
Algorithmica (2017) 78:788–818
DOI 10.1007/s00453-016-0175-2

Resolving Braess’s Paradox in Random Networks

Dimitris Fotakis1 · Alexis C. Kaporis2 ·
Thanasis Lianeas1 · Paul G. Spirakis3,4

Received: 12 September 2014 / Accepted: 8 June 2016 / Published online: 28 June 2016
© Springer Science+Business Media New York 2016

Abstract Braess’s paradox states that removing a part of a network may improve the
players’ latency at equilibrium. In this work, we study the approximability of the best
subnetwork problem for the class of random Gn,p instances proven prone to Braess’s
paradox byValiant and Roughgarden RSA ’10 (Random Struct Algorithms 37(4):495–
515, 2010), Chung and Young WINE ’10 (LNCS 6484:194–208, 2010) and Chung et
al. RSA ’12 (Random Struct Algorithms 41(4):451–468, 2012). Our main contribution
is a polynomial-time approximation-preserving reduction of the best subnetwork prob-
lem for such instances to the corresponding problem in a simplified network where
all neighbors of source s and destination t are directly connected by 0 latency edges.

This work was supported by the project Algorithmic Game Theory, co-financed by the European Union
(European Social Fund-ESF) and Greek national funds, through the Operational Program “Education and
Lifelong Learning”, under the research funding program Thales, by the EU ERC project RIMACO, by EU
ERC project ALGAME Grant Agreement no. 321171, and by the EU FP7/2007-13 (DG INFSO G4-ICT
for Transport) project eCompass Grant Agreement no. 288094.

B Alexis C. Kaporis
kaporisa@gmail.com

Dimitris Fotakis
fotakis@cs.ntua.gr

Thanasis Lianeas
tlianeas@mail.ntua.gr

Paul G. Spirakis
P.Spirakis@liverpool.ac.uk

1 Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece

2 Information and Communication Systems Department, University of the Aegean, Samos, Greece

3 Computer Science Department, University of Liverpool, Liverpool, UK

4 Computer Technology Institute and Press “Diophantus”, Patras, Greece

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-016-0175-2&domain=pdf

Algorithmica (2017) 78:788–818 789

Building on this, we consider two cases, either when the total rate r is sufficiently low,
or, when r is sufficiently high. In the first case of low r = O(n+), here n+ is the maxi-
mum degree of {s, t}, we obtain an approximation scheme that for any constant ε > 0
and with high probability, computes a subnetwork and an ε-Nash flow with maximum
latency at most (1+ ε)L∗ + ε, where L∗ is the equilibrium latency of the best subnet-
work. Our approximation scheme runs in polynomial time if the random network has
average degree O(poly(ln n)) and the traffic rate is O(poly(ln ln n)), and in quasipoly-
nomial time for average degrees up to o(n) and traffic rates of O(poly(ln n)). Finally,
in the second case of high r = Ω(n+), we compute in strongly polynomial time a
subnetwork and an ε-Nash flow with maximum latency at most (1 + 2ε + o(1))L∗.

Keywords Algorithmic game theory · Braess’s paradox · Seflish routing · Wardrop
equilibrium · Random graphs

1 Introduction

An instance of a (non-atomic) selfish routing game consists of a network with a source
s and a sink t , and a traffic rate r divided among an infinite number of infinitesimally
small players. A picturesque way to see a large network of links shared by many infin-
itesimally small selfish users is as a large pipeline infrastructure with users as liquid
molecules flowing into it. Every edge has a non-decreasing function that determines
the edge’s latency caused by its traffic. Each player routes a negligible amount of traffic
through an s − t path. Observing the traffic caused by others, every player selects an
s − t path that minimizes the sum of edge latencies. Thus, the players reach a Nash
equilibrium (a.k.a., a Wardrop equilibrium), where all players use paths of equal min-
imum latency, while the remaining unused paths have higher (unappealing) latency.
Under some general assumptions on the latency functions, a Nash equilibrium flow
(or simply a Nash flow) exists, it is efficiently computable and the common players’
latency in a Nash flow is essentially unique (see e.g., [32]).

When the owner of such a selfishly congested network tries to improve its flow
speed, the common sense suggests to focus and fix links that seem older and slower.
Contrary to this belief, Braess’s paradox illustrates that destroying a part of a net-
work, even of the most expensive infrastructure, can improve its performance. So a
wise owner should take steps cautiously and benefit by exploiting the nature of this
paradox. There are a few natural approaches for improving network performance. A
simple approach, not requiring any network modifications, is Stackelberg routing. The
network owner dictatorially controls a small fraction of flow, aiming to improve the
induced routing performance of the remaining selfish flow. Unfortunately, there are
examples of unboundedly bad performance under any possible control attempt made
by the owner. Another side effect is that the dictatorially controlled flow is usually
sacrificed through slower paths, compared to the latency faced by the remaining free
flow. An alternative approach is to introduce economic incentives, usually modeled as
flow-dependent per-unit-of-flow tolls, that influence the users selfish choices towards
improving performance. However, the idea of tolls is not appealing to the users, since
large tolls increase the users disutility: routing time plus tolls paid, see details in [7].

123

790 Algorithmica (2017) 78:788–818

l1 x x

l5 x x

l2 x

l4 x

l1 x x

l5 x x

l2 x

l4 x

l3 x

v

s

w

t s

v

w

t

(a) (b)

Fig. 1 a The optimal total latency is 3/2, achieved by routing half of the flow on each of the paths (s, v, t)
and (s, w, t). In the (unique) Nash flow, all traffic goes through the path (s, v, w, t) and has a latency of 2.
b If we remove the edge (v, w), the Nash flow coincides with the optimal flow. Hence the network b is the
best subnetwork of network a

A simple and easy to implement way out from the above side effects is to exploit the
essence of Braess’s paradox towards improving network performance.
Previous Work It is well known that a Nash flowmay not optimize the network perfor-
mance, usually measured by the total latency incurred by all players. Thus, in the last
decade, there has been a significant interest in quantifying and understanding the per-
formance degradation due to the players’ selfish behavior, and in mitigating (or even
eliminating) it using several approaches, such as introducing economic disincentives
(tolls) [7] for the use of congested edges, or exploiting the presence of centrally coor-
dinated players (Stackelberg routing) [31], see also [32] for more references. A simple
way to improve the network performance at equilibrium is to exploit Braess’s paradox
[3,26], namely the fact that removing some edges may improve the latency of the
Nash flow (see e.g., Fig. 1 for an example and [27,33] for more bibliography). Thus,
given an instance of selfish routing, one naturally seeks for the best subnetwork, i.e.
the subnetwork minimizing the common players’ latency at equilibrium. Compared
against Stackelberg routing and tolls, edge removal is simpler and more appealing to
both the network administrator and the players (see e.g., [10] for a discussion).

Despite the intense research [30, Sect. 5.1.2] for algorithmically detecting the para-
dox, little positive results have been shown rigorously. Unfortunately, Roughgarden
[33] proved that it is NP-hard not only to find the best subnetwork, but also to compute
any meaningful approximation to its equilibrium latency. Specifically, he proved that
even for linear latencies, it is NP-hard to approximate the equilibrium latency of the
best subnetwork within a factor of 4/3 − ε, for any ε > 0, i.e., within any factor less
than the worst-case Price of Anarchy for linear latencies. On the positive side, apply-
ing Althöfer’s Sparsification Lemma [1,21], Fotakis et al. [10] presented an algorithm
that approximates the equilibrium latency of the best subnetwork within an additive
term of ε, for any constant ε > 0, in time that is subexponential if the total number of
s − t paths is polynomial, all paths are of polylogarithmic length, and the traffic rate
is constant.

Interestingly, Braess’s paradox can be dramatically more severe in networks with
multiple sources and sinks. More specifically, Lin et al. [19] proved that for networks
with a single source-sink pair and general latency functions, the removal of at most k
edges cannot improve the equilibrium latency by a factor greater than k + 1. On the
other hand, Lin et al. [19] presented a network with two source-sink pairs where the

123

Algorithmica (2017) 78:788–818 791

removal of a single edge improves the equilibrium latency by a factor of 2Ω(n). As
for the impact of the network topology, Milchtaich [24] proved that Braess’s paradox
does not occur in series-parallel networks, which is precisely the class of networks
that do not contain the network in Fig. 1a as a topological minor.

Recent work actually indicates that the appearance of Braess’s paradox is not an
artifact of optimization theory, and that edge removal can offer a tangible improvement
on the performance of real-world networks (see e.g., [17,28,32,35]). In this direction,
Valiant and Roughgarden [36] initiated the study of Braess’s paradox in natural classes
of random networks, and proved that the paradox occurs with high probability in dense
random Gn,p networks, with p = ω(n−1/2), if each edge e has a linear latency �e(x) =
aex + be, with ae, be drawn independently from some reasonable distribution. The
subsequent work of Chung and Young [5] extended the result of [36] to sparse random
networks, where p = Ω(ln n/n), i.e., just greater than the connectivity threshold of
Gn,p, assuming that the network has a large number of edges e with small additive
latency terms be. In fact, Chung and Young demonstrated that the crucial property
for Braess’s paradox to emerge is that the subnetwork consisting of the edges with
small additive terms is a good expander (see also [6]). Nevertheless, the proof of
[5,6,36] is merely existential; it provides no clue on how one can actually find (or
even approximate) the best subnetwork and its equilibrium latency.

In all the work above, the graph G and the latencies � are random. But, the traffic r is
adversarial and selected for the paradox to occurwhp.Roughgarden raised the question
of random traffic r > 0, or, investigating the range of r that causes the paradox, citing
the works [12,28] with evidence of r ranges that the paradox is unlikely. A related
question is to identify the vulnerable network topologies [30, pp. 125–126] that, given
a graph G, there is a choice of traffic value rG and latency functions �G that cause the
Braess paradox to occur. As a sharp contrast, vulnerable graphs are easy [8,24,26].
Motivation and Contribution The motivating question for this work is whether in
some interesting settings, where the paradox occurs, we can efficiently compute a
set of edges whose removal significantly improves the equilibrium latency. From a
more technical viewpoint, our work is motivated by the results of [5,6,36] about the
prevalence of the paradox in random networks, and by the knowledge that in random
instances some hard (in general) problems can actually be tractable.

It is well known that a NP-completeness reduction may use complex structures that
may rarely occur in generic/realistic instances. NP-completeness focus to the worst-
case analysis of a given class of instances, while it provides limited or no information
about the algorithmic hardness of the typical (overwhelming majority of) instances.
There is a need to get a bigger picture of the complexity landscape. Therefore, a way
to widen this limited view of an NP-hard proof, is to suggest the probabilistic analy-
sis of algorithms [14,16]. Where, a meaningful target is to exhibit that algorithmic
hard instances come up often, or show that hard cases are rare, given a distribution
that resembles most of the problem’s rich landscape. Towards to achieve more insight
in the underlying algorithmic complexity for the majority of the instances, random
instances are used for evaluating algorithms for NP-hard problems. Random instances
are cheap and usually (but not always) lack structures that expose information and
facilitate the running time of algorithms, often unavoidably hidden in deterministic
instances. Random instances often provide control parameters for important char-

123

792 Algorithmica (2017) 78:788–818

acteristics, such as expected hardness and/or (in)solubility, that help to validate and
improve sophisticated heuristics [15,25,34]. Of course, instances obtained from real-
world applications are the best source, albeit of limited supply and sometimes suffer
being structured/oriented towards specific applications. On the positive side, there is a
wide experience, constantly updated from ongoing competitions [15,38,39], illustrat-
ing the strong correlation (wrt algorithmperformance) between real-world and random
instances. Hence, in the last 20 years an area of intense research in Artificial Intel-
ligence (AI) [4,18,23], Computer Science (CS) [11] and Statistical Mechanics (SM)
[22] has been the typical algorithmic complexity of hard problemswrt the Erdös-Rényi
Gn,p (or G(n, m)) model [2] of random instances.

Departing from [5,36], we adopt a purely algorithmic approach. We focus on the
class of so-called good selfish routing instances, namely instances with the properties
used by [5,36] to demonstrate the occurrence of Braess’s paradox in random networks
with high probability. In fact, one can easily verify that the random instances of [5,36]
are good with high probability. Rather surprisingly, we prove that, in many interesting
cases, we can efficiently approximate the best subnetwork and its equilibrium latency.
What may be even more surprising is that our approximation algorithm is based on the
expansion property of good instances, namely the very same property used by [5,36] to
establish the prevalence of the paradox in good instances! To the best of our knowledge,
our results are the first of theoretical nature which indicate that Braess’s paradox can
be efficiently eliminated in a large class of interesting instances. In particular, our
work exploits algorithmically the paradox down to the connectivity threshold p = ln n

n
wrt control parameter p of a random Gn,p graph [9]. Our argument relies strongly
to the existence of many “short & fast paths” that connect the neighbors of s to the
neighbors of t . Since the existence of such paths is critically related to the connectivity
threshold, we believe it is also interesting to explore for parameter p ranging below
this threshold, whether the paradox can still be efficiently exploited or not. Another
source of randomness is the random coefficient model wrt edge latencies. But, our
main focus is to assume the same assumptions for the random edge coefficients as in
[5,6,36]. Of course, if we change the coefficient’s distribution it is possible to ruin the
existence of such fast paths, despite p ranging above the connectivity threshold.

Technically, we present essentially an approximation scheme. In the first case of
low r = O(n+), with n+ the maximum degree of {s, t}, given a good instance and
any constant ε > 0, we compute a flow g that is an ε-Nash flow for the subnetwork
consisting of the edges used by it, and has a latency of L(g) ≤ (1 + ε)L∗ + ε, where
L∗ is the equilibrium latency of the best subnetwork (Theorem 1). In fact, g has these
properties with high probability. Our approximation scheme runs in polynomial time
for the most interesting case that the network is relatively sparse and the traffic rate
r is O(poly(ln ln n)), where n is the number of vertices. Specifically, the running
time is polynomial if the good network has average degree O(poly(ln n)), i.e., if
pn = O(poly(ln n)), for random Gn,p networks, and quasipolynomial for average
degrees up to o(n). As for the traffic rate, we emphasize that most work on selfish
routing and selfish network design problems assumes that r = 1, or at least that r
does not increase with the network’s size (see e.g., [32] and the references therein).
So, we can approximate, in polynomial-time, the best subnetwork for a large class of
instances that, with high probability, include exponentially many s − t paths and s − t

123

Algorithmica (2017) 78:788–818 793

paths of lengthΘ(n). For such instances, a direct application of [10, Theorem 3] gives
an exponential-time algorithm. Finally, in the second case of high r = Ω(n+), we
compute in strongly polynomial time a subnetwork with maximum latency at most
(1 + 2ε + o(1))L∗.

The main idea behind our approximation scheme, and our main technical contribu-
tion, is a polynomial-time approximation-preserving reduction of the best subnetwork
problem for a good network G to a corresponding best subnetwork problem for a 0-
latency simplified network G0, which is a layered network obtained from G if we keep
only s, t and their immediate neighbors, and connect all neighbors of s and t by direct
edges of 0 latency. We first show that the equilibrium latency of the best subnetwork
does not increase when we consider the 0-latency simplified network G0 (Lemma 1).
Although this may sound reasonable, we highlight that decreasing edge latencies to 0
may trigger Braess’s paradox (e.g., starting from the network in Fig. 1a with l ′3(x) = 1,
and decreasing it to l3(x) = 0 is just another way of triggering the paradox). Next, we
employ Althöfer’s Sparsification Lemma [1] (see also [20,21] and [10, Theorem 3])
and approximate the best subnetwork problem for the 0-latency simplified network.

The final (and crucial) step of our approximation preserving reduction is to start
with the flow-solution to the best subnetwork problem for the 0-latency simplified
network, and extend it to a flow-solution to the best subnetwork problem for the
original (good) instance. To this end, we show how to “simulate” 0-latency edges
by low latency paths in the original good network. Intuitively, this works because
due to the expansion properties and the random latencies of the good network G, the
intermediate subnetwork of G, connecting the neighbors of s to the neighbors of t ,
essentially behaves as a complete bipartite network with 0-latency edges. This is also
the key step in the approach of [5,36], showing that Braess’s paradox occurs in good
networks with high probability (see [5, Section 2] for a detailed discussion). Hence,
one could say that to some extent, the reason that Braess’s paradox exists in good
networks is the very same reason that the paradox can be efficiently resolved. Though
conceptually simple, the full construction is technically involved and requires dealing
with the amount of flow through the edges incident to s and t and their latencies. Our
construction employs a careful grouping-and-matching argument, which works for
good networks with high probability, see Lemmas 5 and 6 .

We highlight that the reduction itself runs in polynomial time. The time consuming
step is the application of [10, Theorem 3] to the 0-latency simplified network. Since
such networks have only polynomially many (and very short) s − t paths, they escape
the hardness result of [33]. The approximability of the best subnetwork for 0-latency
simplified networks is an intriguing open problem arising from our work.

Our result shows that a problem, that is NP-hard to approximate, can be very closely
approximated in random (and random-like) networks. This resembles e.g., the problem
of finding a Hamiltonian path in Erdös-Rényi graphs, where again, existence and
constructionbothwork just above the connectivity threshold, see e.g., [2].However, not
all hard problems are easy when one assumes random inputs (e.g., consider factoring
or the hidden clique problem, for both of which no such results are known in full
depth).

123

794 Algorithmica (2017) 78:788–818

2 Model and Preliminaries

Notation For an event E in a sample space, IP[E] denotes the probability of E hap-
pening. We say that an event E occurs with high probability, if IP[E] ≥ 1 − n−α , for
some constant α ≥ 1, where n usually denotes the number of vertices of the network
G to which E refers. We implicitly use the union bound to account for the occurrence
of more than one low probability events.
Instances A selfish routing instance is a tuple G = (G(V, E), (�e)e∈E , r), where
G(V, E) is an undirected network with a source s and a sink t , �e : IR≥0 → IR≥0 is a
non-decreasing latency function associated with each edge e, and r > 0 is the traffic
rate. A picturesque way to see the total traffic rate r in a large network of links is
that there are many infinitesimally small selfish users of total volume r that flow into
a large pipeline infrastructure. That is, users are considered as liquid molecules that
start to flow from node s through the available pipelines of the smallest latency, trying
to reach destination node t . We let P (or PG , whenever the network G is not clear
from the context) denote the (non-empty) set of simple s − t paths in G. For brevity,
we usually omit the latency functions, and refer to a selfish routing instance as (G, r).

We only consider linear latencies �e(x) = aex + be, with ae, be ≥ 0. These
encapsulate that the time delay (latency), on any edge a particular commuter decides
towalk, increaseswhen x other commuters also decide towalk along it, with a rate that
depends on the road specific characteristics ae, be.We restrict our attention to instances
where the coefficients ae and be are randomly selected from a pair of distributions A
and B. Following [5,6,36], we define:

Definition 1 We say that A and B are reasonable if:

1. A has bounded range [Amin, Amax] and B has bounded range [0, Bmax], where
Amin > 0 and Amax, Bmax are constants, i.e., they do not depend on r and |V |.

2. There is a closed interval IA of positive length, such that for every non-trivial
subinterval I ′ ⊆ IA, IPa∼A[a ∈ I ′] > 0.

3. There is a closed interval IB, 0 ∈ IB, of positive length, such that for every non-
trivial subinterval I ′ ⊆ IB, IPb∼B[b ∈ I ′] > 0. Moreover, for any constant η > 0,
there exists a constant δη > 0, such that IPb∼B[b ≤ η] ≥ δη.

Subnetworks Given a selfish routing instance (G(V, E), r), any subgraph H(V ′, E ′),
V ′ ⊆ V , E ′ ⊆ E , s, t ∈ V ′, obtained from G by edge and vertex removal, is a
subnetwork of G. H has the same source s and sink t as G, and the edges of H
have the same latencies as in G. Every instance (H(V ′, E ′), r), where H(V ′, E ′) is a
subnetwork of G(V, E), is a subinstance of (G(V, E), r).

Given a network G and a traffic rate r , there are exponentially many subnetworks,
each incurring its own common path latency. Therefore the problem of detecting the
particular subnetwork that achieves the minimum common path latency is a combina-
torial one with exponential worst case complexity.
Flows Given an instance (G, r), a (feasible) flow f is a non-negative vector 〈 fq : q ∈
P〉 indexed byP such that

∑
q∈P fq = r . That is, fq is the amount of flow routed from

s to t through the links of path q ∈ P . For a flow f , let fe = ∑
q:e∈q fq be the amount

of flow that f routes on edge e through all the paths that traverse e. That is, path flow
f induces the non-negative vector 〈 fe : e ∈ E〉 indexed by E . Two flows f and g are

123

Algorithmica (2017) 78:788–818 795

different if there is an edge e with fe �= ge. An edge e is used by flow f if fe > 0, and
a path q is used by f if mine∈q{ fe} > 0. We often write fq > 0 to denote that a path q
is used by f . Given a flow f , the latency of each edge e is �e(fe), the latency of each
path q is �q(f) = ∑

e∈q �e(fe), and the latency of f is L(f) = maxq: fq>0 �q(f).
We sometimes write LG(f) when the network G is not clear from the context. For an
instance (G(V, E), r) and a flow f , we let E f = {e ∈ E : fe > 0} be the set of edges
used by f , and G f (V, E f) be the corresponding subnetwork of G.

Our notation is based on the fact that each path flow 〈 fq : q ∈ P〉 induces a unique
edge flow 〈 fe : e ∈ E〉, see [29, Th. 2.2]. In general, the converse is not true since in
an edge flow it is possible to induce cycles with positive flow, see [29, Sect. 2.2.2].
But, in our case, all edges have strictly increasing latencies, therefore, in (or in a social
optimum flow) a Nash equilibrium it is not possible for a positive amount of flow to be
trapped in cycles. This nice observation allows us to conveniently interchange between
path and edge flows. This nice fact that Nash flows are acyclic and independent of
the particular flow decomposition is extensively and implicitly being used in recent
works, see for example in [38] Proposition 2.4 and the paragraph above it.
Nash Flow A flow f is a Nash (equilibrium) flow, if it routes all traffic on minimum
latency paths. Formally, f is a Nash flow if for every path q with fq > 0, and every
path q ′, �q(f) ≤ �q ′(f). Therefore, in a Nash flow f , all players incur a common
latency L(f) = minq �q(f) = maxq: fq>0 �q(f) on their paths. A Nash flow f on a
network G(V, E) is a Nash flow on any subnetwork G ′(V ′, E ′) of G with E f ⊆ E ′.

Every instance (G, r) admits at least one Nash flow, and the players’ latency is the
same for all Nash flows (see e.g., [32]). Hence, we let L(G, r) be the players’ latency
in some Nash flow of (G, r), and refer to it as the equilibrium latency of (G, r).
For linear latency functions, a Nash flow can be computed efficiently, in strongly
polynomial time, while for strictly increasing latencies, the Nash flow is essentially
unique (see e.g., [32]).
ε-Nash flow The definition of a Nash flow can be naturally generalized to that of an
“almost Nash” flow. Formally, for some ε > 0, a flow f is an ε-Nash flow if for every
path q with fq > 0, and every path q ′, �q(f) ≤ �q ′(f) + ε.
Best Subnetwork Braess’s paradox shows that there may be a subinstance (H, r) of an
instance (G, r) with L(H, r) < L(G, r) (see e.g., Fig. 1). The best subnetwork H∗
of (G, r) is a subnetwork of G with the minimum equilibrium latency, i.e., H∗ has
L(H∗, r) ≤ L(H, r) for any subnetwork H of G. In this work, we study the approx-
imability of theBest Subnetwork Equilibrium Latency problem, orBestSubEL in short.
In BestSubEL, we are given an instance (G, r), and seek for the best subnetwork H∗
of (G, r) and its equilibrium latency L(H∗, r).
Good Networks We restrict our attention to undirected s − t networks G(V, E). We
let n ≡ |V | and m ≡ |E |. For any vertex v, we let Γ (v) = {u ∈ V : {u, v} ∈ E}
denote the set of v’s neighbors in G. Similarly, for any non-empty S ⊆ V , we let
Γ (S) = ⋃

v∈S Γ (v)denote the set of neighbors of the vertices in S, and letG[S]denote
the subnetwork of G induced by S. For convenience, we let Vs ≡ Γ (s), Es ≡ {{s, u} :
u ∈ Vs}, Vt ≡ Γ (t), Et ≡ {{v, t} : v ∈ Vt }, and Vm ≡ V \ ({s, t} ∪ Vs ∪ Vt). We also
let ns = |Vs |, nt = |Vt |, n+ = max{ns, nt }, n− = min{ns, nt }, and nm = |Vm |. We
sometimes write V (G), n(G), Vs(G), ns(G), . . ., if G is not clear from the context.

123

796 Algorithmica (2017) 78:788–818

It is convenient to think that the network G has a layered structure consisting of s,
the set of s’s neighbors Vs , an “intermediate” subnetwork connecting the neighbors
of s to the neighbors of t , the set of t’s neighbors Vt , and t . Then, any s − t path starts
at s, visits some u ∈ Vs , proceeds either directly or through some vertices of Vm to
some v ∈ Vt , and finally reaches t .

Our layered graph construction above allows us to think that each path latency is
only contributed by the latency of the edge exiting s plus the edge latency entering to
t , while the remaining edges (those not touching s, t) of the path contribute 0 latency.
The main concern here is that a path, while exiting Vs and visiting vertices in Vm , is
possible to come back and visit again some vertex in u ∈ Vs . This bad scenario can
hurt our argument only if this path also sends positive flow back from u to s. In this
scenario however, a cycle appears, but, asmentioned above, it is known that an arbitrary
Nash equilibrium can be made acyclic with no increase of the common latency. The
idea is that a Nash equilibrium is the solution of a convex program and hence, we
can remove the flow trapped around a cycle (it important that it traverses edges with
strictly increasing latency functions, otherwise the removing of circulated flow would
not turn beneficial) without increasing any path latency. See for example the recent
work [33] below Proposition 2.3, or, for a detailed exhibition of this argument the nice
book of Patriksson [29, Sect. 2.2.2].

Thus, we refer to Gm ≡ G[Vs ∪ Vm ∪ Vt] as the intermediate subnetwork of G.
Depending on the structure of Gm , we say that:

– G is a random Gn,p network if (i) ns and nt follow the binomial distribution with
parameters n and p, and (ii) if any edge {u, v}, with u ∈ Vm ∪ Vs and v ∈ Vm ∪ Vt ,
exists independently with probability p. Namely, the intermediate network Gm is
an Erdös-Rényi random graph with n − 2 vertices and edge probability p, except
for the fact that there are no edges in G[Vs] and in G[Vt].

– G is internally bipartite if the intermediate network Gm is a bipartite graph with
independent sets Vs and Vt . G is internally complete bipartite if every neighbor
of s is directly connected by an edge to every neighbor of t .

– G is 0-latency simplified if it is internally complete bipartite and every edge e
connecting a neighbor of s to a neighbor of t has latency function �e(x) = 0.

Definition 2 The 0-latency simplification G0 of a given network G is a 0-latency
simplified network obtained from G by replacing G[Vm] with a set of 0-latency edges
directly connecting every neighbor of s to every neighbor of t . Moreover, we say that
a 0-latency simplified network G is balanced, if |ns − nt | ≤ 2n− .

Definition 3 We say that a network G(V, E) is (n, p, k)-good, for some integer n ≤
|V |, some probability p ∈ (0, 1), with pn = o(n), and some constant k ≥ 1, if G
satisfies that:

1. The maximum degree of G is at most 3np/2, i.e., for any v ∈ V , |Γ (v)| ≤ 3np/2.
2. G is an expander graph, namely, for any set S ⊆ V , |Γ (S)| ≥ min{np|S|, n}/2.
3. The edges of G have random reasonable latency functions distributed according

to A × B, and for any constant η > 0, IPb∼B[b ≤ η/ ln n] = ω(1/np).
4. If k > 1, we can compute in polynomial time a partitioning of Vm into k sets

V 1
m, . . . , V k

m , each of cardinality |Vm |/k, such that all the induced subnetworks

123

Algorithmica (2017) 78:788–818 797

G[{s, t} ∪ Vs ∪ V i
m ∪ Vt] are (n/k, p, 1)-good, with a possible violation of the

maximum degree bound by s and t .

In our text whenever we wish to give emphasis to these particular 4 properties above
that good networks posses, we explicitly use the term (n, p, k)-good networks. Our
assumption 3 above: IP[B ≤ η

log n] = ω(1
np), for constant η > 0, is equivalent to

the assumption in [5, Corollary 6 and Lemmata 7, 8] requiring that for any small
constant δ > 0, there are constants c > 1 and n0 > 0 such that for n > n0 to hold
IP[B ≤ δ

log n] ≥ c log n
np . Our assumption 3 also is in comparison to [5, Lemma 5], that

requires that for any small constant δ > 0, there are constants c > 1 and n0 > 0 such
that for n > n0 to hold IP[B ≤ δ

log n] ≥ 4
np . It is also helpful for the reader to see our

assumption 3 in comparison to [6, Sect. 1.2-1st paragraph] stating that if pn ≥ c log n
then the Gnp graph is an

(
α = 3

5np, β = 1
4

)
-expander. Therefore in the subsequent

paragraph in [6, Sect. 2.2-pp. 457] the 2nd bullet becomes IP[B ≤ δ
log n] > 20

3np .

Our assumption 2 above: ∀S ⊆ V it holds |Γ (S)| ≥ 1
2 min{np|S|, n} is more relaxed

than [5, Lemma 4] stating that for Gnp graphs with p ≥ c
log n whp ∀U ⊆ V it holds

that |Γ (U)| ≥ e−1
e min{np|U |, n}, since e−1

e > 1
2 . Our assumption 1 above: ∀u ∈ V

whp it holds Γ (u) ≤ 3
2np follows from a standard Chernoff bound. Our assumption

4 above: it is easy to see that it holds for Gnp graphs due to the fact that each edge
appears independently and hence each subset V ′ ⊆ V with |V ′| = n′ of a Gnp graph
behaves as Gn′ p.

If G is a random Gn,p network, with n sufficiently large and p ≥ ck ln n/n, for
some large enough constant c > 1, then G is an (n, p, k)-good network with high
probability (see e.g., [2]), provided that the latency functions satisfy condition (3)
above. As for condition (4), a random partitioning of Vm into k sets of cardinality
|Vm |/k satisfies (4) with high probability. Similarly, the random instances considered
in [5] are good with high probability. Also note that the 0-latency simplification of a
good network is balanced, due to (1) and (2).

3 The Approximation Scheme and Outline of the Analysis

In this section, we describe the main steps of the approximation scheme (see also
Algorithm 1), and give an outline of its analysis. We let ε > 0 be the approximation
guarantee, and assume that L(G, r) ≥ ε. Otherwise, any Nash flow of (G, r) suffices,
see step 1 of Algorithm 1.
Algorithm 1 is based on an approximation-preserving reduction of BestSubEL for a
good network G to BestSubEL for the 0-latency simplification G0 of G. The first step
of our approximation-preserving reduction is to show in Lemma 1 in Sect. 4 that the
equilibrium latency of the best subnetwork does not increase when we consider the
0-latency simplification G0 of a network G instead of G itself. Since decreasing the
edge latencies (e.g., decreasing l ′3(x) = 1 to l3(x) = 0 in Fig. 1a) may trigger Braess’s
paradox, we need Lemma 1, in Sect. 4, and its careful proof to make sure that zeroing
out the latency of the intermediate subnetwork does not cause an abrupt increase in
the equilibrium latency.

123

798 Algorithmica (2017) 78:788–818

Algorithm 1: Approximation Scheme for BestSubEL in Good Networks
Input: Good network G(V, E), rate r > 0, approximation guarantee ε > 0
Output: Subnetwork H of G and ε-Nash flow g in H with L(g) ≤ (1 + ε)L(H∗, r) + ε

if L(G, r) < ε, return G and a Nash flow of (G, r) ;1
create the 0-latency simplification G0 of G ;2
if r ≥ (Bmaxn+)/(εAmin), then let H0 = G0 and let f be a Nash flow of (G0, r) ;3
let H ≡ Gg ⊆ G the g-used subnetwork with g computed by Lemma 5 given H0 and f computed4

above ;
else, let H0 be the subnetwork and f the ε/6-Nash flow of Thm. 2 applied with error ε/6 ;5
let H ≡ Gg ⊆ G the g-used subnetwork with g computed by Lemma 6 given H0 and f computed6

above;
return the subnetwork H and the ε-Nash flow g ;7

Next, we focus on the 0-latency simplification G0 of G (Definition 2), see step 1
in Algorithm 1. We show that if the traffic rate is large enough, i.e., if r >

(Bmaxn+)/(εAmin), the paradox has a marginal influence on the equilibrium latency
and can be approximated in step 1 and 1 of Algorithm 1. In particular, in Sect. 6.3,
we first consider the Nash flow f on (G0, r) computed in strongly polynomial time.
Then, using Lemma 5 we “extend” f in poly(|V |) time to a corresponding flow g
on the g-used subgraph Gg of the random instance G. Flow g satisfies the s, t-link
capacity constraints imposed by f , while being the minimizer of a potential over
all G and, hence, g is a Nash flow on the remaining g-used subgraph Gg ⊆ G
(after discarding all the empty paths of G). Furthermore, if L(H∗) = ω(1) then g
approximates within (1 + ε + o(1)) the BestSubEL, and if L(H∗) = O(1) then g
approximates within (1 + 2ε + o(1)) the BestSubEL (Remark 2). On the other hand,
if r ≤ (Bmaxn+)/(εAmin) we work as step 5 and 6 of Algorithm 1. In Sect. 6.2 we use
[10, Theorem 3] restated as Theorem 2 here, and we obtain (within the time bounds
of this theorem) a subnetwork H0 and an ε/6-Nash flow f that comprise a good
approximate solution to BestSubEL for the simplified instance (G0, r). The next step
of our approximation-preserving reduction is to extend f to an approximate solution
to BestSubEL for the original instance (G, r). The intuition is that due to the expan-
sion and the reasonable latencies of G, any collection of 0-latency edges of H0 used
by f to route flow from Vs to Vt can be “simulated” by an appropriate collection of
low-latency paths of the intermediate subnetwork Gm of G. In fact, this observation
was the key step in the approach of [5,36] showing that Braess’s paradox occurs in
good networks with high probability. We first prove this claim for a small part of H0
consisting only of neighbors of s and neighbors of t with approximately the same
latency under f (see Lemma 5, the proof draws on ideas from [5, Lemma 5]). Then,
using a careful latency-based grouping of the neighbors of s and of the neighbors
of t in H0, we extend this claim to the entire H0 (see Lemma 6). Thus, we obtain a
subnetwork H of G and an ε-Nash flow g in H such that L(g) ≤ (1+ε)L(H∗, r)+ε

(step 6).

Theorem 1 Let G(V, E) be an (n, p, k)-good network (Definition 3), with k ≥ 1 is
a large enough constant.

123

Algorithmica (2017) 78:788–818 799

• Let r ≤ Bmaxn+
Aminε

be any traffic rate. Let H∗ be the best subnetwork of (G, r). Then,

for any ε > 0, Algorithm 1 computes in time n
O(r2 A2

max ln(n+)/ε2)
+ poly(|V |), a flow g

and a subnetwork H of G such that with high probability, wrt the random choice of
the latency functions, g is an ε-Nash flow of (H, r) and has common path latency
L(g) ≤ (1 + ε)L(H∗) + ε.
• Let r >

Bmaxn+
Aminε

be any traffic rate. Then, for any ε > 0, Algorithm 1 computes in
strongly polynomial time a subnetwork H of G such that with high probability, wrt the
random choice of the latency functions, g is an ε-Nash flow of (H, r) and has common
path latency L(g) ≤ (1 + 2ε + o(1))L(H∗).

By the definition of reasonable latencies, Amax is a constant. Also, by Lemma 2, r
affects the running time only if r = O(n+/ε). In fact, previouswork on selfish network
design assumes that r = O(1), see e.g., [32]. Thus, if r = O(1) (or more generally, if
r = O(poly(ln ln n))) and pn = O(poly(ln n)), in which case n+ = O(poly(ln n)),
Theorem1gives a randomizedpolynomial-time approximation scheme forBestSubEL
in good networks. Moreover, the running time is quasipolynomial for traffic rates up to
O(poly(ln n)) and average degrees up to o(n), i.e., for the entire range of p in [5,36].
The next sections are devoted to several lemmas and theorems that are useful and
combined together in Sects. 6.2 and 6.3 for achieving the corresponding approximation
for low and high values of r

4 Network Simplification

We first show that the equilibrium latency of the best subnetwork does not increase
when we consider the 0-latency simplification G0 of a network G instead of G itself.
We highlight that the following lemma holds not only for good networks, but also for
any network with linear latencies and with the layered structure described in Sect. 2.
Lemma 1 will be important in the proof of Lemmata 2-4, since we can work directly
in the 0-latency simplification G0 of G.

Lemma 1 Let G be any network, let r > 0 be any traffic rate, and let H be the best
subnetwork of (G, r). Then, there is a subnetwork H ′ of the 0-latency simplification
of H (and thus, a subnetwork of G0) with L(H ′, r) ≤ L(H, r).

Proof We assume that all the edges of H are used by the equilibrium flow f of (H, r)

(otherwise, we can remove all unused edges from H). The proof is constructive, and
at the conceptual level, proceeds in two parts.
1st Part Given the equilibrium flow f of the best subnetwork H of G, we construct
a simplification H1 of H that is internally bipartite and has constant latency edges
connectingΓ (s) toΓ (t). H1 also admits f as an equilibriumflow, and thus L(H1, r) =
L(H, r). We also show how to further simplify H1 so that its intermediate bipartite
subnetwork becomes acyclic.

To construct the simplification H1 of H , we let f be the equilibrium flow of H , and
let L ≡ L(H, r). For each ui ∈ Γ (s) and v j ∈ Γ (t), we let fi j = ∑

p=(s,ui ,...,v j ,t) f p

be the flow routed by f from ui to v j . The network H1 is obtained from H by replac-
ing the intermediate subnetwork of H with a bipartite subnetwork connecting Γ (s)

123

800 Algorithmica (2017) 78:788–818

s t

v1

v2

vk

u1

u2

uk

(a) f11

f12

f22

f23

fk1

fkk

s t

v1

v2

vk

u1

u2

uk

(b) f11 + fk1

f12 – fk1

f22 + fk1

f23 – fk1

fkk + fk1

Fig. 2 In awehave a cycleC = (u1, v2, u2, . . . , vk , uk , v1, u1) in the intermediate subnetwork H1[Γ (s)∪
Γ (t)]. We assume that fk1 is the minimum amount flow through an edge of C in the equilibrium flow f .
In b we have removed the edge ek1, and show the corresponding change in the amount of flow on the
remaining edges of C . Since the latency functions of the edges in C are constant, the change in the flow
does not affect equilibrium

and Γ (t) with constant latency edges. More specifically, instead of the intermediate
subnetwork of H , for each ui ∈ Γ (s) and v j ∈ Γ (t) with fi j > 0, we have an edge
{ui , v j } of constant latency bi j = L −(a{s,ui } f{s,ui } +b{s,ui })−(a{v j ,t} f{v j ,t} +b{v j ,t})
(the corresponding ai j is set to 0). If fi j = 0, ui and v j are not connected in H1. We
note that by construction, H1 admits f as an equilibrium flow, and thus L(H1, r) = L .

Furthermore, we modify H1 by deleting some edges from its intermediate sub-
network so that the induced bipartite subgraph H1[Γ (s) ∪ Γ (t)] becomes acyclic.
Therefore, in the resulting network, for each ui ∈ Γ (s) and each v j ∈ Γ (t), there
is at most one (s, ui , v j , t) path in H1. Hence, the resulting network admits a unique
equilibrium flow with a unique path decomposition.

To this end, let us assume that there is a cycle C = (u1, v2, u2, . . . , vk, uk, v1, u1)

in the intermediate subnetwork H1[Γ (s) ∪ Γ (t)]. We let ek1 = {uk, v1} be the edge
of C with the minimum amount of flow in f , and let fk1 be the flow through ek1 (see
also Fig. 2). Then, removing ek1, and updating the flows along the remaining edges
of C so that f ′

i i = fii + fk1, 1 ≤ i ≤ k, and f ′
i(i+1) = fi(i+1) − fk1, 1 ≤ i ≤ k − 1,

we “break” the cycle C , by eliminating the flow in ek1, and obtain a new equilibrium
flow f ′ of the same rate r and with the same latency L as that of f . Applying this
procedure repeatedly to all cycles, we end up with an internally bipartite network H1
with an acyclic intermediate subnetwork that includes constant latency edges only.
Moreover, H1 admits an equilibrium flow f of latency L . This concludes the first part
of the proof.
2nd Part The second part of the proof is to show that we can either remove some of
the intermediate edges of H1 or zero their latencies, and obtain a subnetwork H ′ of
the 0-latency simplification of H with L(H ′, r) ≤ L(H, r). To this end, we describe
a procedure where in each step, we either remove some intermediate edge of H1 or
zero its latency, without increasing the latency of the equilibrium flow.

Let us focus on an edge ekl = {uk, vl} connecting a neighbor uk of s to a neighbor
vl of t . By the first part of the proof, the latency function of ekl is a constant bkl > 0.
Next, we attempt to set the latency of ekl to b′

kl = 0. We have also to change the
equilibrium flow f to a new flow f ′ that is an equilibrium flow of latency at most L
in the modified network with b′

kl = 0. We should be careful when changing f to f ′,
since increasing the flow through {s, uk} and {vl , t} affects the latency of all s − t paths
going through uk and vl and may destroy the equilibrium property (or even increase

123

Algorithmica (2017) 78:788–818 801

the equilibrium latency). In what follows, we let rq be the amount of flow moving
from an s − t path q = (s, ui , v j , t) to the path qkl = (s, uk, vl , t) when we change f
to f ′. We note that rq may be negative, in which case, |rq | units of flow actually move
from qkl to q. Thus, rq ’s define a rerouting of f to a new flow f ′, with f ′

q = fq − rq ,
for any s − t path q other than qkl , and f ′

kl = fkl + ∑
q rq .

We next show how to compute rq ’s so that f ′ is an equilibrium flow of cost at most
L in the modified network (where we attempt to set b′

kl = 0). We let P = PH1 \ {qkl}
denote the set of all s − t paths in H1 other than qkl . We let F be the |P| × |P| matrix,
indexed by the paths q ∈ P , where F[q1, q2] = ∑

e∈q1∩q2 ae − ∑
e∈q1∩qkl

ae, and let
r be the vector of rq ’s. Then, the q-th component of Fr is equal to �q(f) − �q(f ′). In
the following, we consider two cases depending on whether F is singular or not.

If matrix F is non-singular, the linear system Fr = ε 1 has a unique solution rε, for
any ε > 0. Moreover, due to linearity, for any α ≥ 0, the unique solution of the system
Fr = α ε 1 is α rε. Therefore, for an appropriately small ε > 0, the linear system
Qε = {Fr = ε 1, fq − rq ≥ 0 ∀q ∈ P, fkl + ∑

q rq ≥ 0, �qkl (f ′) ≤ L + bkl − ε}
admits a unique solution r. We keep increasing ε until one of the inequalities of Qε

becomes tight. If it first becomes rq = fq for some path q = (s, ui , v j , t) ∈ P ,
we remove the edge {ui , v j } from H1 and adjust the constant latency of ekl so that
�qkl (f ′) = L−ε. Then, the flow f ′ is an equilibriumflow of cost L−ε for the resulting
network, which has one edge less than the original network H1. If

∑
q rq < 0 and

it first becomes
∑

q rq = − fkl , we remove the edge ekl from H1. Then, f ′ is an
equilibrium flow of cost L − ε for the resulting network, which again has one edge
less than H1. If

∑
q rq > 0 and it first becomes �qkl (f ′) = L + bkl − ε, we set the

constant latency of the edge ekl to b′
kl = 0. In this case, f ′ is an equilibrium flow of

cost L −ε for the resulting network that has one edge of 0 latency more than the initial
network H1.

If F is singular, proceeding similarly, we compute rp’s so that f ′ is an equilibrium
flow of cost L in a modified network that includes one edge less than the original
network H1. When F if singular, the homogeneous linear system Fr = 0 admits a
nontrivial solution r �= 0. Moreover, due to linearity, for any α ∈ IR, α r is also a
solution to Fr = 0. Therefore, the linear system Q0 = {Fr = 0, f p − rp ≥ 0 ∀p ∈
P, fkl +∑

p rp ≥ 0} admits a solution r �= 0 that makes at least one of the inequalities

tight and has �qkl (f ′) ≤ L + bkl .
1 We recall that the p-th component of Fr is equal

to �p(f) − �p(f ′). Therefore, for the flow f ′ obtained from the particular solution
r of Q0, the latency of any path p ∈ P is equal to L . If r is such that rp = f p for
some path p = (s, ui , v j , t) ∈ P , we remove the edge {ui , v j } from H1 and adjust the
constant latency of ekl so that �qkl (f ′) = L . Then, the flow f ′ is an equilibrium flow
of cost L for the resulting network, which has one edge less than the original network
H1. If r is such that

∑
p rp = − fkl , we remove the edge ekl from H1. Then, f ′ is an

equilibrium flow of cost L for the resulting network, which again has one edge less

1 If the direction of a solution r0 gives increase to �qkl (f ′) then, because of linearity, the direction of −r0
decreases it. So we can assume that we can hit one of the constraints and have �qkl (f ′) ≤ L + bkl (e.g. by
choosing the direction that decreases �qkl (f ′)). Note that in both directions of r0 and −r0 we are bounded
by one of the constraints because, in any direction, either some rq would be increasing and fq − rq ≥ 0
will be bounding us, or all rq ’s would be decreasing and fkl + ∑

q rq ≥ 0 will be bounding us.

123

802 Algorithmica (2017) 78:788–818

than H1. Moreover, we can show (see Property 1 below) that if qkl is disjoint from
the paths q ∈ P , the fact that the intermediate network H1 is acyclic implies that the
matrix F is positive definite, and thus non-singular. Therefore, if qkl is disjoint from
the paths in P , the procedure above leads to a decrease in the equilibrium latency, and
eventually to setting b′

kl = 0. So, by repeatedly applying these steps, we end up with
a subnetwork H ′ of the 0-latency simplification of H with L(H ′, r) ≤ L(H, r). ��
Property 1 If the path pkl is disjoint to the paths p ∈ P , the matrix F is positive
definite, and thus non-singular.

Proof We first note that if pkl is disjoint to all p ∈ P , then for all p1, p2 ∈ P ,
F[p1, p2] = ∑

e∈p1∩p2 ae. Hence, for all x ∈ IR|P |, xTFx = ∑
e∈E(P) aex2e ≥ 0,

where E(P) denotes the set of edges included in the paths of P and xe = ∑
p:e∈p x p.

Since the intermediate network of H1 is acyclic and any flow in H1 has a unique path
decomposition, if x has one or more non-zero components, there is at least one edge e
adjacent to either s or t such that xe > 0, and thus xTFx > 0. Otherwise, the difference
of the flow defined by xwith the trivial flow defined by 0 would indicate the existence
of a cycle in the intermediate subnetwork of H1. This is a contradiction, since by the
first part of the proof, the intermediate part of H1 is acyclic. ��

5 Approximating the Best Subnetwork of Simplified Networks

We proceed to show in Theorem 2 how to approximate the BestSubEL problem in a
balanced 0-latency simplified network G0 with reasonable latencies. We may always
regard G0 as the 0-latency simplification of a good network G. Before proving this
theorem,wefirst prove two useful lemmas, that is, Lemma2 about themaximum traffic
rate r up to which BestSubEL remains interesting, and Lemma 3 about the maximum
amount of flow routed on any edge/path in the best subnetwork. The combination
of these two lemmas readily yields the proof of Lemma 4, concluding that the best
subnetwork of any simplified instance (G0, r) routes O(1) units of flow on any used
edge and on any used path. This is the “missing tile” for finally proving Theorem 2.

Lemma 2 Let G0 be any 0-latency simplified network, let r > 0, and let H∗
0 be the best

subnetwork of (G0, r). For any ε > 0, if r >
Bmaxn+
Aminε

, then L(G0, r) ≤ (1+ε)L(H∗
0 , r).

Proof Weassume that r >
Bmaxn+
Aminε

, let f be aNash flowof (G0, r), and consider how f
allocates r units of flow to the edges of Es ≡ Es(G0) and to the edges Et ≡ Et (G0).
For simplicity, we let L ≡ L(G0, r) denote the equilibrium latency of G0, and let
As = ∑

e∈Es
1/ae and At = ∑

e∈Et
1/ae.

Since G0 is a 0-latency simplified network and f is a Nash flow of (G0, r), there
are L1, L2 > 0, with L1 + L2 = L , such that all used edges incident to s (resp. to
t) have latency L1 (resp. L2) in the Nash flow f . Since we assume arbitrarily small
constant 0 < ε < 1, then r >

Bmaxn+
Amin

, L1, L2 > Bmax and all edges in Es ∪ Et are
used by f .

A useful property is that ∃e ∈ Es with ae fe ≤ r/As and similarly, ∃e ∈ Et with
ae fe ≤ r/At . To reach a contradiction, assume this is not true: ∀e ∈ Es it holds

123

Algorithmica (2017) 78:788–818 803

fe > r
ae As

and: ∀e ∈ Et it holds fe > r
ae At

. But, this contradicts the total r of

the s-links flow, since r = ∑
e∈Es

fe >
∑

e∈Es
r

ae As
= r

As

∑
e∈Es

1
ae

= r
As

As = r
(similar is the omitted contradiction for r on the t-links). Since all s-links with positive
flow must have equal edge latency L1, due to this particular s-link e, it follows that
L1 = ae fe +be ≤ r/As +be ≤ r/As + Bmax. Similarly, since all t-links with positive
flow must have equal edge latency L2, due to this particular t-link e, it follows that
L2 = ae fe + be ≤ r/At + be ≤ r/At + Bmax. Thus,

L = L1 + L2 ≤
(

r

As
+ r

At

)

+ 2Bmax (1)

On the other hand, consider the best subnetwork H∗
0 with Nash common path latency

L(H∗
0 , r) and hence, with cost r × L(H∗

0 , r). Let O PT the cost of the optimum2 flow
on H∗

0 , which by definition it holds

r L(H∗
0 , r) ≥ O PT

Note that O PT is at least the cost O PT ′ of separately assigning optimally the flow r
on s-links (considered as parallel links), plus, the cost of separately assigning the flow
r on t-links (considered as parallel links). Because we optimize the same objective∑

e∈Es∪Et
xe(ae ·xe +be) consisting only of the s, t-links (since the intermediary links

have 0-latency) without imposing the flow constraints for the intermediary paths of
H∗
0 that connect Γ (s) to Γ (t). In symbols:

O PT ≥ O PT ′ ≡ min

⎧
⎨

⎩

∑

e∈Es∪Et

xe(ae · xe + be)

⎫
⎬

⎭

s.t.
∑

e∈Es

xe = r,
∑

e∈Et

xe = r (2)

In turn, O PT ′ is at least the cost O PT ′′ of the optimum flow assignment as above,
but, assuming now that each s, t-link e has be = 0. This holds because we change the
objective C ′(x) = ∑

e∈Es∪Et
xe(ae · xe + be) of O PT ′ into the objective C ′′(x) =∑

e∈Es∪Et
xe(ae · xe) of O PT ′′, which trivially gives better solution, since ∀x it holds

C ′(x) ≥ C ′′(x). In symbols:

O PT ′ ≥ O PT ′′ ≡ min

⎧
⎨

⎩

∑

e∈Es∪Et

xe(ae · xe)

⎫
⎬

⎭

= min

⎧
⎨

⎩

∑

e∈Es

xe(ae · xe) +
∑

e∈Et

xe(ae · xe)

⎫
⎬

⎭

s.t.
∑

e∈Es

xe = r,
∑

e∈Et

xe = r (3)

2 Recall Sect. 1, paragraphPrevious Work, that for the optimum cost, we compute the flow X that minimizes
the total latency cost C(X) = ∑

e∈E(H∗
0) xe(ae · xe + be) incurred by all users on network H∗

0 wrt flow X .

123

804 Algorithmica (2017) 78:788–818

But, this O PT ′′ is an instance of affine parallel s-links (similarly, t-links) and the
optimal load ∀e ∈ Es is oe = r

ae As
(similarly, for the t-links, oe = r

ae At
), inducing

optimum cost per s-link oe�e(oe) = r
ae As

ae
r

ae As
= r

ae As

r
As

and cost over all s-links
∑

e∈Es
r

ae As

r
As

= r r
As
. Similarly, we get for the t-links the optimum cost is r r

At
.

Therefore O PT ′′ = r
(

r
As

+ r
At

)
. The above series of inequalities establish that:

r L(H∗
0 , r) ≥ O PT ≥ O PT ′ ≥ O PT ′′ = r

(
r

As
+ r

At

)

which readily implies that

L(H∗
0 , r) ≥

(
r

As
+ r

At

)

(4)

otherwise the Nash flow on H∗
0 would improve the cost of the optimum flow on

H∗
0 , a contradiction. Now, recall our assumption that r >

Bmaxn+
Aminε

and note also that

As = ∑
e∈Es

1
ae

≤ ∑
e∈Es

1
Amin

= ns
1

Amin
and similarly that At ≤ nt

1
Amin

. Plugging
these into the above inequality, we get:

L(H∗
0 , r) ≥ r

As
+ r

At
≥ Bmaxns

Aminε
Amin
ns

+ Bmaxnt
Aminε

Amin
nt

≥ 2Bmax/ε, (5)

therefore 2Bmax ≤ εL(H∗
0 , r). Plugging this and (17) into (1) we conclude:

L ≤ (1 + ε)L(H∗
0 , r)

��
We proceed to show that in a 0-latency simplified instance (G0, r), the best subnet-

work Nash flow routes O(r/n+) units of flow on any edge and on any s − t path with
high probability (where the probability is with respect to the random choice of the
latency function coefficients). Intuitively, we show that in the best subnetwork Nash
flow, with high probability, all used edges and all used s − t paths route a volume of
flow not significantly larger than their fair share.We first prove the following technical
lemma. Recall that we assume below that L(G0, r) ≥ ε, because otherwise it becomes
trivial to ε-approximate the BestSubEL problem.

Lemma 3 Given a random instance G and total flow r, let the balanced 0-latency
simplified network G0 and the Nash flow on (G0, r) with common path latency
L(G0, r) ≥ ε > 0. Then the Nash flow of the best subnetwork H∗

0 of G0 whp3

induces edge load ≤ 24Amaxr
δε Aminn+ on each edge, with δε > 0 a constant that depends on

ε > 0 and the reasonable input distribution of Definition 1(3).

3 With probability at least 1 − e−δεn−/8.

123

Algorithmica (2017) 78:788–818 805

Proof Given a random instanceG andflow r > 0 construct the the 0-latency simplified
networkG0 ofG. That is,G0 consists of the random snapshot of s-links and t-links that
are realized in random instance G. Also G0 contains the construction of the complete
bipartite subnetwork that connects with 0-latency links each neighbor of s to all the
neighbors of t .We let L ≡ L(G0, r) ≥ ε > 0 denote the unknown equilibrium latency
and g denote a Nash flow of the original instance (G0, r). We wish to bound L whp
as a function of the given total flow r . Since G0 is a 0-latency simplified network and
g is a Nash flow of (G0, r), there are L1, L2 > 0, with L1 + L2 = L , such that:
(i) for any edge e incident to s, if be < L1, ge > 0 and aege + be = L1, while ge = 0,
otherwise,
(ii) for any edge e incident to t , if be < L2, ge > 0 and aege +be = L2, while ge = 0,
otherwise.
Namely, all used edges incident to s (resp. to t) have latency L1 (resp. L2) in the Nash
flow g. Wlog., we assume that L1 ≥ L2, and thus, L1 ≥ L/2 ≥ ε/2.

Inequality (6) below gives the lower bound L
4Amax

on the load of each random s-
link e that has the nice random property be ≤ ε/4. Let e be any edge incident to s
with be ≤ ε/4. By the discussion above, in the Nash flow g of (G0, r), ge > 0 and
aege + be = L1. Using that L1 ≥ L/2 ≥ ε/2, we obtain that:

L1 = aege + be ≤ aege + ε/4 ⇒ ge ≥ L1 − ε/4

ae
≥ L1

2ae
≥ L

4Amax
(6)

In the sequel, a Chernoff bound (e.g., [13, (7)]) establishes that whp there are at least
δεns/2 such s-links with the property of ≥ L

4Amax
load per link, for an appropriate

constant δε > 0 that depends on ε > 0 and Definition 1(3). In particular, from
Definition 1(3), there exists a constant δε > 0 such that IP[B ≤ ε/4] ≥ δε and
Chernoff bounds yield:

IP[|{e ∈ Es(G0) with be ≤ ε/4}| ≥ δεns/2] ≥ 1 − e−δεns/8 (7)

Therefore the total of accumulated load on these s-links whp is at least δεns/2× L
4Amax

,

which, of course is upper bounded by our fixed total flow r , that is, δεns L
8Amax

≤ r . Solving
this wrt L , gives:

L ≤ 8Amaxr

δεns
≤ 24Amaxr

δεn+
(8)

The last inequality holds because G0 is balanced, and |ns − nt | ≤ 2n−.
To conclude the proof, observe that in the equilibriumflow f of the best subnetwork

H∗
0 of G0, no used s, t-link e has edge latency greater than the common path latency

L of g on G0, which is bounded as in (8). Therefore, for any used edge e incident to
either s or t , it holds:

ae fe + be ≤ L ⇒ fe ≤ L

ae
≤ L

Amin
≤ 24Amax

δε Amin
× r

n+
(9)

123

806 Algorithmica (2017) 78:788–818

where the last inequality follows from (8). Moreover, any edge e in the intermediate
subnetwork of G has fe ≤ L/Amin due to the flow conservation constraints. ��
Remark 1 Lemma 2 shows that the interesting case for the paradox is for r ≤ Bmaxn+

Aminε
,

in this case we combine Lemma 4 and Theorem 2 below and finally proceed to approx-
imate the best subnetwork in Sect. 6.2. On the other hand, if r >

Bmaxn+
Aminε

we combine
the ideas of Lemma 2 and Lemma 3 and proceed to approximate the best subnetwork
in Sect. 6.3.

Lemma 4 Given a random instance G and total flow 0 < r ≤ Bmaxn+
Aminε

, let the balanced
0-latency simplified network G0 and the Nash flow on (G0, r) with common path
latency L(G0, r) ≥ ε > 0. Then the Nash flow of the best subnetwork H∗

0 of G0 whp7

induces edge load � ≤ 24AmaxBmax
δε A2

minε
on each edge, with δε > 0 a constant that depends

on ε > 0 and the reasonable distribution of Definition 1(3).

Proof Recall that we assume above that L(G0, r) ≥ ε, because otherwise it becomes
trivial to ε-approximate the BestSubEL problem. Moreover, by Definition 1(3) of
reasonable latency functions, we have that for any constant ε > 0, there is a constant
δε > 0, such that IP[B ≤ ε/4] ≥ δε. Combining these with Lemmas 2 and 3, we
obtain Lemma 4. ��
So from now on, we can assume, with high probability and wlog., that the Nash flow
in the best subnetwork of any simplified instance (G0, r) routes O(1) units of flow on
any used edge and on any used path.
Approximating the Best Subnetwork of Simplified Networks We proceed to derive an
approximation scheme for the best subnetwork of any simplified instance (G0, r).

Theorem 2 Let G0 be a balanced 0-latency simplified network of a random instance G
with reasonable latencies and let the total rate 0 < r ≤ Bmaxn+

Aminε
. Let H∗

0 be the best sub-

network of (G0, r). Then, for any ε > 0, we can compute, in time n
O(A2

maxr2 ln(n+)/ε2)
+ ,

a flow f and a subnetwork H0 ⊆ G0 consisting of the edges used by f , such that (i)
f is an ε-Nash flow of (H0, r), (ii) L(f) ≤ L(H∗

0 , r) + ε/2, and (iii) there exists a
constant 0 < � ≤ 24AmaxBmax

δε A2
minε

, such that fe ≤ � + ε, for all e.

Theorem 2 is a corollary of [10, Theorem 3] (depicted as Theorem 3 below), since in
our case the number of different s − t paths is at most n2+ and each path consists of 3
edges. So, in [10, Theorem 3], we have d1 = 2, d2 = 0, α = Amax, and the error is
ε/r . Moreover, we know from Lemma 4 above that any Nash flow g of (H∗

0 , r) routes
ge ≤ � units of flow on any edge e, and that in the exhaustive search step, in the proof
of [10, Theorem 3], one of the acceptable flows f has |ge − fe| ≤ ε, for all edges
e (see also [10, Lemma 3]). Thus, there is an acceptable flow f with fe ≤ � + ε,
for all edges e. In fact, if among all acceptable flows enumerated in the proof of [10,
Theorem 3], we keep the acceptable flow f that minimizes the maximum amount flow
routed on any edge, we have that fe ≤ � + ε, for all edges e.

Theorem 3 Let G = (G(V, E), (aex + be)e∈E , 1) be an instance with linear latency
functions, let α = maxe∈E {ae}, and let H B be the best subnetwork of G. For some

123

Algorithmica (2017) 78:788–818 807

constants d1, d2, let |P| ≤ md1 and |p| ≤ logd2 m, for all p ∈ P . Then, for any ε > 0,
we can compute in time

mO(d1α2 log2d2+1(2m)/ε2)

a flow f̃ that is an ε-Nash flow on G f̃ and satisfies �p(f̃) ≤ L(H B) + ε/2, for all
paths p in G f̃ .

6 Extending the Solution to the Good Network

First, in Sect. 6.2, we consider sufficiently low values of r and given a good instance
(G, r), we create the 0-latency simplification G0 of G, and using Theorem 2, we
compute a subnetwork H0 and an ε/6-Nash flow f that comprise an approximate
solution to BestSubEL for (G0, r). Next, we show how to extend f to an approximate
solution to BestSubEL for the original instance (G, r). The intuition of this extension
is that the 0-latency edges of H0 used by f to route flow from Vs to Vt can be
“simulated” by low-latency u-v paths of Gm , for any u ∈ Vs and v ∈ Vt . In Sect.
6.1 and particularly in Lemma 5, we formalize this intuition for the subnetwork of G
induced by the neighbors of s with (almost) the same latency Bs and the neighbors
of t with (almost) the same latency Bt , for some Bs , Bt with Bs + Bt ≈ L(f). We
may think of the networks G and H0 in the Lemma 5 below as some small parts of the
original network G and of the actual subnetwork H0 of G0. Thus, we obtain Lemma 5,
the building block for proving the more general Lemma 6 in Sect. 6.2, that helps to
match the neighbors of s of almost equal s-link latency to the corresponding neighbors
of t of almost equal t-link latency.

Finally, in Sect. 6.3, we show how to compute in strongly polynomial time a sub-
network G ′ ⊆ G that approximates the best subnework.

6.1 Bounding the Latency of the Intermediary Paths for Any r > 0

Lemma 5 Let instance (G, r) with G an (n, p, 1)-good network (Definition 3) with
the relaxed degree bound n+ ≤ 3knp/2, for some constant k > 0 and let r > 0
be any traffic rate. Assume that ∃Bs, Bt ≥ 0 : ∀e ∈ Es ⇒ �e(x) = Bs and ∀e ∈
Et ⇒ �e(x) = Bt . Consider the 0-latency simplification G0 of G. Let any H0 ⊆ G0
endowed with a flow f on (H0, r) that satisfies an edge load bound 0 < ρ′ ≤ r , that
is, ∀e ∈ E(H0) : fe > 0 ⇒ fe ≤ ρ′.
Then, for any constant ε1 > 0, whp we can compute in time poly(|V |) a subnetwork
G ′ ⊆ G and a flow g on (G ′, r) with the properties:

1. Es(G ′) = {e ∈ Es(H0) : fe > 0} and Et (G ′) = {e ∈ Et (H0) : fe > 0}.
2. ∀e ∈ Es(G ′) ∪ Et (G ′) ⇒ ge = fe > 0.
3. Em(G ′) = {e ∈ Em(G) : ge > 0}.
4. Flow g can be regarded as a Nash flow on G ′ for any pair u ∈ Vs(G ′) and

v ∈ Vt (G ′) connected by g-used paths.

123

808 Algorithmica (2017) 78:788–818

5. Each g-used path q = (s, u, . . . , v, t) in G ′ has s-t path latency:

�q(g) ≤ Bs + Bt + 6ε1 + ρ′ 8Amax

Pb(ε1)

[
2

np

(

1 + 6k

Pb
(

ε1
ln n

)

)

+ 9kp

2Pb(ε1)

]

= Bs + Bt + 6ε1 + ρ′ × o(1)

Proof We will construct G ′ as the subnetwork Gg containing only the edges that
receive positive load by the flow g computed below. Therefore property (3) above will
be satisfied by our construction. For each e ∈ Es ∪ Et , we set the capacity constraint
ge = fe. Therefore the flow g satisfies property (1) above by construction, that is,
Es(G ′), Et (G ′) contain only the s, t-links that have positive load wrt f .
We compute the extension of g through Gm as an “almost” Nash flow in the modified
version G ′ of G, where each edge e ∈ Es ∪ Et has the capacity constraint ge = fe,
therefore property (2) above is satisfied as well. Also, we set the constant latency
�e(x) = Bs , if e ∈ Es , and �e(x) = Bt , if e ∈ Et . All other edges e of G have no
capacity constraint and have (randomly chosen) reasonable latency function �e(x).
We let g be the flow of rate r that respects the capacities of the edges in Es ∪ Et , and
minimizes Pot(g) = ∑

e∈E

∫ ge
0 �e(x)dx . Such a flow g can be computed in strongly

polynomial time (see e.g., [37]). The subnetwork G ′ of G is simply Gg , namely, the
subnetwork that includes only the edges that receive positive flow by g. It could have
been that g is not a Nash flow of (G, r), due to the capacity constraints on the edges
of Es ∪ Et . However, since g is a minimizer of Pot(g), for any u ∈ Vs(G ′) and
v ∈ Vt (G ′), and any pair of s − t paths q, q ′ going through u and v, if gq > 0, then 4

�q(g) ≤ �q ′(g). Thus, g can be regarded as a Nash flow for any pair u ∈ Vs(G ′) and
v ∈ Vt (G ′) connected by g-used paths, which proves property (4) above.
It remains to prove property (5) above that upper bounds the path latency of any
g-used path. Towards this, we adjust the proof of [5, Lemma 5] in Proposition 1
below. To prove this, we let p = (s, u, . . . , v, t) be the s − t path used by g that
maximizes �p(g). We show the existence of a path p′ = (s, u, . . . , v, t) in G of
latency �p′(g) ≤ Bs + Bt + 6ε1 + ρ′ × o(1). Therefore, since g is a minimizer of
Pot(g), the latency of the maximum latency g-used path p, and thus the latency of any
other g-used s − t path, is at most Bs + Bt + 6ε1 + ρ′ × o(1).

Proposition 1 For any s-t path q used by g it holds �q(g) ≤ Bs +Bt +6ε1+ρ′×o(1).

Proof Let p = (s, u, . . . , v, t) be the s − t path used by g that maximizes �p(g).
To show the existence of a path p′ = (s, u, . . . , v, t) in G of latency �p′(g) ≤ Bs +
Bt + 6ε1 + ρ′ × o(1), we start from S0 = {u} and grow a sequence of vertex sets
S0 ⊆ S1 ⊆ · · · ⊆ Si∗ , stopping when |Γ (Si∗)| ≥ 3n/5 for the first time. We use the

4 This holds because the flow travelling from u to v inside G faces no capacities. For this flow and the
edges used by it in G, a new minimization problem similar to the one above could be defined. The objective
would be the same and the flows other the one going from u to v would be handled as constants. A solution
to this problem could be used to minimize the initial objective and that’s why the initial problem returns a
solution that solves also the new problem, which in turn has an equilibrium flow as a solution.

123

Algorithmica (2017) 78:788–818 809

expansion properties of G, and condition (3), on the distribution of B, in the definition
of good networks, and show that these sets grow exponentially fast, and thus, i∗ ≤ ln n,
with high probability. Moreover, we show that there are edges of latency ε1 + o(1)
from S0 = {u} to each vertex of S1, and edges of latency ε1/ ln n + o(1/ ln n) from
Si to each vertex of Si+1, for all i = 1, . . . , i∗ − 1. To see this, the intuition is that if
among the edges e incident to Vs ∪ Vt , we keep only those with be ≤ ε1, and among
all the remaining edges e, we keep only those with be ≤ ε1/ ln n, then due to condition
(3) on the distribution of B, a good network G remains an expander. Thus, there is a
path of latency at most 2ε1 + o(1) from u to each vertex of Si∗ . Similarly, we start
from T0 = {v} and grow a sequence of vertex sets T0 ⊆ T1 ⊆ · · · ⊆ Tj∗ , stopping
when |Γ (Tj∗)| ≥ 3n/5 for the first time. By exactly the same reasoning, we establish
the existence of a path of latency at most 2ε1 + o(1) from each vertex of Tj∗ to v.
Finally, since |Γ (Si∗)| ≥ 3n/5 and |Γ (Tj∗)| ≥ 3n/5, the neighborhoods of Si∗ and
Tj∗ contain at least n/10 vertices in common. With high probability, most of these
vertices can be reached from Si∗ and from Tj∗ using edges of latency ε1+o(1). Putting
everything together, we find a u − v path (in fact, many of them) of length O(ln n)

and latency at most 6ε1 + o(1) ≤ 7ε1.
For completeness, we next give a detailed proof, by adjusting the arguments in the

proof of [5, Lemma 5]. For convenience, for each vertex x , we let ds(x) (resp. dt (x))
be the latency wrt g of the shortest latency path from s to x (resp. from x to t). Also,
for any δ > 0, we let Pb(δ) ≡ IP[B ≤ δ] denote the probability that the additive
term of a reasonable latency is at most δ. Recall also that by hypothesis, there exists a
constant ρ′ > 0, such that for all e ∈ E(H0), fe ≤ ρ′. Hence, the total flow through
G (and through H0) is r ≤ ρ′n+.

At the conceptual level, the proof proceeds as explained above. We start with S0 =
{u}. By hypothesis, the flow entering u is at most ρ′. By the expansion property of good
networks and byChernoff bounds,5 with high probability, there are at least Pb(ε1)np/4
edges e adjacent to u with be ≤ ε1. At most half of these edges have flow greater than

8ρ′
Pb(ε1)np , thus there are at least Pb(ε1)np/8 edges adjacent to u with latency, wrt g, less

than 8Amaxρ
′

Pb(ε1)np +ε1.We now let d1 = Bs + 8Amaxρ
′

Pb(ε1)np +ε1 and S1 = {x ∈ V : ds(x) ≤ d1}.
By the discussion above, |S1| ≥ Pb(ε1)np/8.

We now inductively define a sequence of vertex sets Si and upper bounds di on the
latency of the vertices in Si from s, such that Si ⊆ Si+1 and di < di+1. This sequence
stops the first time that |Γ (Si)| ≥ 3n/5. We inductively assume that the vertex set
Si and the upper bound di on the latency of the vertices in Si are defined, and that
|Γ (Si)| < 3n/5. By the expansion property of good networks |Γ (Si)\Si | ≥ np|Si |/3,
for sufficiently large n. Thus, with probability at least 1 − ePb(ε1/ ln n)np|Si |/24, there
are at least Pb(

ε1
ln n)np|Si |/6 vertices outside Si that are connected to a vertex in Si by

an edge e with be ≤ ε1/ ln n. Let S′
i be the set of such vertices, and let Ei be the set

of edges that for each vertex v ∈ S′
i , includes a unique edge e ∈ Ei with be ≤ ε1/ ln n

connecting v to a vertex in Si . Since the flow g may be assumed to be acyclic, a volume

5 We repeatedly use the following form of the Chernoff bound (see e.g., [13]): Let X1, . . . , Xk be random
variables independently distributed in {0, 1}, and let X = ∑k

i=1 Xi . Then, for all ε ∈ (0, 1), IP[X <

(1 − ε)IE[X]] ≤ e−ε2 IE[X]/2, where e is the basis of natural logarithms.

123

810 Algorithmica (2017) 78:788–818

r ≤ ρ′n+ of flow is routed through the cut (Si , V \ Si). Then, at most half of the edges
in Ei have flow greater than 2ρ′n+/|S′

i |. Consequently, at least half of the vertices
v ∈ S′

i have latency from s:

ds(x) ≤ di + ε1

ln n
+ Amax

2ρ′n+
|S′

i |
≤ di + ε1

ln n
+ 12Amaxρ

′n+
Pb(

ε1
ln n)np|Si |

Thus, we define the next latency upper bound di+1 in the sequence as:

di+1 = di + ε1

ln n
+ 12Amaxρ

′n+
Pb(

ε1
ln n)np|Si | ,

and we let Si+1 = {x ∈ V (G)|ds(x) ≤ di+1}. By the discussion above, and using the
inductive definition of Si ’s, we obtain that:

|Si+1| ≥
(

1
12 Pb(ε1/ ln n)np + 1

)
|Si |

≥
(

1
12 Pb(ε1/ ln n)np + 1

)i |S1|

We recall that i∗ is the first index i such that |Γ (Si)| ≥ 3n/5. Then, the inequality
above implies that:

i∗ ≤ ln (3n/(5|S1|))
ln

(1
12 Pb(ε1/ ln n)np + 1

) ≤ ln (24n/(5Pb(ε1)np))

ln
(1
12 Pb(ε1/ ln n)np + 1

)

Using that pn ≥ ln n and that Pb(ε1/ ln n)np = ω(1), the inequality above implies
that i∗ ≤ ln n, for sufficiently large n.

Therefore, we obtain an upper bound on the latency from s of any vertex in Si∗ :

di∗ ≤ d0 + i∗ ε1

ln n
+

i∗∑

i=1

12Amaxρ
′n+

Pb(
ε1
ln n)np|Si |

≤ d1 + ε1

ln n
ln n +

ln n∑

i=1

12Amaxρ
′n+

Pb(
ε1
ln n)np

(1
12 Pb(

ε1
ln n)np + 1

)i |S1|

= d1 + ε1 + 12Amaxρ
′n+

Pb(
ε1
ln n)np|S1|

ln n∑

i=1

(1
12 Pb(

ε1
ln n)np + 1

)−i

≤
(

Bs + 8Amaxρ
′

Pb(ε1)np
+ ε1

)

+ ε1 + 96Amaxρ
′n+

Pb
(

ε1
ln n

)
Pb(ε1)(np)2

∞∑

i=1

2−i

≤ Bs + 2ε1 + 8Amaxρ
′

Pb(ε1)np
+ 144Amaxρ

′k
Pb

(
ε1
ln n

)
Pb(ε1)np

123

Algorithmica (2017) 78:788–818 811

For the penultimate inequality, we use that Pb(ε1/ ln n)np = ω(1), which implies that
1+ Pb(ε1/ ln n)np/12 ≥ 2, for n sufficiently large. For the last inequality, we use that
n+ ≤ 3knp/2, for some constant k > 0, by hypothesis.

Moreover, we observe that probability that the above construction fails is at most:

i∗∑

i=1

e−Pb(ε1/ ln n)np|Si |/24 ≤
i∗∑

i=1

e
−

(
1
12 Pb(ε1/ ln n)np+1

)i |S1|/24

≤ ln n e
−

(
1
12 Pb(ε1/ ln n)np+1

)
Pb(ε1)np/192

Therefore, the construction above succeeds with high probability.
Similarly, we start from T0 = {v}, and inductively define a sequence of vertex sets

T0 ⊆ T1 ⊆ · · · ⊆ Tj∗ , and a sequence of upper bounds d ′
0 < d ′

1 < · · · < d ′
j∗ on the

latency from t of the vertices in each Tj . We let Tj = {x ∈ V (G)|dt (x) ≤ d ′
j }. The

sequence stops as soon as |Γ (Tj)| ≥ 3n/5 for the first time. Namely, j∗ is the first
index with |Γ (Tj∗)| ≥ 3n/5. Using exactly the same arguments, we can show that
with high probability, we have that j∗ ≤ ln n, and that:

d ′
j∗ ≤ Bt + 2ε1 + 8Amaxρ

′

Pb(ε1)np
+ 144Amaxρ

′k
Pb

(
ε1
ln n

)
Pb(ε1)np

Wlog., we assume that Si∗ ∩ Tj∗ = ∅. Since |Γ (Si∗)|+ |Γ (Tj∗)| ≥ 6n/5, there are
at least n/10 edge disjoint paths of length at most 2 between Si∗ and Tj∗ . Furthermore,
by Chernoff bounds, with high probability, there are at least Pb(ε1)

2n/12 such paths
with both edges e on the path having be ≤ ε1. At most half of these paths have flow

more than 2 12ρ′n+
Pb(ε1)2n

and thus there is a path from a vertex of Si∗ to a vertex of Tj∗ that

costs at most 2ε1 + 2Amax
24ρ′n+
Pb(ε1)2n

.

Putting everything together, we have that there is a path p′ that starts from s, moves
to u, goes through vertices of the sequence S1, . . . , Si∗ , proceeds to a vertex ofΓ (Si∗)∩
Γ (Tj∗), and from there, continues through vertices of the sequence Tj∗ , . . . , T1, until
finally reaches v, and then t . The latency of this path is:

�p′(g) ≤ Bs + Bt + 6ε1 + 2

(
8Amaxρ

′

Pb(ε1)np
+ 48Amaxρ

′k
Pb(

ε1
ln n)Pb(ε1)np

)

+ 48Amaxρ
′n+

Pb(ε1)2n

We recall that since the flow g is a minimizer of Pot(g), for any g-used path
q = (s, u, . . . , v, t), �q(g) ≤ �p′(g). Thus we obtain that any g-used path q =
(s, u, . . . , v, t) has latency

�q(g) ≤ Bs + Bt + 6ε1 + 2

(
8Amaxρ

′

Pb(ε1)np
+ 48Amaxρ

′k
Pb(

ε1
ln n)Pb(ε1)np

)

+ 48Amaxρ
′n+

Pb(ε1)2n

= Bs + Bt + 6ε1 + ρ′ 8Amax

Pb(ε1)

[
2

np

(
1 + 6k

Pb(
ε1
ln n)

)
+ 9kp

2Pb(ε1)

]

123

812 Algorithmica (2017) 78:788–818

= Bs + Bt + 6ε1 + ρ′ × Θ(1)

[

O

(
1

np

)

+ O

(
1

npPb(
ε1
ln n)

)

+ O(1)p

]

= Bs + Bt + 6ε1 + ρ′ × o(1) (10)

In the above asymptotic expressions we used the assumption of Lemma 5 that n+/n =
max{ns, nt }/n ≤ 3kp/2, for constant k > 0. We also used in the Definition 3 of good
networks the condition (3) that Pb(ε1/ ln n)np = ω(1).Wealso used in theDefinition 1
of reasonable latency coefficients the condition (3) that for any constant ε1 > 0 there
exists a constant δε1 > 0 such that Pb(ε1) ≥ δε1 . Finally, we used in the Definition 3
of good networks that pn = o(n) ⇒ p = o(1) and pn = Ω(log n). ��

We conclude that the flow g satisfies property (5) of Lemma 5 by Proposition 1 proved
above in (10). ��

Corollary 1 If ρ′ = O(1) in (10) then ∀ε1 > 0 ⇒ �q(g) ≤ Bs + Bt + 7ε1, for each
g-used path in (10). Thus, g is an 7ε1-NE, ∀ε1 > 0.

6.2 Approximating the Best Subnetwork When r ≤ Bmaxn+
Aminε

Grouping the Neighbors of s and t Let us now consider the entire random instance G
and the best subnetwork H∗

0 of G0 (recall, G0 is the 0-latency simplification of G, see
Definition 2) and f ∗ the corresponding NE flow on H∗

0 . A subtle issue of Lemma 5
is that it applies only to subsets of s-links in Es(H∗

0) and t-links in Et (H∗
0) that have

(almost) the same s, t-link latency (recall the role of Bs, Bt in Lemma 5) under the
given NE flow f ∗ in H∗

0 . But, unlike G0, now H∗
0 need not be internally complete

bipartite, therefore may exist neighbors of s (resp. t) connected to disjoint subsets of
Vt (resp. of Vs) in H∗

0 , and thus have quite different s, t-link latency. Hence, to apply
Lemma 5, we partition the neighbors of s and the neighbors of t into an at most a
constant number of classes V i

s and V j
t according to their latency. For convenience,

we let ε2 = ε/6 and apply Theorem 2. By Theorem 2 there is an acceptable flow f ,
determined by exhaustive search within the time bound of this theorem, and a network
H0 containing only the f -used paths, which is an ε2-Nash flow on H0 and induces a
path latency L ≡ L H0(f). By Theorem 2, applied with error ε2 = ε/6, there exists a
constant � such that 0 < � ≤ 24AmaxBmax

δε A2
minε

(where this bound on � holds by Lemma 4),

where for all e ∈ E(H0), 0 < fe ≤ � + ε2. The highest latency wrt f of an s-link,
plus the highest latency of an t-link upper bounds the latency of any s-t path used by
f in H0. Thus, using the error ε2 = ε/6 above, we can define in (11) the following
constants κ,L, k that will be useful in the sequel:

L ≡ L H0(f) ≤ 2Amax(� + ε2) + 2Bmax ≤ 2Amax

(
24AmaxBmax

δε A2
minε

+ ε/6

)

+ 2Bmax = L

123

Algorithmica (2017) 78:788–818 813

κ = �L/ε2� = �6L/ε�

0 ≤ k ≤ κ2 =

⎡

⎢
⎢
⎢
⎢
⎢

12
Amax

(
24AmaxBmax

δε A2
minε

+ ε/6

)

+ Bmax

ε

⎤

⎥
⎥
⎥
⎥
⎥

2

(11)

Note that constantL in (11) above is independent of the particular value that r takes and
independent of f ∗, f . Recall (11) and partition the interval [0,L] of the possible s, t-
link latency values into the constant number κ = �L/ε2� = �6L/ε� of subintervals,
where the i-th subinterval is I i = (iε2, (i + 1)ε2], i = 0, . . . , κ − 1. Once more κ is
independent of the particular value that r takes and independent of f ∗, f . We partition
the vertices of Vs (resp. of Vt) that receive positive flow by f into the same constant
number κ of classes V i

s (resp. V i
t), i = 0, . . . , κ − 1. Precisely, a vertex x ∈ Vs (resp.

x ∈ Vt), connected to s (resp. to t) by the edge ex = {s, x} (resp. ex = {x, t}), is in
the class V i

s (resp. in the class V i
t), if �ex (fex) ∈ Ii . If a vertex x ∈ Vs (resp. x ∈ Vt)

does not receive any flow from f , x is removed from G and does not belong to any
class. Hence, from now on, we assume that all neighbors of s and t receive positive
flow from f , and that V 0

s , . . . V κ−1
s (resp. V 0

t , . . . , V κ−1
t) is a partitioning of Vs (resp.

Vt). In exactly the same way, we partition the edges of Es (resp. of Et) used by f into
the same constant number κ of classes Ei

s (resp. Ei
t), i = 0, . . . , κ − 1.

Tofindoutwhichparts of H0 will be connected through the intermediate subnetwork
of G, using the construction of Lemma 5, we further classify the vertices of V i

s and

V j
t based on the neighbors of t and on the neighbors of s, respectively, to which they

are connected by f -used edges in the subnetwork H0. In particular, a vertex u ∈ V i
s

belongs to the classes V (i, j)
s , for all j , 0 ≤ j ≤ κ − 1, such that there is a vertex

v ∈ V j
t with f{u,v} > 0. Similarly, a vertex v ∈ V j

t belongs to the classes V (i, j)
t , for

all i , 0 ≤ i ≤ κ − 1, such that there is a vertex u ∈ V i
s with f{u,v} > 0. A vertex

u ∈ V i
s (resp. v ∈ V j

t) may belong to many different classes V (i, j)
s (resp. to V (i, j)

t),

and that the class V (i, j)
s is non-empty iff the class V (i, j)

t is non-empty. We let k ≤ κ2

in (11) to be the number of pairs (i, j) for which V (i, j)
s and V (i, j)

t are non-empty. We
note that k is bounded above by constant κ2 that does not depend on |V |, r, f, f ∗. In
particular, the flow f at hand determines k which, by virtue of Theorem 2, the f at
hand is the best outcome flow via deterministic exhaustive search over all acceptable
flows. We let E (i, j)

s be the set of edges connecting s to the vertices in V (i, j)
s and E (i, j)

t

be the set of edges connecting t to the vertices in V (i, j)
t . We conclude that, when f is

handed, the above construction of all the corresponding subsets takes time bounded
by κ2 in (11).
Building the Intermediate Subnetworks of G The last step is to replace the 0-latency
simplified parts connecting the vertices of each pair of classes V (i, j)

s and V (i, j)
t in H0

with a subnetwork of Gm . We partition, as in condition (4) of Definition 3 of good
networks, the set Vm of intermediate vertices of G into k subsets, each of cardinality
|Vm |/k, and associate a different such subset V (i, j)

m with any pair of non-empty classes
V (i, j)

s and V (i, j)
t . For each pair (i, j) for which the classes V (i, j)

s and V (i, j)
t are non-

123

814 Algorithmica (2017) 78:788–818

empty, we consider the induced subnetwork G(i, j) ≡ G[{s, t} ∪ V (i, j)
s ∪ V (i, j)

m ∪
V (i, j)

t], which is an (n/k, p, 1)-good network, since G is an (n, p, k)-good network.
Therefore, we can apply Lemma 5 to G(i, j), with H (i, j)

0 ≡ H0[{s, t} ∪ V (i, j)
s ∪ V (i, j)

t]
in the role of H0, the restriction f (i, j) of f to H (i, j)

0 in the role of the flow f , and
since ρ′ = � + ε2 = O(1) we can apply, in particular, Corollary 1. Moreover, we let
B(i, j)

s = max
e∈E (i, j)

s
�e(fe) and B(i, j)

t = max
e∈E (i, j)

t
�e(fe) correspond to Bs and Bt ,

and introduce constant latencies �′
e(x) = B(i, j)

s for all e ∈ E (i, j)
s and �′

e(x) = B(i, j)
t

for all e ∈ E (i, j)
t , as required by Lemma 5. Thus, we obtain, with high probability, a

subnetwork H (i, j) of G(i, j) and a flow g(i, j) that routes as much flow as f (i, j) on all
edges of E (i, j)

s ∪ E (i, j)
t , and satisfies the conclusion of Lemma 5, if we keep in H (i, j)

the constant latencies �′
e(x) for all e ∈ E (i, j)

s ∪ E (i, j)
t .

The final outcome is the union of the subnetworks H (i, j), denoted H (H has the
latency functions of the original instance G), and the union of the flows g(i, j), denoted
g, where the union is taken over all k pairs (i, j) for which the classes V (i, j)

s and V (i, j)
t

are non-empty. By construction, all edges of H are used by g. Using the properties of
the construction above, we can show that if ε1 = ε/42 and ε2 = ε/6, the flow g is an
ε-Nash flow of (H, r), and satisfies L H (g) ≤ L H0(f) + ε/2. Thus, we obtain:

Lemma 6 Fix any ε > 0 and set constant k = κ2 as in (11). Let (G, r) with G a
(n, p, k)-good network (Definition 3) and arbitrary r : 0 < r ≤ Bmaxn+

Aminε
. Consider by

Theorem 2 an acceptable (ε/6)-Nash flow f and the subnetwork H0 ⊆ G0 used by f
which satisfies: ∀e ∈ E(H0) ⇒ 0 < fe ≤ �+ε/6, with constant 0 < � ≤ 24AmaxBmax

δε A2
minε

.

Then whp6 we can compute in poly(|V |) time a subnetwork H ⊆ G and an ε-Nash
flow g of (H, r) with L H (g) ≤ L H0(f) + ε/2.

Proof We consider the subnetwork H (with the original latency functions of G),
computed as the union of subnetworks H (i, j), and the flow g, computed as the union
of the flows g(i, j), where the union is taken over all k pairs (i, j) for which the classes
V (i, j)

s and V (i, j)
t are non-empty.We recall that by construction, all edges of H are used

by g. We show that if ε1 = ε/42 and ε2 = ε/6, the flow g is an ε-Nash flow of (H, r),
and satisfies L H (g) ≤ L H0(f) + ε/2. We stress that the edge and path latencies here
are calculated with respect to the original latency functions of G and under the edge
congestion induced by the flow g (or the flow f).

For convenience, we let B(i, j) = B(i, j)
s + B(i, j)

t for any pair of non-empty classes
V (i, j)

s and V (i, j)
t . Since the difference in the latency of any edges in the same group is

at most ε2, we obtain that for any edge e ∈ E (i, j)
s , B(i, j)

s − ε2 ≤ �e(fe) ≤ B(i, j)
s , and

similarly, that for any edge e ∈ E (i, j)
t , B(i, j)

t − ε2 ≤ �e(fe) ≤ B(i, j)
t . Therefore, since

H0 is a 0-latency simplified network, and since by hypothesis, all the edges of H0 are
used by f , for any pair of non-empty classes V (i, j)

s and V (i, j)
t , and for any s − t path

p going through a vertex of V (i, j)
s and a vertex of V (i, j)

t ,

B(i, j) − 2ε2 ≤ �p(f) ≤ B(i, j)

6 wrt. the random choice of the latency functions of G.

123

Algorithmica (2017) 78:788–818 815

Moreover, since f is an ε2-Nash flow of (H0, r), for any s − t path p ∈ PH0 ,

L H0(f) − ε2 ≤ �p(f) ≤ L H0(f)

Combining the two inequalities above, we obtain that for any pair of non-empty classes
V (i, j)

s and V (i, j)
t ,

B(i, j) − 2ε2 ≤ L H0(f) ≤ B(i, j) + ε2 (12)

As for the flow g, by construction, we have that ge = fe for all edges e ∈ Es ∪ Et .
Therefore, for any edge e ∈ E (i, j)

s , B(i, j)
s − ε2 ≤ �e(ge) ≤ B(i, j)

s , and similarly,
for any edge e ∈ E (i, j)

t , B(i, j)
t − ε2 ≤ �e(ge) ≤ B(i, j)

t . Thus, by Lemma 5 and its
Corollary 1, and since all the edges of any subnetwork H (i, j) are used by g, for any
s − t path p in the subnetwork H (i, j), B(i, j) − 2ε2 ≤ �p(g) ≤ B(i, j) + 7ε1. Using
(12), we obtain that for any subnetwork H (i, j) and any s − t path p of H (i, j),

L H0(f) − 3ε2 ≤ �p(g) ≤ L H0(f) + 2ε2 + 7ε1 (13)

Furthermore, we recall that the subnetworks H (i, j) only have in common the ver-
tices s and t , and possibly some vertices of Vs ∪ Vt and some edges of Es ∪ Et . They
have neither any other vertices in common, nor any edges connecting vertices in the
intermediate parts of different subnetworks H (i, j) and H (i ′, j ′). Hence, any s − t path p
of H passes through a single subnetwork H (i, j). Therefore, and since by construction,
all the edges and the paths of H are used by g, (13) holds for any s − t path p of H .

Thus, we have shown that g is a (5ε2+7ε1)-Nash flow of (H, r), and that L H (g) ≤
L H0(f) + 2ε2 + 7ε1. Using ε2 = ε/6 and ε1 = ε/42, we obtain the performance
guarantees of g as stated in Lemma 6. ��

6.3 Approximating the Best Subnetwork When r >
Bmaxn+
Aminε

In Lemma 2 we have proved that: for an arbitrary net G at hand, if G0 denotes the
0-latency simplified network (Definition 2) of G the Nash flow f can be computed in
strongly polynomial time (see e.g., [37]) on (G0, r) and there are L1, L2 > 0, with
L1 + L2 = L , such that all used edges incident to s (resp. to t) have latency L1 (resp.
L2) in the Nash flow f . Since r >

Bmaxn+
Amin

then L1, L2 > Bmax and all edges in Es ∪ Et

are used by f . In particular, recall here (1) that the common path latency of the NE of
G0 is

L(G0, r) = L1 + L2 ≤
(

r

As
+ r

At

)

+ 2Bmax (14)

Also, in Lemma 2 we have proved that the common edge latency L1 of loaded s-links
is L1 ≤ r

As
+ Bmax. From this, we derive that the upper bound ρ′ used in the property

(5) of Lemma 5 on the load of any s-link e, satisfies:

123

816 Algorithmica (2017) 78:788–818

Aminρ
′ = L1 ≤ r

As
+ Bmax ⇒ ρ′ ≤

(
r

As
+ Bmax

)
1

Amin
(15)

which bounds the flow traversed by any loaded path departing from a u ∈ Γ (G0) and
arriving at a u ∈ Γ (G0). By the NE flow f on (G0, r) all the loaded s-links have
equal latency L1 and all the loaded t-links have equal latency L2, therefore we can
plug f into Lemma 5 and compute in poly|V | time a flow g and a subnetwork G ′ ⊆ G
that satisfies properties (1-5) of Lemma 5. In particular, g is a NE on the subnetwork
G ′ = Gg that contains all g-used paths, where each g-used path has latency as in
property (5) of Lemma 5, that is, for any constant ε1 > 0:

L(G ′, r) ≤ L1 + L2 + 6ε1 + ρ′ × o(1) ≤
(

r

As
+ r

At

)

+ 2Bmax + 6ε1 + ρ′ × o(1)

≤
(

r

As
+ r

At

)

+ 2Bmax + 6ε1 +
(

r

As
+ Bmax

)
1

Amin
× o(1) (16)

where above we have plugged the ρ′ in (15). The expression in (16) will be useful
bellow, when divided by the common path latency L(H∗, r) of the best subnetwork
H∗ ⊆ G and derive the approximation ratio of our algorithm 1. Towards this, in
Lemma 2 we have proved that the best subnetwork H∗

0 ⊆ G of the 0-latency simpli-
fication of our initial graph G has a common path latency L(H∗

0 , r) at least:

L(H∗, r) ≥ L(H∗
0 , r) ≥

(
r

As
+ r

At

)

>> 1 (17)

In particular, by virtue of our Lemma 1, the expression in (17) is a lower bound of the
common path latency L(H∗, r) of the best subnetwork of the original G. We should
stress here that we assume that this expression is >> 1, since we refer to very high
values of total rate r that loads all s, t-links thus inducing high common path latency.
Otherwise, if the common path latency is O(1), our previous analysis in Sect. 6.2
applies as is. We conclude that, if we consider the ratio of (16) and (17), then for any
positive constant ε1 > 0, our approximation ratio for computing an ε-NE is at most:

L(G ′, r)

L(H∗, r)
≤

(
r
As

+ r
At

)
+ 2Bmax + 6ε1 +

(
r
As

+ Bmax

)
1

Amin
× o(1)

(
r
As

+ r
At

)

≤ 1 + ε + 6ε1
(

r
As

+ r
At

) +
(

r
As

+ Bmax

)

(
r
As

+ r
At

)
Amin

× o(1)

≤ 1 + ε + o(ε1) +
(

r
As

+ r
At

)

(
r
As

+ r
At

)
Amin

× o(1) + Bmax
(

r
As

+ r
At

)
Amin

× o(1)

123

Algorithmica (2017) 78:788–818 817

= 1 + ε + o(ε1) + o(1)

Amin
+ ε

2Amin
× o(1)

= 1 + ε + o(ε1) + o(1) ⇒
L(G ′, r) ≤ (1 + ε + o(ε1) + o(1))L(H∗, r) = (1 + ε + o(1))L(H∗, r) (18)

To derive (18), we have used the following bounds. From the 1st line to 2nd line we
used that: 2Bmax(

r
As

+ r
At

) ≤ ε, proved in (5). From the 2nd line to 3rd line we used that:

r
As

<
(

r
As

+ r
At

)
and that

(
r
As

+ r
At

)
>> 1 that we assumed in (17) because we

study the case of high values of r . From the 3rd line to 4th line, we recall the bound
used in 1st to 2nd line, to obtain: Bmax(

r
As

+ r
At

) ≤ ε/2. From the 4th line to 5th line we used

that: 1
Amin

= Ω(1), see assumption (1) of the reasonable coefficients in Definition 1.

Remark 2 We can also relax the assumption that
(

r
As

+ r
At

)
>> 1 and obtain a

slightly weaker approximation ratio than in (18). In particular, recall 2Bmax(
r

As
+ r

At

) ≤ ε,

proved in (5) that yields in the 2nd line of (18) that term 6ε1(
r

As
+ r

At

) ≤ 3ε1ε
Bmax

< ε,∀ε1 <

Bmax
3 . Thus, in a scenario that

(
r
As

+ r
At

)
= Ω(1) then ∀ε1 : 0 < ε1 < Bmax

3 we get

L(G ′, r) ≤ (1 + 2ε + o(1))L(H∗, r).

7 Open Problem

Once more we highlight that the reduction itself runs in polynomial time. The time
consuming step is the application of [10, Theorem 3] to the 0-latency simplified net-
work. Since such networks have only polynomially many (and very short) s − t paths,
they escape the hardness result of [33]. The (improved) approximability of the best
subnetwork for 0-latency simplified networks is an intriguing open problem arising
from our work.

References

1. Althöfer, I.: On sparse approximations to randomized strategies and convex combinations. Linear
Algebra Appl. 99, 339–355 (1994)

2. Bollobás, B.: Random Graphs, 2nd Edition Cambridge Studies in Advanced Mathematics, vol. 3.
Cambridge University Press, Cambridge (2001)

3. Braess, D.: Über ein paradox aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)
4. Cheeseman, P., Kanefsky, B., Taylor,W.:Where the really hard problems are. IJCAI 1, 331–337 (1991)
5. Chung, F., Young, S.J.: Braess’s paradox in large sparse graphs. In: Proceedings of the 6th Workshop

on Internet and Network Economics (WINE ’10), LNCS, vol. 6484, pp. 194–208 (2010)
6. Chung, F., Young, S.J., Zhao, W.: Braess’s paradox in expanders. Random Struct. Algorithms 41(4),

451–468 (2012)
7. Cole, R., Dodis, Y., Roughgarden, T.: How much can taxes help selfish routing? J. Comput. Syst. Sci.

72(3), 444–467 (2006)
8. Duffin, R.J.: Topology of serries-parallel networks. J. Math. Anal. Appl. 10, 303–318 (1965)

123

818 Algorithmica (2017) 78:788–818

9. Erdos, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61
(1960)

10. Fotakis, D., Kaporis, A.C., Spirakis, P.G.: Efficient methods for selfish network design. Theor. Comput.
Sci. 448, 9–20 (2012)

11. Franco, J.: Results related to threshold phenomena research in satisfiability: lower bounds. Theor.
Comput. Sci. 265, 147–157 (2001)

12. Friedman, E.: Genericity and congestion control in selfish routing. In: 43rd IEEE Conference on
Decision and Control, pp. 4667–4672 (2004)

13. Hagerup, T., Rüb, C.: A guided tour of Chernoff bounds. Inf. Process. Lett. 33(6), 305–308 (1990)
14. Johnson, D.: The NP-completeness column: an ongoing guide. J. Algorithms 5(2), 284–299 (1984)
15. Johnson, D., Aragon, C., McGeoch, L., Shevon, C.: Optimization by simulated annealing: an experi-

mental evaluation. Oper. Res. 37(6), 865–892 (1989)
16. Karp, R.: Combinatorics, complexity, and randomness (turing award lecture). Commun. ACM 29(2),

98–109 (1989)
17. Kelly, F.: The Princeton companion to mathematics. In: Gowers, T., Green, J., Leader, I. (eds.) The

Mathematics of Traffic in Networks. Princeton University Press, Princeton (2008)
18. Kirkpatrick, S., Selman, B.: Critical behavior in the satisfiability of random Boolean expressions.

Science 264, 1297–1301 (1994)
19. Lin, H.C., Roughgarden, T., Tardos, É., Walkover, A.: Stronger bounds on Braess’s paradox and the

maximum latency of selfish routing. SIAM J. Discrete Math. 25(4), 1667–1686 (2011)
20. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proceedings of

the 4th ACM Conference on Electronic Commerce (EC ’03), pp. 36–41 (2003)
21. Lipton, R.J., Young, N.E.: Simple strategies for large zero-sum games with applications to complexity

theory. In: Proceedings of the 26th ACM symposium on theory of computing (STOC ’94), pp. 734–740
(1994)

22. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability prob-
lems. Science 297, 812–815 (2002)

23. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distribution of SAT problems. In: Proceeings
of 10th National Conference on Artificial Intelligence (AAAI ’92), pp. 459–465

24. Milchtaich, I.: Network topology and the efficiency of equilibrium. Games Econ. Behav. 57, 321–346
(2006)

25. Morris, P.: The breakthrough method for escaping local minima. AAAI 6, 40-45 (1993)
26. Murchland, J.D.: Braess’s paradox of traffic flow. Transp. Res. 4, 391–394 (1970)
27. Nagurney, A., Boyce, D.: Preface to “on a paradox of traffic planning”. Transp. Sci. 39(4), 443–445

(2005)
28. Pas, E.I., Principio, S.L.: Braess’s paradox: some new insights. Transp. Res. Part B 31(3), 265–276

(1997)
29. Patriksson, M.: The Traffic Assignment Problem—Models and Methods. Linköping Institute of Tech-

nology, Linköping (1991)
30. Roughgarden, T.: Selfish Routing. Ph.D dissertation, Cornell Univ., USA, May (2002). http://theory.

stanford.edu/~tim/
31. Roughgarden, T.: Stackelberg scheduling strategies. SIAM J. Comput. 33(2), 332–350 (2004)
32. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT press, Cambridge, MA (2005)
33. Roughgarden, T.: On the severity of braess’s paradox: designing networks for selfish users is hard. J.

Comput. Syst. Sci. 72(5), 922–953 (2006)
34. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing. DIMACS 26, 521–

532 (1993)
35. Steinberg, R., Zangwill, W.I.: The prevalence of Braess’ paradox. Transp. Sci. 17(3), 301–318 (1983)
36. Valiant, G., Roughgarden, T.: Braess’s paradox in large random graphs. Random Struct. Algorithms

37(4), 495–515 (2010)
37. Végh, L.A.: Strongly polynomial algorithm for a class of minimum-cost flow problems with separable

convex objectives. In: Proceedings of the 44th ACMSymposium on Theory of Computing (STOC ’12),
pp. 27–40 (2012)

38. International Competition and Symposium on Satisfiability Testing, Beijing ’96, Beijing, China,March
15–17 (1996)

39. 2nd Dimacs Implementation Challenge. In: Johnson, D., Trick, M. (eds.) Dimacs Series in Discrete
Mathematics and TCS, 26(4), AMS (1996). http://dimacs.rutgers.edu/Volumes/Vol26.html

123

http://theory.stanford.edu/~tim/
http://theory.stanford.edu/~tim/
http://dimacs.rutgers.edu/Volumes/Vol26.html

	Resolving Braess's Paradox in Random Networks
	Abstract
	1 Introduction
	2 Model and Preliminaries
	3 The Approximation Scheme and Outline of the Analysis
	4 Network Simplification
	5 Approximating the Best Subnetwork of Simplified Networks
	6 Extending the Solution to the Good Network
	6.1 Bounding the Latency of the Intermediary Paths for Any r>0
	6.2 Approximating the Best Subnetwork When r leqBmaxn+Aminε
	6.3 Approximating the Best Subnetwork When r > Bmaxn+Aminε

	7 Open Problem
	References

