2. decide whether a socially optimal flow has a θ′-EF path flow decomposition
for θ′ ∈ [1, p + 1).

Proof. (Proof Sketch) For lack of space we present a proof sketch mentioning
the flow of key ideas behind the proof. The proof is divided into two parts.
For the first part, we show the NP-hardness for 1.5-UNE and 1-EF path flow
decompositions under the social optimum in Lemma 6, based on the construction
in Theorem 3.3 in Correa et al. [11]. Then, in the second part, we propose a novel
way to generalize the construction to the entire range of θ and θ′ specified in
Theorem 2.
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Construction. Let G(q) be the two-link parallel network with the top link eu

having latency �u(x) = q and the bottom link eb having latency �b(x) = qx.
Given an instance of the PARTITION problem, q1, . . . , qn,

∑n
i=1 qi = 2B, we

now construct a single commodity network as the two-link n-stage network G,
shown in Fig. 4. In stage i we connect G(qi−1) to G(qi) to the right for i = 2 to
n. A unit demand has to be routed from the source in G(q1) to the destination
in G(qn). Finally, we augment to the right of G a two-link parallel network G′.
For G′ the top link latency is �u,(n+1)(x) = axp + b and bottom link latency is
�d,(n+1)(x) = cxp. We set a = αB

(1−3/8B)p , b = βB(p + 1), and c = (α+β)B
(3/8B)p , where

α, β > 0 are appropriate parameters (specified in the proof of Theorem 1 in the
full version [1]). We call the entire network H.

c

SO flow: 
1) On each stage of , 
• flow in upper link.
• flow in lower link.
2) On the last stage, ,
• flow in upper link.

• flow in lower link.

Fig. 4. An instance of congestion game constructed from a given instance of PARTI-
TION.

Lemma 6 states that it is NP-hard to find 1.5-UNE and 1-EF path flow
decompositions under the social optimum.

Lemma 6 (Hardness Result in G). For single commodity instances with
linear latency functions it is NP-hard to decide whether a social optimum flow
has a 1.5-UNE flow decomposition or a 1-EF flow decomposition.

Amplification of Hardness. The next step is to amplify the hardness result
to all θ ∈ (1, p + 1) for UNE and to all θ′ ∈ [1, p + 1) for EF flows. The key
observation that facilitates this amplification is the following claim.

Claim 1. If the answer to PARTITION is NO then in the sub-network G any
path decomposition of the socially optimal flow o routes at least 1

2B amount of
flow through paths of length strictly greater than 3

2B.

Through careful combination of the paths it is shown that the socially optimal
flow is a c1-UNE and c2-EF flow if and only if the given PARTITION instance
has a YES answer. Here c1 and c2 are constants given by

c1 =
α + β + βp + 3

2

1 + α + β
= 1 +

1
2 + βp

1 + α + β
, c2 =

α + β + βp + 3
2

2 + α + β
= 1 +

− 1
2 + βp

2 + α + β
.
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4.2 Approximation Using Modified Potential Functions

In this section, we provide a modified potential function based approximation
algorithm to problems (P1), (P2) and (P3). The idea of modified potential func-
tions was introduced for bounding the PoS of approximate Nash equilibria in [9].
For a given θ this approach produces a θ-PNE and, due to containment, any fea-
sible path flow corresponding to the edge flow will be in θ-UNE and θ-EF.

Algorithm 1. Modified Potential Algorithm
Input: Multi-commodity network G, θ.
Output: Edge flow xA ∈ θ-PNE and path flow fA ∈ θ-UNE ∩ θ-EF .
1: For all e ∈ E choose φe(x) ∈ [�e(s)/θ, �e(x)] (Specified later.)
2: Compute xA = argminx∈F

∑
e∈E

∫ xe

x=0
φe(x)dx.

3: Compute any path decomposition fA of xA.

Theorem 3 characterizes the performance of Algorithm 1 for two important
classes of latency functions which are used for modeling congestion networks—
(1) Polynomial latency with positive coefficients, and (2) M/M/1 latency.

Theorem 3 (Performance of Algorithm 1). Given a multi-commodity net-
work G and θ ≥ 1 the algorithm produces an edge flow that is θ-PNE and a path
flow that is both θ-UNE and θ-EF.

(1) Polynomial Latency: Additionally, let the latency function �e(x) =∑p
k=0 ae,kxk, ae,k ≥ 0, for all e ∈ E and some finite p. Algorithm1 with

φe(x) =
∑p

k=0 ζkae,kxk, ζk = (1 + min{k, θ − 1})/θ for all e ∈ E, k ≤ p, is

a
(

θ

(

1 − p
1+p

(
θ

1+p

)1/p
))−1

-approximation algorithm for the problems (P1),

(P2) and (P3).
(2) M/M/1 Latency: Additionally, let the latency function �e(x) = 1/(ue−

x) with ue > 0, ρe = dtot/ue and ρmax = maxe∈E ρe < 1, for all e ∈ E. Algo-
rithm1 with φe(x) = 1/(aeue − x), ae = {0, 1 − θ(1 − ρ)}/ρ for all e ∈ E, is a
1
2

(

1 + 1√
1−ρmax(θ)

)

-approximation algorithm for the problems (P1), (P2) and

(P3), where ρmax(θ) = max{0, 1 − θ(1 − ρmax)}.
The first part of Theorem 3 (i.e., the output being θ flows) follows from the

idea, that a 1-PNE flow under the modified potential is a θ-PNE flow under the
original latency functions. To prove the second part, we bound the inefficiency of
the flow xA as the PoA(1-PNE) under the modified potential functions, which in
turn serves as an approximation ratio for the minimization of social cost under
θ-PNE (P3), θ-UNE (P2) and θ-EF (P1). Using proper functions φe(·) along
with the λ-μ smoothness framework [21] we strictly improve the approximation
ratio from PoA(1-PNE). Recall the trivial solution—1-PNE flow which can be
computed efficiently gives an approximation ratio of PoA(1-PNE). The choice of
φe(·) and the subsequent bounds for polynomial latencies were presented in [9],
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but for upper bounding PoS(θ-UNE). The detailed proofs are presented in the
full version [1], Sect. 7.2.
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