
Node Max-Cut and Computing Equilibria
in Linear Weighted Congestion Games.

Dimitris Fotakis∗ Vardis Kandiros∗ Thanasis Lianeas∗ Nikos Mouzakis∗

Panagiotis Patsilinakos∗ Stratis Skoulakis∗

Abstract

Computing an equilibrium of a game is of central interest in Algorithmic Game Theory. For
(atomic) Congestion Games, computing a pure Nash equilibrium (PNE) is PLS-complete for
the general case, while for single-commodity Network Congestion Games computing the PNE
that minimizes the potential function reduces to a min-cost flow computation [8]. We study the
complexity of computing a PNE in Weighted Congestion Games with affine and linear delays,
where O(1)-approximate Nash equilibria can be computed in polynomial time [4] and the only
known PLS-hardness results follow from those for unweighted Congestion Games.

We first show that it is PLS-complete to compute a PNE even in single-commodity Weighted
Network Congestion Games on series-parallel networks with linear latencies, a result indicating
that equilibrium computation for Weighted Congestion Games can be significantly more difficult
than their unweighted counterparts. Note that for unweighted Congestion Games on single-
commodity series parallel networks with general latency functions, a PNE can be computed
by a simple greedy algorithm. For that reduction, we use exponential coefficients on the linear
latency functions. To investigate the impact of weighted players only, we restrict the game
so that the linear latencies can only have polynomial coefficients. We show that it is PLS-
complete to compute a PNE in Weighted Network Congestion Games with all edges having
the identity function. For the latter, none of the known PLS-complete problems seems as a
natural initial problem for the reduction. Hence, we consider the problem of finding a maximal
cut in NodeMaxCut, a natural special case of MaxCut where the weights of the edges are the
product of the weights of their endpoints. Via an involved reduction, we show that NodeMaxCut
is PLS-complete, so that we can use it as our initial problem. The result and the reduction
themselves are of independent interest and they may have more implications in proving other
complexity results related to PLS.

1 Introduction
Among the strongest notions in Game Theory is that of a Nash equilibrium. Although its existence
is always guaranteed in normal form games if mixed strategies are allowed, its computation is more
often inefficient than efficient. This is true even if the game admits a potential function and any
improving step by a player reduces the value of the potential, in which case we additionally know
that a Nash equilibrium on pure strategies always exists. In such potential games, a pure Nash
equilibrium (or simply equilibrium) can be computed by letting the players one by one play their
best response, until they eventually reach an equilibrium, which of course may take exponentially

∗National Technical University of Athens: {fotakis,vkandiros,lianeas,nmouzakis,patsilinak,sskoul}@corelab.ntua.gr

1

ar
X

iv
:1

91
1.

08
70

4v
1

 [
cs

.C
C

]
 2

0
N

ov
 2

01
9

many steps. In a sense, the described best response dynamics is equivalent to searching for an
extremum by doing local improving steps.

Polynomial Local Search (PLS) is a complexity class defined by Johnson et al. [16] to capture
the difficulty of certain search problems. It consists of problems that admit local search heuristics
that are guaranteed to converge to a local optimum, like the problem of finding an equilibrium in
potential games described above. There are many natural complete problems for PLS (see, e.g.,
Michiels et al. [17] for a survey) many of which are or can be regarded as the problem of computing
an equilibrium in a potential game. That said, PLS fully captures the difficulty of such problems.
Complete problems particularly relevant to this work are LocalMaxCut and CircuitFlip which
we will describe later, and the problem of computing an equilibrium in Congestion Games.

Congestion Games (CGs) are one of the most widely studied classes of games in Algorithmic
Game Theory. In CGs players compete over resources trying to minimize their costs. More precisely,
there exists a set of resources E and the strategy of each selfish agent is a subset of resources
si ∈ 2E that she selects. The cost of each agent i for a given strategy vector s = (si, s−i) is the
cumulative congestion on the each resources that she selects to use. More precisely, the cost of
agent i is Ci(xi, x−i) = ∑

e∈si
`e(xe), where xe is the number of agents participating in resource e

and `e(x) is latency function of resource e. Usually agents are not allowed to select any subset of
resources. The permitted subsets may differ from agent to agent and are denoted by Si ⊆ 2E . The
case where all the Si’s are the same set is referred as Symmetric CGs.

Congestion Games are of interest not only due to their obvious connection to resource sharing
in networks and distributed systems with selfish users, but also due to their unique game theoretic
properties. Congestion games are potential games, i.e., there exists a potential function mapping
each strategy profile to a real number, Φ(s) = ∑

e∈E
∑xe
x=1 `e(x), so that whenever an agent changes

her strategy to reduce her cost, the potential function decreases. The latter not only provides a
proof of existence of an equilibrium, but also provides a pseudo-polynomial algorithm for computing
one (best response dynamics). Unfortunately a polynomial algorithm for computing an equilibrium
is highly unlikely to exist since this problem was proven to be PLS-complete [8].

Although computing an equilibrium in general CGs is PLS-complete, there are important special
cases in which an equilibrium can be computed efficiently. A notable example concerns computing
an equilibrium in single-commodity Network CGs. In this type of games, there exists a network
with latency functions on its edges together with an origin node o and a target node d. The strategy
space of each agent is the set of o− d paths . Fabrikant et al. [8] provide an efficient algorithm for
computing an equilibrium, which is based on solving a suitable min-cost flow problem. Another
interesting special case where approximate equilibrium can be efficiently computed by approximate
best response dynamics concerns a general class of Symmetric CGs [5].

An important generalization of CGs is that of Weighted CGs where the players are weighted,
putting a different load on the resources they choose. Since Weighted CGs are a generalization of
CGs computing an equilibrium is a harder task. Many recent works study algorithms for computing
an approximate equilibrium in general CGs (see the related work section). The reason for this is
twofold: At first, computing an exact equilibrium is for sure PLS-hard and, second, Weighted CGs
with general latency functions are not potential games, meaning that exact equilibria may not even
exist.

Our work is motivated by the fact that the forementioned results do not provide a vivid picture
of the differences between weighted and unweighted CGs, since in the general setting both are hard.
In order get a better understanding of these differnces we examine the computational hardness

2

of computing equilibria in Weighted CGs for the cases in which an equilibrium can be computed
efficiently for their unweighted counterparts.

This work deals with the problem of computing equilibria in Weighted Network CGs with
linear latency functions on the links of the network. The choice of linear functions ensures the
existence of a potential function [11], rendering the problem of computing equilibrium in PLS.
We prove PLS-completeness both for the single-commodity, i.e., all agents want to travel from a
common origin o to a common destination d, and to the multi-commodity case where each agent i
has a different pair (oi, di) of origin-destination nodes. Obviously, the second type of games is a
generalization of the first. The reason that two different PLS-reductions are provided is that in
the single-commodity case we study a more general set of latency functions by allowing them to
have exponential coefficients, while in the multi-commodity case all the linear latency functions
have coefficient 1. We highlight that in the case of equally weighted players both equilibria can be
efficiently computed. In the first case via a min-cost flow computation, while in the second using
best response dynamics, which converges in a polynomial number of steps.
Contribution. First we show that computing an equilibrium even in single-commodity Weighted
Network CGs with linear latency functions is PLS-complete (Theorem 1). Our result reveals a
huge gap between the weighted and the unweighted case for this class of CGs, since Papadimitriou
et al. [8] designed a polynomial time algorithm for computing equilibrium in single-commodity
(unweighted) Network CGs with general increasing latency functions. For the proof we reduce
from LocalMaxCut, one of the most significant PLS-complete problems. We highlight that our
reduction not only uses simple linear latency functions (i.e., of the form `(x) = ax), but also the
network topology used for our reduction is that of series-parallel networks.

Trying to further understand the differences between weighted and unweighted CGs, we turn
our attention to the case where all resources/links have the identity latency function (i.e., for all e:
`e(x) = x) and only the players’ weights are allowed to be exponential. The reason for this choice
is that an equilibrium in general (unweighted) CGs with this type of functions can be efficiently
computed using best response dynamics. We manage to show that computing an equilibrium even in
multi-commodity Weighted Network CGs where all links have the identity function is PLS-complete
(Theorem 2). For the above reduction, none of the already known PLS-complete problems seemed
suitable, since their intrinsic difficulty lies in the interactions between players, while the complexity
of our problem stems from the weights of the players themselves. This should not be a surprise,
since in general CGs with this type of latency functions and equally weighted agents an equilibrium
can be efficiently computed. Thus, in order to prove Theorem 2 we introduce as an intermediate
problem a simple variant of LocalMaxCut that we call LocalNodeMaxCut.

LocalNodeMaxCut is a natural special case of LocalMaxCut where the weights of the
edges are related in a specific way. Namely, each node has a positive weight and the weight of
each edge is the product of the weights of its endpoints. As in LocalMaxCut, the goal is to
find a maximal cut of the edges, i.e., a partition of the nodes so that the total weight of the edges
traversing the cut cannot be increased by moving any single node from one side of the partition to
the other. Interestingly enough, LocalNodeMaxCut is suitable for the reduction we want due to
the weights on the nodes, while at the same time it is expressive enough to be PLS-complete.

Our major technical contribution is proving that LocalNodeMaxCut is PLS-complete. To
establish its PLS-hardness we did not use a problem that lies on any of the “reduction paths”
departing from LocalNodeMaxCut, as this seemd unnatural since LocalNodeMaxCut is a
very restrictive special case of LocalMaxCut. Instead we turned to the very first problem proved

3

to be PLS-complete, i.e., CircuitFlip. Note that a similar problem to LocalNodeMaxCut, that
of computing a local optimum of an unweighted graph, was shown by Schäffer and Yannakakis [18]
to be P-complete.

In LocalNodeMaxCut it is very crucial that nodes see other nodes in the same way. More
precisely, any two nodes see the same weight on any third node, in contrast to LocalMaxCut where
the weights on the edges may be distributed so that nodes see common neighboring nodes differently.
This lack of freedom is very restrictive in many places of the PLS-completeness of LocalMaxCut
but we manage to overcome it via more sophisticated ideas combined with gadgets already used by
Elsässer and Tscheuschner [6] and Gairing and Savani [12]. Our technical work, though, is difficult
to be explained at a high level and so, instead of getting into its details here, we highlight it at the
end of Section 4. The ideas used there can be adapted to simplify proofs in existing work [6; 12] and
we conjecture that they also can be used to prove hardness of approximation results for Weighted
Network CGs with “natural” latency functions, thus complementing the existing results for the
unweighted case [19].
Related Work. While Weighted CGs do not always possess exact equilibria, there is a large
amount of literature concerning cases of Weighted CGs in which exact or approximate equilibria can
be efficiently computed. Fotakis et al. [11] show that in the case of linear latencies the existence of an
equilibrium is guaranteed by a potential argument. Even-Dar et al. [7] study different best-response
schemes for weighted congestion games in series of parallel links. In case of identity latency functions
it was proven that the max-weight priority best response policy reaches equilibrium in linear steps.
Goldberg [15] analyzes the convergence time to a Nash equilibrium of a randomized local search
distributed protocol in the case of series-parallel links with different capacities. Gairing et al. [13]
present a polynomial algorithm for computing Nash equilibrium in the restricted case of parallel links,
i.e., each agent can select a subset of the overall links. Caragiannis et al. [3] and Giannakopoulos
et al. [14] design efficient algorithms for computing approximate equilibria in Weighted CGs with
polynomial latencies. More algorithmic results for approximate equilibria in Weighted CGs are
provided by Fanelli and Moscardelli [9] and Feldotto et al. [10].

To capture the difficulty of local search problems, Johnson et al. [16] define the class PLS
that consists of problems admitting a polynomial time algorithm for computing a better neighbor
solution. They prove that all such problems can be reduced to a general optimization problem named
CircuitFlip. Later, Yannakakis and Schäeffer [18] used CircuitFlip to prove that LocalMaxCut
is PLS-complete. LocalMaxCut searches for a cut in an edge-weighted undirected graph such
that the cumulative weight of the edges traversing the cut cannot be increased by changing the
set of any single node. It was used to establish the PLS-completeness of computing equilibria in
general unweighted CGs [8]. In the same paper PLS-completeness of computing an equilibrium
for multi-commodity Network CGs was proven through a very involved proof. Ackermann et al.
[1] provide a much simpler PLS-completeness proof of the previous result via a reduction from
LocalMaxCut.

From a technical point of view, most related to our work are the PLS-completeness results
for variants of LocalMaxCut by Elsässer and Tscheuschner [6] and Gairing and Savani [12]
who adapted the original construction of Schäffer and Yannakakis [18]. Gairing and Savani [12]
establish PLS-completeness of computing a Nash equilibrium in hedonic games, while Elsässer and
Tscheuschner [6] show that LocalMaxCut remains PLS-complete even if the underlying graph has
nodes of degree at most five. Skopalik and Vöcking [19] proved that it PLS-complete to compute an
α-approximate Nash equilibrium in general unweighted congestion games.

4

Organization. The paper is organized as follows. In Section 3 we present proof sketches for the hard-
ness results regarding computing equilibria in single-commodity Weighted CGs and multi-commodity
Weighted CGs. In Section 4, we give an overall presentation of the way our LocalNodeMaxCut
PLS-reduction works, while omitting certain details. The fully detailed proofs are deferred to the
appendix, in sections A and B, respectively.

2 Preliminaries
We first define three local search problems, i.e., problems where the goal is to find a solution which
is locally optimal with respect to the values of all other solutions in its neighborhood.
Local-Max-Cut. An instance of MaxCut consists of an edge-weighted graph H(N,A), where N
is the set of nodes and A is the set of edges. The weight of edge a ∈ A is denoted by wa. A cut of
H is a subset S ⊆ N . The weight of a cut S is the sum of the weights of the edges crossing it, i.e.,
W (S) = ∑

a∈C(S)wa, where C(S) =
{
{u, v} ∈ A : u ∈ S and v ∈ N \ S

}
. The neighborhood of a

cut S is the set ND(S) that contains exactly all the cuts that can be obtained by moving one node
from S to N \ S or one node from N \ S to S. A maximal cut is a cut S such that W (S) ≥W (S′),
for all S′ ∈ ND(S). Given an edge-weighted graph H, LocalMaxCut is the problem of finding a
maximal cut of H.
Local-Node-Max-Cut. A special case of MaxCut is that of NodeMaxCut where each node
i ∈ N has some weight wi and the weight of edge a = {i, j} is then wa = wiwj . In such a case we
denote LocalMaxCut by LocalNodeMaxCut. We work with this definition in Section 3.

Alternatively, LocalNodeMaxCut consists of an (unweighted) undirected graph H(N,A),
where N is the set of nodes and A is the set of edges. Each node i ∈ N is a selfish agent and has a
non-negative weight wi ≥ 0. Each node selects as value either 0 or 1 so as to minimize her cost,
which is defined to be the total weight of her neighbors that play the same value. A 0-1 vector
v = (v1, . . . , v|N |) is a Nash Equilibrium if and only if for all nodes i ∈ N ,∑

j∈Ni and vi=vj

wj ≤
∑

j∈Ni and vi 6=vj

wj ,

where Ni denotes the set of nodes that share an edge with node i. In LocalNodeMaxCut the
goal is to compute a 0-1 vector that is a Nash Equilibrium. We work with this definition in Section
4.

To see the equivalency of the two definitions observe that∑
j∈Ni and vi=vj

wj ≤
∑

j∈Ni and vi 6=vj

wj ⇔
∑

j∈Ni and vi=vj

wiwj ≤
∑

j∈Ni and vi 6=vj

wiwj ,

i.e., i is at her best response iff the weight of the cut only decreases if i switches sides.

Circuit-Value with Flip-Neighborhood. The very first problem proved to be PLS-complete is
CircuitFlip, where an instance consists of a boolean circuit C with n input gates, m output gates
and (wlog) only NOR gates. The value C(I) of an n-bit input string I is the integer corresponding
to the m-bit (binary) string in the output gates. Given a circuit C, CircuitFlip searches for a
string I for which the value of the circuit cannot increase if we flip any of I’s bits, i.e. for all I ′ with
Hamming distance 1 from I, C(I) ≥ C(I ′). Strings with Hamming distance 1 are called neighbors.

5

Next, we move on to give some Complexity Theory related preliminaries.
Local Search Problems. An instance of a local search problem is a triple (S, f,N), where S is the
set of feasible solutions (or simply solutions) of a combinatorial optimization problem, f : S → R is
a cost function for the solutions in S and N : S → 2S is a neighborhood function on S returning for
each s ∈ S the set of its neighboring feasible solutions.

A local search problem ΠLS is specified by a set of local search problem instances and it is either
a minimization or a maximization problem. The problem is to find for any given instance (S, f,N)
a locally optimal solution s∗ ∈ S, i.e., an s∗ ∈ S so that f(s∗) ≤ f(s) for a minimization problem or
f(s∗) ≥ f(s) for a maximization problem. Examples of local search problems are LocalMaxCut
and LocalNodeMaxCut defined below.
Polynomial-time Local Search (PLS). The class NPO consists of combinatorial optimization
problems for which we can decide in polynomial time whether an input x defines a correct problem
instance, for which the cost function is computable in polynomial time, and for which it is decidable
in polynomial time whether a string s defines a feasible solution, where the size of each feasible
solution is polynomially bounded in the input size.

Let ΠLS be a local search problem and let Π be the underlying combinatorial optimization
problem. Local search problem ΠLS is in the class PLS (Polynomial-time Local Search) if Π ∈ NPO
and if two polynomial-time algorithms A and B exist that satisfy the following properties:

• For a problem instance (S, f,N) of ΠLS , algorithm A returns a solution s ∈ S.

• For a problem instance (S, f,N) of ΠLS and a solution s ∈ S, algorithm B decides whether s
is a local optimum and if this is not the case, it returns a neighboring solution with better
cost.

PLS Reductions and Completeness. Local search problem ΠLS is PLS-reducible to local search
problem Π′LS , if two polynomial-time algorithms φ1 and φ2 exist that satisfy the following properties:

• Algorithm φ1 transforms a problem instance I of ΠLS into a problem instance φ1(I) of Π′LS .

• Algorithm φ2 maps a problem instance I = (S, f,N) of ΠLS and a solution s′ ∈ S′ with
φ1(I) = (S′, f ′, N ′) to a solution s ∈ S.

• For a problem instance I of ΠLS , we have that if s′ ∈ S′ is a local optimum for φ1(I) =
(S′, f ′, N ′), then φ2(I, s′) is a local optimum for I.

Note that if local search problem ΠLS is PLS-reducible to local search problem Π′LS , then
the existence of a polynomial-time algorithm for Π′LS implies the existence of a polynomial-time
algorithm for ΠLS . In other words, Π′LS is at least as hard as ΠLS . Additionally, PLS-reductions
are transitive, which means that if ΠLS is PLS-reducible to Π′LS and Π′LS is PLS-reducible to Π′′LS ,
then ΠLS is also PLS-reducible to Π′′LS .

To capture the hardest problems of the class we define PLS-completeness. A local search problem
is PLS-hard if each problem ΠLS ∈ PLS is PLS-reducible to it. By the above discussion, to prove
that a local search problem ΠLS is PLS-hard it suffices to reduce a PLS-hard problem to it. A local
search problem is PLS-complete if it is in PLS and is PLS-hard. Schäffer and Yannakakis [18] have
proved that LocalMaxCut is PLS-complete (see Michiels et al. [17] for a survey), which directly
implies that LocalNodeMaxCut is in PLS.

6

Next, we move on to give some Game Theory related preliminaries.
Weighted Congestion Games. A Weighted Congestion Game consists of n weighted players
each having a positive weight wi, a set of resources E together with a non-decreasing latency
function `e : R≥0 → R≥0 for each resource e ∈ E, and a non-empty strategy set Si ⊆ 2E for
every player i ∈ [n], where [n] = {1, . . . , n}. A subclass of Weighted Congestion Games is that
of Weighted Network Congestion Games where there is an underlying (undirected) network with
some of the vertices forming origin-destination pairs. The resources of the game are the links
of the network. Each player i is assigned to some origin-destination pair oi-di and her strategy
set consists of all the oi-di paths. Formally, a Weighted Network Congestion Game is a tuple
G =

(
G(V,E), (ce)e∈E , (wi)i∈[n], ((oi, di))i∈[n]

)
. In the special case where all players share a common

origin-destination pair we have a single-commodity game, else we have a multi-commodity game.
Configurations, Costs and Equilibria. Player i chooses a strategy si in her strategy set Si
(an oi-di path for network games). All these choices combined form a configuration. Formally, a
configuration is a vector (s1, . . . , sn), with si ∈ Si. In order to capture single player deviations,
given an initial configuration s = (s1, . . . , sn) we denote by (s′i, s−i) the configuration where player i
has changed her strategy from si to s′i while all other players play according to s, i.e., player j 6= i
chooses si. Under a configuration s = (s1, . . . , sn) each resource gets some congestion xe equal to the
sum of the weights of the players choosing it, i.e., xe = ∑

i:e∈si
wi, and has cost `e(xe). Player i’s cost

under configuration s is ci(s) = ∑
e∈si

`e(xe). A configuration s is a Nash equilibrium if no player
has an incentive to deviate. Formally, s is a Nash equilibrium if ∀i ∈ [n],∀s′i ∈ Si : ci(s) ≤ ci(s′i, s−i).
Instead of Nash equilibrium we may simply say equilibrium.

3 Computing Equilibria in Weighted Congestion Games
In this section we state and provide proof sketches for our PLS-completeness theorems. In the first
part we do so for single-commodity Weighted Network Congestion Games on series parallel networks
with linear latencies (Theorem 1) and in the second part we do so for multi-commodity Weighted
Network Congestion Games with the identity function on all links (Theorem 2). For the complete
proofs see sections A.1 and A.2 respectively.

Single-Commodity Weighted Network Congestion Games.
We prove that it is PLS-hard to compute an equilibrium of a Weighted Congestion Game, even
if it is a Weighted Network Congestion Game on a series-parallel single-commodity network with
linear latencies, i.e., with latency functions of the form `k(x) = akx. We do so by reducing from
LocalMaxCut.

Theorem 1. Computing a Nash equilibrium in single-commodity Weighted Network Congestion
Games with linear latency functions is PLS-complete.

Proof sketch. We will reduce from the PLS-complete problem LocalMaxCut. Given an instance
of LocalMaxCut we will construct a Weighted Network Congestion Game for which the Nash
equilibria will correspond to maximal solutions of LocalMaxCut and vice versa.

To give the construction, let H(N,A) be an edge-weighted graph of a LocalMaxCut instance
and let n = |N | and m = |A|. In the constructed Weighted Network Congestion Game instance
there will be 3n players which will share n different weights inside the set {16i : i ∈ [n]} so that
for every i ∈ [n] there are exactly 3 players having weight wi = 16i. All players share a common

7

Figure 1: The series-parallel network Fij that corresponds to edge {i, j} ∈ A

Figure 2: An example of the structure of the construction for a graph H(N,A), with N = {1, 2, 3, 4} and
A = {{1, 2}, {1, 3}, {1, 4}, {2, 4}}. Each of the upper and lower parts consists of copies of F12, F13, F14 and
F24 connected in series.

origin-destination pair o − d and choose o − d paths on a series-parallel graph G. Graph G is a
parallel composition of two identical copies of a series-parallel graph.We call these copies G1 and
G2. In turn, each of G1 and G2 is a series composition of m different series-parallel graphs, each of
which corresponds to the m edges of H. For every {i, j} ∈ A let Fij be the series-parallel graph that
corresponds to edge {i, j}. Fij is presented in Fig. 1, where D is assumed to be a (polynomially)
big enough constant. An example graph G is given in Fig. 2.

Observe that in each of G1 and G2 there is a unique path that contains all the links with latency
functions `i(x), for i ∈ [n], and call these paths pui and pli for the upper (G1) and lower (G2) copy
respectively. Note that each of pui and pli in addition to those links, contains some links with latency
function of the form wijx

wiwj
. These links for path pui or pli are in one to one correspondence to the

edges of node i in H and this is crucial for the proof.
By the choice of the players’ weights and the latency functions’ slopes, one can show that at a

Nash equilibrium, a player of weight wi chooses either pui or pli. The formal proof uses induction
starting from larger weights. The heaviest players, i.e., players with weight wn, have a dominant
strategy to choose either pun or pln since `n(x) has a significantly smaller slope than all other `i(x)’s,
small enough so that even if all other players choose the same paths (reaching a load of at most
3∑n

l=1 16l = 16n+1−1
16−1), still players of weight wn prefer pun or pln over all other paths. But then, pun

and pln get a lot of weight load at equilibrium compared to the weight of lighter players. This makes
the links on these paths look like they get some big additive constants, which makes them extremely

8

expensive for all lighter players and these players exclude them from their strategy space. That
said, by the same reasoning, the players of weight wn−1 have a dominant strategy to choose either
pun−1 or pln−1 and this inductively proves true for all i ∈ [n].

Additionally, one can prove that pui and pli will have at least one player (of weight wi). The
underlying idea is that if wlog pui has two players (of weight wi) then the third player of weight wi
prefers to go to pli, since it is going to be empty. This already provides a good structure of a Nash
equilibrium and players of different weights, say wi and wj , may go through the same link in G (the
edge with latency function wijx/wiwj) only if {i, j} ∈ A. The correctness of the reduction lies in
the fact that players in G try to minimize their costs incurred by these type of links in the same
way one wants to minimize the sum of the weights of the edges in each side of the cut when solving
LocalMaxCut.

Given a maximal solution S of LocalMaxCut the proof shows that the configuration Q that
for every k ∈ S routes 2 players through puk and 1 player through plk and for every k ∈ N \ S routes
1 player through puk and 2 players through plk is an equilibrium. Conversely, given an equilibrium Q
the cut S = {k ∈ N : 2 players have chosen puk at Q} is a maximal solution of LocalMaxCut.

Assume that we are at equilibrium and consider a player of weight wk that has chosen puk and
wlog puk is chosen by two players (of weight wk). By the equilibrium conditions the cost she computes
for puk is at most the cost she computes for plk, which implies

m∑
i=1

2D16k
4k +

∑
{k,j}∈A

wkj(2 · 16k + xuj 16j)
16k16j ≤

m∑
i=1

2D16k
4k +

∑
{k,j}∈A

wkj(2 · 16k + xlj16j)
16k16j

where xuj (resp. xlj) is either 1 or 2 (resp. 2 or 1) depending whether, for any j : {k, j} ∈ A, one or
two players (of weight wj) respectively have chosen path puj . By canceling out terms, the above
implies ∑

{k,j}∈A
wkjx

u
j ≤

∑
{k,j}∈A

wkjx
l
j ⇔

∑
{k,j}∈A

wkj(xuj − 1) ≤
∑
{k,j}∈A

wkj(xlj − 1) (1)

Define S = {i ∈ N : xui = 2}. By our assumption it is k ∈ S and the left side of (1), i.e.,∑
{k,j}∈Awkj(xuj − 1), is the sum of the weights of the edges of H with one of its nodes being k

and the other belonging in S. Similarly, the right side of of (1), i.e., ∑{k,j}∈Awkj(xlj − 1) is the
sum of the weights of the edges with one of its nodes being k and the other belonging in N \ S.
But then (1) directly implies that for the (neighboring) cut S′ where k goes from S to N \ S it
holds W (S) ≥W (S′). Since k was arbitrary (given the symmetry of the problem), this holds for
every k ∈ [n] and thus for every S′ ∈ ND(S) it is W (S) ≥W (S′) proving one direction of the claim.
Observing that the argument works backwards the proof completes.

Multi-Commodity Weighted Network Congestion Games.
We prove that it is PLS-hard to compute an equilibrium in Weighted Congestion Games, even if it
is a Weighted Network Congestion Game with all latency functions equal to the identity function,
i.e., for any link e, `e(x) = x. This result is stronger in some aspect than that of Section A.1 since
we allow only the weights of the players to be exponential. Note that if both the coefficients of the
linear latency functions and the weights of the players are polynomial, then best response dynamics
converges to an equilibrium in polynomial time. For the proof, we reduce from LocalNodeMaxCut
which, as we prove in Theorem 6, is PLS-complete.

9

Theorem 2. Computing a Nash equilibrium in multi-commodity Weighted Network Congestion
Games with all links having the identity function as their latency function is PLS-complete.

Proof sketch. We will reduce from the PLS-complete problem LocalNodeMaxCut. For an
instance of LocalNodeMaxCut we will construct a multi-commodity Network Congestion Game
where every equilibrium will correspond to a maximal solution of LocalNodeMaxCut and vice
versa. Our construction draws ideas from Ackermann et al. [1].

Skipping many of the details (that can be found in Section A.2), in the constructed instance
for every i ∈ [n], Player i will essentially have two path choices at equilibrium, say pui and pli, that
cost-wise dominate all others. For any i, j ∈ [n], pui and puj (resp. pli and plj) may have in common
only one link that itself belongs only to them, say link euij (resp. elij). These links (euij and elij) are
present only if {i, j} is an edge of H, i.e., {i, j} ∈ A, and have the identity function as their latency
function. What holds is that for every i ∈ [n], pui ’s cost differs from pli’s cost only because of the
euij ’s and elij ’s for the j’s neighboring i in H.

Assume we are at equilibrium. By the above discussion player i ∈ [n] may only have chosen
pui or pli. Let S = {i ∈ [n] : player i has chosen pui }. The proof shows that S is a solution to
LocalNodeMaxCut. By the equilibrium conditions for every i ∈ S the cost of pui , say cui , is
less than or equal to the cost of pli, say cli. By defining Si to be the neighbors of i in S, i.e.
Si = {j ∈ S : {i, j} ∈ A}, and Ni be the neighbors of i in N , i.e. Ni = {j ∈ N : {i, j} ∈ A}, cui ≤ cli
translates to

K +
(∑
j∈Ni

wi +
∑
j∈Si

wj
)
≤ K +

(∑
j∈Ni

wi +
∑

j∈Ni\Si

wj
)

for some big constant K with the costs in the second and fourth parenthesis coming from the eij ’s
for the different j’s. This equivalently gives∑

j∈Si

wj ≤
∑

j∈Ni\Si

wj ⇔
∑
j∈Si

wiwj ≤
∑

j∈Ni\Si

wiwj .

The right side of the last inequality equals to the weight of the edges with i as an endpoint that
cross cut S. The left side equals to the weight of the edges with i as an endpoint that cross the cut
S′, where S′ is obtained by moving i from S to N \ S. Thus for S and S′ it is W (S′) ≤W (S). A
similar argument (or just symmetry) shows that if i ∈ N \ S and we send i from N \ S to S to form
a cut S′ it would again be W (S′) ≤W (S). Thus, for any S′ ∈ ND(S) it is W (S) ≥W (S′) showing
that S is a solution to LocalNodeMaxCut. Observing that the argument works backwards we
have that from an arbitrary solution of LocalNodeMaxCut we may get an equilibrium for the
constructed Weighted Congestion Game instance.

4 PLS-completeness of LocalNodeMaxCut
In this section we present the proof of Theorem 6 which states that LocalNodeMaxCut is
PLS-complete. As discussed in the preliminaries, LocalNodeMaxCut is in PLS and thus it
remains to prove its PLS-hardness. To do so, we reduce CircuitFlip to it. We remind that an
instance of LocalNodeMaxCut is composed by an undirected graph H(N,A), and the weights
of each node i ∈ N , wi ≥ 0. Given a circuit C of the CircuitFlip, we construct an instance of
LocalNodeMaxCut such as from any Nash Equilibrium we can compute in polynomial time a
locally maximal solution for the CircuitFlip problem.

10

Given a circuit C of CircuitFlip, the node-weighted graph that we construct is a combination
of different gadgets which themselves might be seen as smaller instances of LocalNodeMaxCut.
These gadgets have different goals but what each of them intuitively does is receiving some
information to some of its nodes, the “input” nodes, and transforming it while carrying it through
its internal part towards the “output” nodes. These input and output nodes are the nodes through
which the different gadgets are connected. The connections are not always simple and we will later
go into more detail on how these connections are done.

Figure 3: The high level construction of the NodeMaxCut instance. Note that rectangles represent gadgets
that will be defined below, circles represent nodes that take part in multiple gadgets, and bolded black circles
represent a set of (n) such nodes. The computation gadgets are represented by CA and CB.

Our construction follows a flip-flop architecture that has been previously used for reductions from
CircuitFlip to LocalMaxCut and some of its variants [18; 12; 6], but requires more sophisticated
implementations in many of its gadgets, since we deal with the special case of LocalNodeMaxCut.
The most important differences and our major technical contributions are summarized at the end of
the section. The constructed instance is presented at a high level in Figure 3. Next, we discuss the
role of each separate gadget. The exact construction of each separate gadget is presented in the
respective section of the appendix.

For a given circuit C of the CircuitFlip with n input gates and m output gates, we first
construct the Circuit Computing gadgets C` (for ` = A,B). These gadgets are instances of
LocalNodeMaxCut that simulate C in the following sense: I ` is a set of n nodes whose values
correspond to an “input string” of C. Val` is a set of m nodes whose values correspond to the output
of circuit C with input string I `. Next` is a set of n nodes that represent a neighbor string of I `
with greater output value in C. More precisely, if the “input” string defined by the values of I `, has
a neighbor solution (Hamming distance 1) with strictly greater cost then the values of the n nodes
in Next` correspond to this neighbor string. In case such a neighbor string does not exist (which

11

means that I ` is an optimal solution to CircuitFlip) the values of the nodes in Next` equal I `.
These Circuit Computing gadgets have two separate functionalities: the write mode (Control` =

0) and the compute mode (Control` = 1). When C ` is in the write mode the values of the input
nodes I ` are changed. When C ` is in the compute mode the values of the nodes Next`,Val` are
updated with the correct output values of the circuit C. To formalize the term correct, we introduce
the following notation that we use through the section.

Definition 1. For the given circuit C of CircuitFlip. We denote with:

• Real-Val(I`) the value of the circuit C with input string defined by the values of the nodes in
I`.

• Real-Next(I)`) is a neighbor string (Hamming distance 1) of I` with strictly greater output
value in circuit C. If such a string does not exist, Real-Next(I`) = I`.

The Comparator gadget compares ValA and ValB, which are intended to be Real-Val(IA),
Real-Val(IB) and outputs 1 if ValA ≤ ValB or 0 otherwise. The result of this comparison is “stored”
in the value of the Flag node. If Flag = 1 then IB “writes” her better neighboring solution to
IA (symmetrically if Flag = 0). Intuitively, if this happens then in the next “cycle” IA will have
a better value and will write her improving solution to IB. This goes on and on until no better
neighbor solution exists and both IA and IB have the same output node values.

The CopyB gadget (respectively for CopyX“) is responsible for writing the values of the nodes
NextB to the nodes IA when Flag = 1 (when ValA ≤ ValB). When Flag = 1 the nodes TB take the
values of the nodes in NextB. Now if IA 6= NextB then the Equality gadget turns the value of the
ControlA to 0 because IA 6= TB. Thus CA enters write mode and the nodes in IA adopt the values
of the NextB nodes. Then ControlA becomes 1 since IA = TB and CA enters “compute mode”.
This means that values Real-Next(IA), Real-Val(IA) are written to the output nodes NextA, ValA.

Before proceeding we present a proof-sketch of our reduction. The mathematically rigorous
version of this proof is presented in the proof of Theorem 6 at the end of the section. We will prove
that at any equilibrium of the instance of LocalNodeMaxCut of Figure 3 in which Flag = 1
(symmetrically if Flag = 0) three things hold:

1. IA = NextB

2. NextB = Real-Next(IB)

3. Real-Val(IB) ≥ Real-Val(IA)

Once these claims are established we can be sure that the string defined by the values of nodes in IB
defines a locally optimal solution for CircuitFlip. This is because the above 3 claims directly imply
that Real-Val(IB) ≥ Real-Val (Real-Next (IB)) which means that there is no neighboring solution of
IB with strictly greater cost. Obviously we establish symmetrically the above claims when Flag = 0.

Remark 1. Since our construction in Figure 3 is an instance of LocalNodeMaxCut and the
bitwise complement of an equilibrium is also equilibrium the term Flag = 1 seems meaningless. In
the construction of the Circuit Computing gadget in Section B.2 (and in the constructions of all
the presented gadgets) there also exist two supernodes, a 1-node and a 0-node, with huge weight
that share an edge. As a result, at any equilibrium these nodes have opposite values. The term

12

Flag = 1 means that the Flag node has the same value with the 1-node. This notation is also used in
subsequent lemmas and always admits the same interpretation. As one can see in the appendix, the
construction of the gadgets assume nodes with values always 0 or 1. This can be easily established
by connecting one such node with its complementary supernode.

In the rest of the section we present the necessary lemmas to make the above presented proof
sketch rigorous. To do so, we follow a three step approach. We first present the exact behavior of
the Circuit Computing gadgets CA, CB. We then reason why IA = NextB, which we refer to as the
Feedback problem. Finally we establish the last two claims which we refer to as Correctness of the
Outputs.
Circuit-computing gadgets
The Circuit Computing gadgets CA, CB are the basic primitives of our reduction and are based
on the gadgets introduced by Schäffer and Yannakakis [18] to establish PLS-completeness of
LocalMaxCut. This type of gadgets can be constructed so as to simulate any boolean circuit C.
The most important nodes are those corresponding to the input and the output of the simulated
circuit C and are denoted as I,O. The other important node is the Control that switches between
the write and the compute mode of the gadget. Figure 4 is an abstract depiction of this type
of gadgets. The properties of the gadget are described in Theorem 3. Its proof is presented in
Section B.2, where the exact construction of the gadget is presented. We first introduce some
convenient notation that will help us throughout the proof of completeness.

Figure 4: Circuit Computing gadgets. The big, dashed “vertices” named I and O, represent all the input and
output nodes respectively. This type of (“hyper”-)node is represented in the rest of the figures with a bold
border.

Definition 2. Let an instance of LocalNodeMaxCut and a specific equilibrium of this instance.
The bias that node i experiences with respect to the subset N ′ ⊆ N is∣∣∣∣∣∣∣

∑
j∈N1

i ∩N ′
wj −

∑
j∈N0

i ∩N ′
wj

∣∣∣∣∣∣∣
where N0

i is the set of neighbors of node i that choose 0 (respectively for N1
i)

Bias is a key notion in the subsequent analysis. The gadgets presented in Figure 3 are subset of
nodes of the overall instance. Each gadget is composed by the "input nodes", the internal nodes
and the "output nodes". Moreover as we have seen each gadget stands for a "circuit" with some
specific functionality (computing, comparing, copying e.t.c.). Each gadget is specifically constructed
so as at any equilibrium of the overall instance, the output nodes of the gadget experience some
bias towards some values that depend on the values of the input nodes of the gadget. Since the

13

output nodes of a gadget may also participate as input nodes at some other gadgets, it is important
to quantify the bias of each gadget in order to prove consistency in our instance. Ideally, we would
like to prove that at any equilibrium the bias that a node experiences from a gadget in which it
is an output node, is greater than the sum of the biases of the gadgets in which it participates as
input node.

Theorem 3 describes the equilibrium behavior of the input nodes I` and output nodes Next`, V al`
of the CircuitComputing gadgets C`.

Theorem 3. At any equilibrium of the LocalNodeMaxCut of Figure 3.

1. If Control` = 1 and the nodes of Next`,V al` experience 0 bias from any other gadget beyond
C` then:

• Next` = Real-Next(I`)
• Val` = Real-Val(I`)

2. If Control` = 0 then each node in I` experiences 0 bias from the internal nodes of C`.

3. Control` experiences wControl` bias from the internal nodes of C`.

Case 1 of Theorem 3 describes the compute mode of the Circuit Computing gadgets. At any
equilibrium with ControlA = 1, and with the output nodes of CA being indifferent with respect to
other gadgets, then CA computes its output correctly. Note that because the nodes in NextA,ValA
are also connected with internal nodes of other gadgets (CopyX“ and Comparator gadgets) that may
create bias towards the opposite value, the second condition is indispensable. Case 2 of Theorem 3
describes the write mode. If at an equilibrium ControlA = 0 then the nodes in IA have 0 bias from
the CA gadget and as a result their value is determined by the biases of the CopyB gadget and the
Equality gadget. Case 3 of Theorem 3 describes the minimum bias that the equality gadget must
pose to the Control nodes so as to make the computing gadget flip from one mode to the other.
As we shall see, the weights wControlA = wControlB = wControl are selected much smaller than the
bias the Control` nodes experience due to the Equality gadgets, meaning that the Equality gadgets
control the write mode and the compute mode of the Circuit Computing gadgets no matter the
values of the nodes in C` gadgets.

Remark 2. We remark that our construction of the Circuit Computing gadgets presented in
Section B.2 ensures Theorem 3 for selecting wControl arbitrarily smaller than the weights for the
internal nodes of the Circuit Computing gadgets. As we shall see up next this is crucial for our
reduction and, as we discuss in the end of the section, this is a major difference with the respective
Circuit Computing gadgets of other reductions in this vein [18; 12; 6].

Solving the Feedback problem.
The purpose of this section is to establish the first case of the above presented claims i.e. at any
equilibrium of LocalNodeMaxCut instance of Figure 3 in which Flag = 1, NextB is written to
IA and vice versa when Flag = 0. This is formally stated in Theorem 4.

Theorem 4. Let an equilibrium of the instance of LocalNodeMaxCut described in Figure 3.

• If Flag = 1 then IA = NextB

14

• If Flag = 0 then IB = NextA

We next present the necessary lemmas for proving Theorem 4.

Lemma 1. Let an equilibrium of the overall LocalNodeMaxCut instance of Figure 3. Then

• ControlA = (IA = TB)

• ControlB = (IB = TA)

In Section B.3 we present the construction of the equality gadget. This gadget is specifically designed
so that at any equilibrium, its internal nodes create bias to ControlA towards the value of the
predicate (IA = TB). Notice that if we multiply all the internal nodes of the equality gadget with a
positive constant, the bias ControlA experiences towards value (IA = TB) is multiplied by the same
constant (see Definition 2). Lemma 1 is established by multiplying these weights with a sufficiently
large constant so as to make this bias larger than wControlA. We remind that by Theorem 3, the bias
that ControlA experiences from CA is wControlA. As a result, the equilibrium value of ControlA
is (IA = NextB) no matter the values of ControlA ’s neighbors in the C1 gadget. The red mark
between ControlA and the CA gadget in Figure 3 denotes the "indifference" of ControlA towards
the values of the CA gadget (respectively for ControlB).

In the high level description of the LocalNodeMaxCut instance of Figure 3, when Flag = 1
the values of NextB is copied to IA as follows: At first TB takes the value of NextB. If IA 6= TB then
ControlA = 0 and the CA gadget switches to write mode. Then the nodes in IA takes the values of
the nodes in NextB. This is formally stated in Lemma 2.

Lemma 2. At any equilibrium point of the LocalNodeMaxCut instance of Figure 3:

• If Flag = 1, i.e. NextB writes on IA, then

1. TB = NextB
2. If ControlA = 0 then IA = TB = NextB

• If Flag = 0 i.e. NextA writes on IB, then

1. TA = NextA
2. If ControlB = 0 then IB = TA = NextA

In Section B.4, we present the construction of the Copy gadgets. At an equilibrium where Flag = 1,
this gadget creates bias to the nodes in IA, TB nodes towards adopting the values of NextB. Since
IA, TB also participate in the Equality gadget in order to establish Lemma 2 we want to make
the bias of the CopyB gadget larger than the bias of the Equality gadget. This is done by again
by multiplying the weights of the internal nodes of CopyB with a sufficiently large constant. The
"indifference" of the nodes in IA, TB with respect to the values of the internal nodes of the Equality
gadget is denoted in Figure 3 by the red marks between the nodes in IA, TB and the Equality gadget.

In Case 2 of Lemma 2 the additional condition ControlA = 0 is necessary to ensure that
IA = NextB. The reason is that the bias of the Copy gadget to the nodes in IA is sufficiently larger
than the bias of the Equality gadget to the nodes in IA, but not necessarily to the bias of the CA
gadget. The condition ControlA = 0 ensures 0 bias of the CA gadget to the nodes IA, by Theorem 3.
As a result the values of the nodes in IA are determined by the values of their neighbors in the
CopyB gadget.

15

Proof of Theorem 4. Let an equilibrium in which Flag = 1. Let us assume that IA 6= NextB. By
Case 1 of Lemma 2, TB = NextB. As a result, IA 6= TB, implying that ControlA = 0 (Lemma 1).
Now, by Case 2 of Lemma 2 we have that IA = NextB, which is a contradiction. The exact same
analysis holds when Flag = 0.

Correctness of the Output Nodes.
In the previous section we discussed how the Feedback problem (IA = NextB when Flag = 1) is
solved in our reduction. We now exhibit how the two last cases of our initial claim are established.

Theorem 5. At any equilibrium of the instance of LocalNodeMaxCut of Figure 3:

• If Flag = 1

1. Real-Val(IA) ≤ Real-Val(IB)
2. NextB = Real-Next(IB)

• If Flag = 0

1. Real-Val(IB) ≤ Real-Val(IA)
2. NextA = Real-Next(IA)

At first we briefly explain the difficulties in establishing Theorem 5. In the following discussion we
assume that Flag = 1, since everything we mention holds symmetrically for Flag = 0. Observe that
if Flag = 1 we know nothing about the value of ControlB and as a result we cannot guarantee that
NextB = Real-Next(IB) or ValB = Real-Val(IB). But even in the case of CA where ControlA = 1
due to Theorem 4, the correctness of the nodes in NextA or ValA cannot be guaranteed. The reason
is that in order to apply Theorem 3, NextA and ValA should experience 0 bias with respect to any
other gadget they are connected to. But at an equilibrium, these nodes may select their values
according to the values of their heavily weighted neighbors in the CopyA and the Comparator gadget.

The correctness of the values of the output nodes, i.e. NextA = Real-Next(IA) and ValA =
Real-Val(IA), is ensured by the design of the CopyX“ and the Comparator gadgets. Apart from
their primary role these gadgets are specifically designed to cause 0 bias to the output nodes of the
Circuit Computing gadget to which the better neighbor solution is written. In other words at any
equilibrium in which Flag = 1 and any node in CA: the total weight of its neighbors (belonging
in the CopyA or the Comparator gadget) with value 1 equals the total weight of its neighbors
(belonging in the CopyA or the Comparator gadget) with value 0.

The latter fact is denoted by the green marks in Figure 5 and permits the application of Case 1
of Theorem 3. Lemma 3 and 4 formally state these "green marks".

Lemma 3. At any equilibrium point of the LocalNodeMaxCut instance of Figure 3:

• If Flag = 1 then any node in NextA experience 0 bias with respect to the CopyX“ gadget.

• If Flag = 0 then then any node in NextB experience 0 bias with respect to the CopyB gadget.

16

Figure 5: Since Flag = 1 any internal node of the C2 gadget has 0 bias with respect to all the other gadgets.
As a result, Theorem 3 applies.

Lemma 4. Let an equilibrium of the instance of LocalNodeMaxCut of Figure 3:

• If Flag = 1 then all nodes of CA experience 0 bias to the Comparator gadget.

• If Flag = 0 then all nodes of CB experience 0 bias to the Comparator gadget.

Remark 3. The reason that in Lemma 4 we refer to all nodes of CA (respectively CB) and not just
to the nodes in V alA (respectively V alB) is that in the constructed instance of LocalNodeMaxCut
of Figure 3, we connect internal nodes of the CA gadget with internal nodes of the Comparator
gadget. This is the only point in our construction where internal nodes of different gadgets share an
edge and is denoted in Figure 3 and 5 with the direct edge between the CA gadget and the Comparator
gadget.

Now using Lemma 3 and Lemma 4 we can prove the correctness of the output nodes NextA,ValA
when Flag = 1 i.e. NextA = Real-Next(IA) and ValA = Real-Val(IB) (symmetrically for the nodes
in NextB,ValB when Flag = 0).

Lemma 5. Let an equilibrium of the instance of LocalNodeMaxCut of Figure 3:

• If Flag = 1 then NextA = Real-Next(IA), ValA = Real-Val(IA).

• If Flag = 0 then NextB = Real-Next(IB), ValB = Real-Val(IB).

Proof. We assume that Flag = 1 (for Flag = 0 the exact same arguments hold). By Theorem 4
we have IA = NextB and by Lemma 2 we have that TB = NextB. As a result, IA = TB and by
Lemma 1 ControlA = 1. Lemma 3 and Lemma 4 guarantee that the nodes in NextA,ValA of CA
experience 0 bias towards all the other gadgets of the construction and since ControlA = 1, we can
apply Case 1 of Theorem 3 i.e. ValA = Real-Val(IA) and NextA = Real-Next(IA).

17

Up next we deal with the correctness of the values of the output nodes in ValB and NextB when
Flag = 1. We remind again that, even if at an equilibrium ControlB = 1, we could not be sure
about the correctness of the values of these output nodes due to the bias their neighbors in the
CopyB and the Comparator gadget (Theorem 3 does not apply). The Comparator gadget plays a
crucial role in solving this last problem. Namely, it also checks whether the output nodes in NextB
have correct values with respect to the input IB and if it detects incorrectness it outputs 0. This
is done by the connection of some specific internal nodes of the CA, CB gadgets with the internal
nodes of the Comparator gadget (Figure 3: edges between CA, CB and Comparator).

Lemma 6. At any equilibrium of the NodeMaxCut instance of Figure 3:

• If Flag = 1 then NextB = Real-Next(IB)

• If Flag = 0 then NextA = Real-Next(IA)

We highlight that the correctness of values of the output nodes NextB, i.e. NextB = Real-Next(IB),
is not guaranteed by application of Theorem 3 (as in the case of correctness of NextA, V alA), but
from the construction of the Comparator gadget. Lemma 6 is proven in Section B.5 where the exact
construction of this gadget is presented. Notice that Lemma 6 says nothing about the correctness
of the values of the output nodes in V alB. As we latter explain this cannot be guaranteed in our
construction. Surprisingly enough, the Comparator outputs the right outcome of the predicate
(Real-Val(IA) ≤ Real-Val(IB)) even if ValB 6= Real-Val(IB). The latter is one of our main technical
contributions in the reduction that reveals the difficulty of LocalNodeMaxCut. The crucial
differences between our Comparator and the Comparator of the previous reductions [18; 12; 6] are
discussed in the end of the section. Lemma 7 formally states the robustness of the outcome of the
Comparator even with "wrong values" in the nodes of V alB and is proven in Section B.5.

Lemma 7. At any equilibrium of the LocalNodeMaxCut instance of Figure 3:

• If Flag = 1, NextA = Real-Next(IA), ValA = Real-Val(IA) and NextB = Real-Next(IB) then

Real − V al(IA) ≤ Real − V al(IB)

• If Flag = 0, NextB = Real-Next(IB), ValB = Real-Val(IB) and NextA = Real-Next(IA) then

Real − V al(IB) ≤ Real − V al(IA)

We are now ready to prove Theorem 5.

Proof of Theorem 5. Let an equilibrium of the instance of Figure 3 with Flag = 1 (respectively
for Flag = 0). By Lemma 6, NextB = Real-Next(IB) and thus Case 1 is established. Moreover by
Lemma 5, NextA = Real-Next(IA) and ValA = Real-Val(IA). As a result, Lemma 7 applies and
Real-Val(IA) ≤ Real-Val(IB) (Case 2 of Theorem 5)

Having established Theorem 4 and 5 the PLS-completeness of LocalNodeMaxCut follows easily.
For the sake of completeness we present the proof of Theorem 6 that we describe in the beginning
of the section.

Theorem 6. LocalNodeMaxCut is PLS-complete.

18

Proof. For a given circuit C of the CircuitFlip, we can construct in polynomial time the instance
of LocalNodeMaxCut of Figure 3. Let an equilibrium of this instance. Without loss of
generality, we assume that Flag = 1. Then, by Theorem 4 and Theorem 5, IA = NextB,
NextB = Real −Next(IB) and Real − V al(IA) ≤ Real − V al(IB). As a result, we have that

Real − V al(IB) ≥ Real − V al(IA)
= Real − V al(NextB)
= Real − V al (Real −Next(IB))

But if IB 6= Real−Next(IB), by Definition 1 then Real−V al(IB) > Real−V al (Real −Next(IB))
which is a contradiction. Thus IB = Real−Next(IB) = IB , meaning that the string defined by the
values of IB is a locally optimal solution for the CircuitFlip problem.

Our technical contributions
As already mentioned the construction of Figure 3 follows the flip-flop architectures of previous

PLS reductions [18; 12; 6]. In all these reduction the selection of the weights in the connecting
edges played a crucial role. We briefly discuss the points of our reduction, which are at the heart of
the PLS-completeness proof of LocalNodeMaxCut.

Our Circuit Computing gadgets are based on the Circuit Computing gadgets introduced by
Schäffer and Yannakakis [18] (and used by Elsässer et al for similar problems [12; 6]). There is one
major modification of these gadgets, which concerns Case 3 of Theorem 3. Our Circuit Computing
gadgets can be constructed with the weight wControl being arbitrarily smaller than the weights of
the other nodes of the Circuit Computing gadget. The importance of this property for our reduction
is twofold: At first, Case 3 guarantees the Control node will have very small bias with respect to
the Circuit Computing gadget. This is very important since we were able to select the weights in the
Equality gadget large enough so as to control the write and the compute mode but at the same time
small enough so as not to affect the values of "input nodes" IA, IB. The second crucial reason that
necessitates wControl being small is that Control should follow the "output" of the Equality gadget
and not vice versa. It is here that the main difference between the LocalNodeMaxCut problem
and the original LocalMaxCut arises. The major difference between the Circuit Computing
gadgets introduced by Schäffer and Yannakakis [18] and ours, is that the Control node has small
bias with respect to the Circuit Computing gadget but weight comparable to the weights of the
internal nodes of the Circuit Computing gadget. All these reductions ensure that Control does not
influence its neighbors (outside the circuit computing gadget) by selecting sufficiently small weights
in the edges, something that cannot be done in the LocalNodeMaxCut problem. Our first main
technical contribution is establishing Cases 1 and 2 with the Control node having arbitrarily smaller
weight than the other nodes in the gadget. To achieve so we design a Leverage gadget that is
internally used in the Circuit Computing gadget. This gadget reduces the influence of a node with
large weight to a node with small weight and is presented in Section B.1.

The second important difference of our reduction concerns the red marks between the Flag
and the Copy gadgets in Figure 3. These red marks indicate that Flag node takes the output of
the Comparator gadget. These marks are more tricky to establish than the other red marks in
Figure 3. The reason is that both the Comparator and the Copy gadgets have input nodes in
NextA,NextB, V alA, V alB which have weights of the same order of magnitude as output nodes
of the Circuit Computing gadgets. As a result, this time the weights of the internal nodes in the
Comparison gadget cannot be selected sufficiently larger than the respective weights of the Copy

19

gadgets. In the work of Schäffer and Yannakakis [18; 12; 6] the bias of the Flag from the Copy
gadgets was made negligible to the respective bias from the Comparator by connecting the Flag
with the Copy gadgets with edges of sufficiently small weight. This is the second point where the
absence of weights on the edges plays a major role. We overcome this difficulty by again using the
Leverage gadget internally in the Copy gadget. Now the Leverage gadget decreases the influences of
the internal nodes of the Copy gadgets to the Flag making its bias much smaller than the bias of
the Comparator. This is formally established in Lemma 7.

Our final major technical contribution concerns the design of the Comparator gadget. As stated
in Lemma 7 our Comparator outputs (Real-Val(IA) ≥ Real-Val(IA)) even if some "input nodes"
of the Comparator have incorrect values. In the previous reductions the Comparator guaranteed
correctness both on the values of the nodes in NextB, ValB by the use of the suitable weights on
the connecting edges. Having the correct "input values", the comparison step is quite straightfoward
to implement. This decoupled architecture of the Comparator could not be implemented with a
LocalNodeMaxCut instance, due to the absence of edge-weights, and we had to deploy an all at
once Comparator that ensures correctness to some of its input nodes so as to perform correctly the
comparison step.

5 Conclusions and Future Work
In this paper we proved that weighted CGs are significantly harder than unweighted ones, even for
cases where unweighted CGs are easy. Alongside these results we proved that LocalNodeMaxCut
is PLS-complete. We note that the reductions we presented in Section 3 are both tight in the
sense defined by Schäffer and Yannakakis [18], which means they preserve certain characteristics
of the transition graph. In particular, for the first reduction we have that there are instances of
weighted CGs such that any best response sequence has exponential length, as well as the problem
of computing the equilibrium reached from a given initial state being PSPACE-hard.

However, we note that our reduction of CircuitFlip to LocalNodeMaxCut is not tight. To
see why this is true, one has to consider that the Copy and Equality gadgets do not guarantee that
the Circuit Computing gadget will not enter compute mode before the full input is changed. Hence,
we might “jump ahead” and reach an equilibrium faster than CircuitFlip would allow, preventing
the reduction from being tight.

Future directions include addressing the case where both constraints we considered coincide, i.e.,
the case of single-commodity weighted CGs on series-parallel networks with the identity function on
all links. Is this setting constrained enough so that a polynomial algorithm for computing equilibria
is possible or is it still PLS-hard? Another promising direction is using the ideas and reductions
introduced here to obtain hardness of approximating equilibria for weighted CGs, similar to the work
of Skopalik and Vöcking [19]. Lastly, it would be interesting to examine whether, in the context
of smoothed analysis, perturbing the weights of nodes would lead to smoothed (quasi-)polynomial
running time of best response sequences (similar to Angel et al. [2]).

20

References
[1] Heiner Ackermann, Heiko Röglin, and Berthold Vöcking. On the impact of combinatorial

structure on congestion games. J. ACM, 55(6):25:1–25:22, 2008.

[2] Omer Angel, Sébastien Bubeck, Yuval Peres, and Fan Wei. Local max-cut in smoothed
polynomial time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 429–437. ACM, 2017.

[3] Ioannis Caragiannis, Angelo Fanelli, Nick Gravin, and Alexander Skopalik. Efficient computation
of approximate pure nash equilibria in congestion games. In IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25,
2011, pages 532–541, 2011. doi: 10.1109/FOCS.2011.50. URL https://doi.org/10.1109/
FOCS.2011.50.

[4] Ioannis Caragiannis, Angelo Fanelli, Nick Gravin, and Alexander Skopalik. Approximate pure
nash equilibria in weighted congestion games: Existence, efficient computation, and structure.
ACM Trans. Economics and Comput., 3(1):2:1–2:32, 2015.

[5] Steve Chien and Alistair Sinclair. Convergence to approximate nash equilibria in congestion
games. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2007, pages 169–178.

[6] Robert Elsässer and Tobias Tscheuschner. Settling the complexity of local max-cut (almost)
completely. In Automata, Languages and Programming - 38th International Colloquium, ICALP,
pages 171–182, 2001.

[7] Eyal Even-Dar, Alexander Kesselman, and Yishay Mansour. Convergence time to nash equilibria.
In Automata, Languages and Programming, 30th International Colloquium, ICALP 2003, pages
502–513.

[8] Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The complexity of pure nash
equilibria. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 604–612, 2004. doi: 10.1145/1007352.1007445. URL
https://doi.org/10.1145/1007352.1007445.

[9] Angelo Fanelli and Luca Moscardelli. On best response dynamics in weighted congestion games
with polynomial delays. In Internet and Network Economics, 5th International Workshop,
WINE 2009, pages 55–66.

[10] Matthias Feldotto, Martin Gairing, Grammateia Kotsialou, and Alexander Skopalik. Computing
approximate pure nash equilibria in shapley value weighted congestion games. In Web and
Internet Economics - 13th International Conference, WINE 2017, pages 191–204.

[11] Dimitris Fotakis, Spyros C. Kontogiannis, and Paul G. Spirakis. Selfish unsplittable flows.
Theor. Comput. Sci., 348(2-3):226–239, 2005.

[12] Martin Gairing and Rahul Savani. Computing stable outcomes in hedonic games. In Algorithmic
Game Theory - Third International Symposium, SAGT, pages 174–185, 2010.

21

https://doi.org/10.1109/FOCS.2011.50
https://doi.org/10.1109/FOCS.2011.50
https://doi.org/10.1145/1007352.1007445

[13] Martin Gairing, Thomas Lücking, Marios Mavronicolas, and Burkhard Monien. Computing
nash equilibria for scheduling on restricted parallel links. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing, 2004, pages 613–622.

[14] Yiannis Giannakopoulos, Georgy Noarov, and Andreas S. Schulz. An improved algorithm for
computing approximate equilibria in weighted congestion games. CoRR, abs/1810.12806, 2018.

[15] Paul W. Goldberg. Bounds for the convergence rate of randomized local search in a multiplayer
load-balancing game. In Proceedings of the Twenty-Third Annual ACM Symposium on Principles
of Distributed Computing, PODC 2004, pages 131–140.

[16] David S Johnson, Christos H Papadimitriou, and Mihalis Yannakakis. How easy is local search?
Journal of computer and system sciences, 37(1):79–100, 1988.

[17] Wil Michiels, Emile Aarts, and Jan Korst. Theoretical Aspects of Local Search. Springer
Publishing Company, Incorporated, 1st edition, 2010.

[18] Alejandro A. Schäffer and Mihalis Yannakakis. Simple local search problems that are hard to
solve. SIAM J. Comput., 20(1):56–87, 1991.

[19] Alexander Skopalik and Berthold Vöcking. Inapproximability of pure nash equilibria. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 355–364, 2008. doi: 10.1145/1374376.1374428.
URL https://doi.org/10.1145/1374376.1374428.

22

https://doi.org/10.1145/1374376.1374428

A The Proofs of the Theorems of Section 3

A.1 The proof of Theorem 1

We will reduce from the PLS-complete problem LocalMaxCut and given an instance of MaxCut
we will construct a Weighted Network Congestion Game for which the Nash equilibria will correspond
to maximal solutions of LocalMaxCut and vice versa. First we give the construction and then
we prove the theorem. For the formal PLS-reduction, which needs functions φ1 and φ2, φ1 returns
the (polynomially) constructed instance described below and φ2 will be revealed later in the proof.

Let H(N,A) be an edge-weighted graph of a LocalMaxCut instance and let n = |N | and
m = |A|. In the constructed Weighted Network Congestion Game instance there will be 3n players
which will share n different weights inside the set {16i : i ∈ [n]} so that for every i ∈ [n] there
are exactly 3 players having weight wi = 16i. All players share a common origin-destination pair
o− d and choose o− d paths on a series-parallel graph G. Graph G is a parallel composition of two
identical copies of a series-parallel graph. Call these copies G1 and G2. In turn, each of G1 and
G2 is a series composition of m different series-parallel graphs, each of which corresponds to the m
edges of H. For every {i, j} ∈ A let Fij be the series-parallel graph that corresponds to {i, j}. Next
we describe the construction of Fij , also shown in Fig. 1.

Fij has 3 vertices, namely oij , vij and dij and n+ 1 links. For any k ∈ [n] other than i, j there is
an oij − dij link with latency function `k(x) = Dx

4k , where D serves as a big constant to be defined
later. There are also two oij − vij links, one with latency function `i(x) = Dx

4i and one with latency
function `j(x) = Dx

4j . Last, there is a vij − dij link with latency function `ij(x) = wijx
wiwj

, where wij
is the weight of edge {i, j} ∈ A and wi and wj are the weights of players i and j, respectively,
as described earlier. Note that in every Fij and for any k ∈ [n] the latency function `k(x) = Dx

k
appears in exactly one link. With Fij defined, an example of the structure of such a network G is
given in Fig. 2.

Observe that in each of G1 and G2 there is a unique path that contains all the links with latency
functions `i(x), for i ∈ [n], and call these paths pui and pli for the upper (G1) and lower (G2) copy
respectively. Note that each of pui and pli in addition to those links, contains some links with latency
function of the form wijx

wiwj
. These links for path pui or pli is in one to one correspondence to the edges

of node i in H and this is crucial for the proof.
We go on to prove the correspondence of Nash equilibria in G to maximal cuts in H, i.e.,

solutions of LocalMaxCut. We will first show that at a Nash equilibrium, a player of weight wi
chooses either pui or pli. Additionally, we prove that pui and pli will have at least one player (of weight
wi). This already provides a good structure of a Nash equilibrium and players of different weights,
say wi and wj , may go through the same link in G (the edge with latency function wijx/wiwj) only
if {i, j} ∈ A. The correctness of the reduction lies in the fact that players in G try to minimize their
costs incurred by these type of links in the same way one wants to minimize the sum of the weights
of the edges in each side of the cut when solving LocalMaxCut.

To begin with, we will prove that at equilibrium any player of weight wi chooses either pui or
pli and at least one such player chooses each of pui and pli. For that, we will need the following
proposition as a building block, which will also reveal a suitable value for D.

Proposition 7. For some i, j ∈ [n] consider Fij (Fig. 1) and assume that for all k ∈ [n], there are
either one, two or three players of weight wk that have to choose an oij − dij path. At equilibrium,
all players of weight wk (for any k ∈ [n]) will go through the path that contains a link with latency

23

function `k(x).

Proof. The proof is by induction on the different weights starting from bigger weights. For any
k ∈ [n] call ek the link of Fij with latency function `k(x) and call eij the link with latency function
wijx
wiwj

. For some k ∈ [n] assume that for all l > k all players of weight wl have chosen the path
containing el and lets prove that this is the case for players of weight wk as well. Since D is going
to be big enough, for the moment ignore link eij and assume that in Fij there are only n parallel
paths each consisting of a single link.

Let the players be at equilibrium and consider any player, say player K, of weight wk. The cost
she computes on ek is upper bounded by the cost of ek if all players with weight up to wk are on
ek, since by induction players with weight > wk are not on ek at equilibrium. This cost is upper

bounded by ck = D(3
∑k

l=1 16l)
4k = 3D 16k+1−1

16−1
4k .

For any link el for l < k, the cost that K computes is lower bounded by c< = D16k

4k−1 since she
must include herself in the load of el and the link with the smallest slope in its latency function is
ek−1. But then ck < c< since

ck < c< ⇔
3D 16k+1−1

16−1
4k <

D16k
4k−1 ⇔ 48 · 16k − 3 < 60 · 16k.

Thus, at equilibrium players of weight wk cannot be on any of the el’s for all l < k. On the other
hand, the cost that K computes for el for l > k is at least c>l = D(16l+16k)

4l , since by induction el is
already chosen by at least one player of weight wl. But then ck < c>l since

3D 16k+1−1
16−1

4k <
D(16l + 16k)

4l ⇔ 48·16k−3 < 1516l + 16k
4l−k ⇐ 48·4l−k16k < 15·16l = 15·4l−k4l−k16k.

Thus, at equilibrium players of weight wk cannot be on any of the el’s for all l > k.
This completes the induction for the simplified case where we ignored the existence of eij ,

but lets go on to include it and define D so that the same analysis goes through. By the above,

c< − ck = D16k

4k−1 −
3D 16k+1−1

16−1
4k > D and also for any l > k it is c>l − ck = D(16l+16k)

4l − 3D 16k+1−1
16−1
4k > D

(this difference is minimized for l = k + 1). On the other hand the maximum cost that link eij
may have is bounded above by cij = wij3

∑n

l=1 16l

wiwj
, as eij can be chosen by at most all of the

players and note that cij ≤ 16n+1 maxq,r∈[n]wqr. Thus, one can choose a big value for D, namely
D = 16n+1 maxq,r∈[n]wqr, so that even if a player with weight wk has to add the cost of eij when
computing her path cost, it still is cij + ck < c< (since c< − ck > D ≥ cij) and for all l > k:
cij + ck < c>l (since c>l − ck > D ≥ cij), implying that at equilibrium all players of weight wk may
only choose the path that goes through ek.

Other than revealing a value for D, the proof of Porposition 7 reveals a crucial property: a
player of weight wk in Fij strictly prefers the path containing ek to the path containing el for any
l < k, independent to whether players of weight > wk are present in the game or not. With this in
mind we go back to prove that at equilibrium any player of weight wi chooses either pui or pli and at
least one such player chooses each of pui and pli. The proof is by induction, starting from bigger
weights.

Assume that by the inductive hypothesis for every i > k, players with weights wi have chosen
paths pui or pli and at least one such player chooses each of pui and pli. Consider a player of weight

24

wk, and, wlog, let her have chosen an o− d path through G1. Since at least one player for every
bigger weight is by induction already in the paths of G1 (each in her corresponding pui), Proposition
7 and the remark after its proof give that in each of the Fij ’s the player of weight wk has chosen the
subpath of puk , and this may happen only if her chosen path is puk . It remains to show that there is
another player of weight wk that goes through G2, which, with an argument similar to the previous
one, is equivalent to this player choosing path plk.

To reach a contradiction, let puk be chosen by all three players of weight wk, which leaves plk
empty. Since all players of bigger weights are by induction settled in paths completely disjoint to
plk, the load on this path if we include a player of weight wk is upper bounded by the sum of all
players of weight < wk plus wk, i.e., 16k + 3∑k−1

t=1 16t = 16k + 316k−1
16−1 , which is less than the lower

bound on the load of puk , i.e., 3 · 16k (since puk carries 3 players of weight 16k). This already is a
contradiction to the equilibrium property, since puk and plk share the exact same latency functions
on their links which, given the above inequality on the loads, makes puk more costly than plk for a
player of weight wk. To summarize, we have the following.

Proposition 8. At equilibrium, for every i ∈ [n] a player of weight wi chooses either pui or pli.
Additionally, each of pui and pli have been chosen by at least one player (of weight wi).

Finally, we prove that every equilibrium of the constructed instance corresponds to a maximal
solution of LocalMaxCut and vice versa. Given a maximal solution S of LocalMaxCut we will
show that the configuration Q that for every k ∈ S routes 2 players through puk and 1 player through
plk and for every k ∈ N \ S routes 1 player through puk and 2 players through plk is an equilibrium.
Conversely, given an equilibrium Q the cut S = {k ∈ N : 2 players have chosen puk at Q} is a
maximal solution of LocalMaxCut.

Assume that we are at equilibrium and consider a player of weight wk that has chosen puk and
wlog puk is chosen by two players (of weight wk). By the equilibrium conditions the cost she computes
for puk is at most the cost she computes for plk, which, given Proposition 8, implies

m∑
i=1

2D16k
4k +

∑
{k,j}∈A

wkj(2 · 16k + xuj 16j)
16k16j ≤

m∑
i=1

2D16k
4k +

∑
{k,j}∈A

wkj(2 · 16k + xlj16j)
16k16j

where xuj (resp. xlj) is either 1 or 2 (resp. 2 or 1) depending whether, for any j : {k, j} ∈ A, one or
two players (of weight wj) respectively have chosen path puj . By canceling out terms, the above
implies ∑

{k,j}∈A
wkjx

u
j ≤

∑
{k,j}∈A

wkjx
l
j ⇔

∑
{k,j}∈A

wkj(xuj − 1) ≤
∑
{k,j}∈A

wkj(xlj − 1) (2)

Define S = {i ∈ N : xui = 2}. By our assumption it is k ∈ S and the left side of (2), i.e.,∑
{k,j}∈Awkj(xuj − 1), is the sum of the weights of the edges of H with one of its nodes being k

and the other belonging in S. Similarly, the right side of of (2), i.e., ∑{k,j}∈Awkj(xlj − 1) is the
sum of the weights of the edges with one of its nodes being k and the other belonging in N \ S.
But then (2) directly implies that for the (neighboring) cut S′ where k goes from S to N \ S it
holds W (S) ≥W (S′). Since k was arbitrary (given the symmetry of the problem), this holds for
every k ∈ [n] and thus for every S′ ∈ ND(S) it is W (S) ≥ W (S′) proving one direction of the
claim. Observing that the argument works backwards we complete the proof. For the formal proo,
to define function φ2, given the constructed instance and one of its solutions, say s′, φ2 returns
solution s = {k ∈ N : 2 players have chosen puk at s′}.

25

Figure 6: (a) The construction of the reduction of Theorem 2. As an example, in orange are the least costly
o2 − d2 paths pu

2 (up) and pl
2 (down), each with cost equal to 2D + 2d+ (n− 2)D. (b) The replacement of

the red node at the i-th row and j-th column of the upper half-grid whenever edge {i, j} ∈ A. A symmetric
replacement happens in the lower half-grid.

A.2 The proof of Theorem 2

We will reduce from the PLS-complete problem LocalNodeMaxCut. Our construction draws
ideas from Ackermann et al. [1]. For an instance of LocalNodeMaxCut we will construct a
multi-commodity Network Congestion Game where every equilibrium will correspond to a maximal
solution of LocalNodeMaxCut and vice versa. For the formal PLS-reduction, which needs
functions φ1 and φ2, φ1 returns the (polynomially) constructed instance described below and φ2
will be revealed later in the proof.

We will use only the identity function as the latency function of every link, but for ease of
presentation we will first prove our claim assuming we can use constant latency functions on the
links. Then we will describe how we can drop this assumption and use only the identity function on
all links, and have the proof still going through.

Let H(N,A) be the node-weighted graph of an instance of LocalNodeMaxCut and let n = |N |
and m = |A|. The Weighted Network Congestion Game will have n players, with player i having
her own origin destination oi − di pair and weight wi equal to the weight of node i ∈ N . In the
constructed network there will be many oi − di paths for every player i but there will be exactly
two paths that cost-wise dominate all others. At equilibrium, every player will choose one of these
two paths that correspond to her. This choice for player i will be equivalent to picking the side of
the cut that node i should lie in order to get a maximal solution of LocalNodeMaxCut.

The initial network construction is shown in Fig. 6. It has n origins and n destinations. The
rest of the vertices lie either on the lower-left half (including the diagonal) of a n× n grid, which
we call the upper part, or the upper-left half of another n× n grid, which we call the lower part.
Other than the links of the two half-grids that are all present, there are links connecting the origins

26

and the destinations to the two parts. For i ∈ [n], origin oi in each of the upper and lower parts
connects to the first (from left to right) vertex of the row that has i vertices in total. For i ∈ [n],
destination di in each of the upper and lower parts connects to the i-th vertex of the row that has n
vertices in total. To define the (constant) latency functions, we will need 2 big constants, say d and
D = n3d, and note that D � d.

All links that connect to an origin or a destination and all the vertical links of the half-grids will
have constant D as their latency function, and any horizontal link that lies on a row with i vertices
will have constant i · d as its latency function. To finalize the construction we will do some small
changes but note that, as it is now, player i has two shortest paths that are far less costly (at least
by d) than all other paths. These two paths are path pui that starts at oi, continues horizontally
through the upper part for as much as it can and then continues vertically to reach di, and path pli
which does the exact same thing through the lower part (for an example see Fig. 6a). Each of pui
and pli costs equal to ci = 2D + i(i− 1)d+ (n− i)D. To verify this claim simply note that (i) if a
path tries to go through another origin or moves vertically away from di in order to reach less costly
horizontal links, then it will have to pass through at least (2 + i− 1) + 2 vertical links of cost D and
its cost from such edges compared to pui ’s and pli’s costs increases by at least 2D = 2n3d, which is
already more than paying all horizontal links; and (ii) if it moves vertically towards di earlier than
pui or pli then its cost increases by at least d, since it moves towards more costly horizontal links.

To complete the construction if {i, j} ∈ A (with wlog i < j) we replace the (red) vertex at
position i, j of the upper and the lower half-grid (1, 1 is top left for the upper half-grid and lower
left for the lower half-grid) with two vertices connected with a link, say euij and elij respectively, with
latency function `ij(x) = x, where the first vertex connects with the vertices at positions i, j − 1
and i− 1, j of the grid and the second vertex connects to the vertices at positions i+ 1, j and i, j+ 1
(see also Fig. 6b). Note that if we take d�∑

k∈[n]wk, then, for any i ∈ [n], paths pui and pli still
have significantly lower costs than all other oi − di paths. Additionally, if {i, j} ∈ A then pui and puj
have a single common link and pli and plj have a single common link, namely euij and elij respectively,
which add some extra cost to the paths (added to ci defined above).

Assume we are at equilibrium. By the above discussion player i ∈ [n] may only have chosen
pui or pli. Let S = {i ∈ [n] : player i has chosen pui }. We will prove that S is a solution to
LocalNodeMaxCut. By the equilibrium conditions for every i ∈ S the cost of pui , say cui , is less
than or equal to the cost of pli, say cli. Given the choices of the rest of the players, and by defining
Si to be the neighbors of i in S, i.e. Si = {j ∈ S : {i, j} ∈ A}, and Ni be the neighbors of i in N ,
i.e. Ni = {j ∈ N : {i, j} ∈ A}, cui ≤ cli translates to(
2D+i(i−1)d+(n−i)D

)
+
(∑
j∈Ni

wi+
∑
j∈Si

wj
)
≤
(
2D+i(i−1)d+(n−i)D

)
+
(∑
j∈Ni

wi+
∑

j∈Ni\Si

wj
)

with the costs in the second and fourth parenthesis coming from the eij ’s for the different j’s. This
equivalently gives ∑

j∈Si

wj ≤
∑

j∈Ni\Si

wj ⇔
∑
j∈Si

wiwj ≤
∑

j∈Ni\Si

wiwj .

The right side of the last inequality equals to the weight of the edges with i as an endpoint
that cross cut S. The left side equals to the weight of the edges with i as an endpoint that
cross the cut S′, where S′ is obtained by moving i from S to N \ S. Thus for S and S′ it is
W (S′) ≤ W (S). A similar argument (or just symmetry) shows that if i ∈ N \ S and we send i
from N \ S to S to form a cut S′ it would again be W (S′) ≤ W (S). Thus, for any S′ ∈ ND(S)

27

it is W (S) ≥ W (S′) showing that S is a solution to LocalNodeMaxCut. Observing that the
argument works backwards we have that from an arbitrary solution of LocalNodeMaxCut we
may get an equilibrium for the constructed Weighted Congestion Game instance. For the formal
part, to define function φ2, given the constructed instance and one of its solutions, φ2 returns
solution s = {i ∈ [n] : player i has chosen pui }.

What remains to show is how we can almost simulate the constant latency functions so that we
use only the identity function on all links and, for every i ∈ [n], player i still may only choose paths
pui or pli at equilibrium. Observe that, since we have a multi-commodity instance we can simulate
(exponentially large) constants by replacing a link {j, k} with a three link path j − ojk − djk − k,
adding a player with origin ojk and destination djk and weight equal to the desired constant.
Depending on the rest of the structure we may additionally have to make sure (by suitably defining
latency functions) that this player prefers going through link {ojk, djk} at equilibrium.

To begin with, consider any horizontal link {j, k} with latency function i · d (for some i ∈ [n])
and replace it with a three link path j − ojk − djk − k. Add a player with origin ojk and destination
djk with weight equal to in3w, where w = ∑

i∈[n]wi, and let all links have the identity function.
At equilibrium no matter the sum of the weights of the players that choose this three link path,
the ojk − djk player prefers to use the direct ojk − djk link or else she pays at least double the cost
(middle link vs first and third links). Thus the above replacement is (at equilibrium) equivalent to
having link {j, k} with latency function 3x+ in3w = 3x+ i · d, for d = n3w.

Similarly, consider any link {j, k} with latency function D and replace it with a three link path
j − ojk − djk − k. Add a player with origin ojk and destination djk with weight equal to n3d and let
all links have the identity function. Similar to above, this replacement is (at equilibrium) equivalent
to having link {j, k} with latency function 3x+ n3d = 3x+D, for D = n3d.

With these definitions, at equilibrium, all complementary players will go through the correct
links and, due to the complementary players, all links that connect to an origin or a destination will
have cost ≈ D, all vertical links of the half-grids will cost ≈ D, and any horizontal link that lies on
a row with i vertices will cost ≈ i · d, where “≈” means at most within ±3w = ± 3d

n3 (note that w is
the maximum weight that the oi − di players can add to each of the three link paths). Additionally,
for every i ∈ [n], pui and pli are structurally identical, i.e., they have the same structure, identical
complementary players on their links and share the same latency functions. All the above make the
analysis go through in the same way as in the simplified construction.

B Details for the PLS-completeness Proof of LocalNodeMaxCut
In the following sections we fully present all the details of the construction for the proof of Theorem
6. Recall that our NodeMaxCut instance is composed of the following gadgets:

1. Leverage gadgets that are used to transmit nonzero bias to nodes of high weight.

2. Two Circuit Computing gadgets A,B that calculate the values and next neighbors of solutions.

3. A Comparator gadget

4. Two Copy gadgets that transfer the solution of one circuit to ther other, and vice versa.

5. Two controller gadgets that decide which circuit should enter write or compute mode.

28

Note that whenever we wish to have a node of higher weight that dominates all other nodes of
lower weight, we multiply its weight with 2kN for some constantr k. We then choose N sufficiently
high so that, for all k, nodes of weight 2kN dominate all nodes of weight 2(k−1)N . Henceforth, we
will assume N has been chosen sufficiently high for this purpose.

Moreover, when we have constant nodes of a certain value (i.e. pinned to 1) we connect them
with one of two supernodes. Supernodes are nodes of huge weight that share an edge and as a result
at any equilibrium these nodes have opposite value. In particular, these supernodes have weight
21000N which dominates the weight of any other node, given we chose N as described above. The
term Control = 1 means that the Control node has the same value with the 1-node.

When we reference the value of a circuit, we will mean the value that the underlying CircuitFlip
instance would output given the same input.

When we reference the value of a node we will mean the side of the cut it lies on. There are two
values, 0, 1 for each side of the cut.

B.1 Leverage Gadget

The Leverage gadget is a basic construction in the PLS completeness proof. This gadget solves a
basic problem in the reduction. Suppose that we have a node with relatively small weight A and we
want to bias a node with large weight B. For example, the large node might be indifferent towards
its other neighbors, which would allow even a small bias from the small node to change its state. We
would also like to ensure that the large node does not bias the smaller one with very large weight,
in order for the smaller to retain its value.

This problem arises in various parts of the PLS proof. For example, we would like the outputs
of a circuit to be fed back to the inputs of the other one. The outputs have very small weight
compared to the inputs, since the weights drop exponentially in the Circuit Computing gadget. We
would like the inputs of Circuit 2 to change according to the outputs of circuit 1 and not the other
way around. Another example involves the Equality Gadget, which influences the Control` of the
Circuit Computing gadget. The nodes of the Gadget have weights of the order of 210N , while the
control nodes of the Circuit Computing gadget are of the order of 2100N . We would like the output
of the gadget to bias the Control` nodes, while also remaining independent from them.

Let’s get back to the original problem. A naive solution would be to connect node A directly
with node B. However, this would result in node B biasing node A due to the larger weight it
possesses. For example, if we connected Control1 with the control variables of Circuit 2, then they
would always bias Control1 with a very large weight, rendering the entire Equality gadget useless.
We would like to ensure that node A biases B with a relatively small weight, while also experiencing
a small bias from it.

The solution we propose is a Leveraging gadget that is connected between nodes A and B. It’s
construction will depend on the weights A and B, as well as the bias that we would like B to
experience from A. Before describing the construction, we discuss it’s functionality on a high level.

As shown in Figure 7, we place the gadget between the nodes A and B. We use two parameters
x, ε in the construction. We first want to ensure that node A experiences a small bias from the
gadget. This is why we put nodes L1,1, L1,2 at the start with weight B/2x+1 + ε, which puts a
relatively small bias. We want these nodes to be dominated by A. This is why nodes L1,3, L1,4 have
combined weight less than A. However, these nodes cannot directly influence B, since it’s weight
dominates the weights of L1,1, L1.2. For this reason, we repeat this construction x+ 1 times, until
nodes Lx,1, Lx,2, whose combined weight is slightly larger than B. This means that nodes Lx,3, Lx,4

29

are not dominated by B and can therefore be connected directly with it. The details of the proof
are given below.

Figure 7: The Leveraging Gadget

Lemma 8. If the input node A of a leverage gadget with output node B, parameters x, ε, has value
1, then the output node experiences bias wA/2x + 2 ∗ ε towards 0, while the input node A experiences
bias wB/2x− 2 ∗ ε towards 1. If A has value 0, then B experiences the same bias towards 1, while A
is biased towards 0.

Proof. We first consider the nodes L1,1, L1,2. They both experience bias wA towards the opposite
value of A, which is greater than the remaining weight of their neighbors 2 ∗ wA − 2 ∗ ε, and hence
they are both dominated to take the opposite value of A. Similarly, the nodes L1,3, L1,4 are now
biased to take the opposite values of L2,1, L2,2 with bias at least wB/2x + 2 ∗ ε, which is greater
than the remaining neighbors of wB/2x + ε. Hence, both L1,3, L1,4 have the same value as A in any
equilibrium. In a similar way, we can prove that, in any equilibrium Li,3 = Li,4 = A, and therefore
B experiences bias wA/2x + 2 ∗ ε towards the opposite value of A, while A experiences bias at most
wB/2x − 2 ∗ ε from this gadget.

Note that the above lemma works for any value of ε. This means that we can make the bias
that B experiences arbitrarily close to wB/2x. For all cases where such a Leverage gadget is used, it
is implied that ε = 2−1000N which is smaller than all other weights in the construction. Hence, we
only explicitly specify the x parameter and, for simplicity, such a Leverage gadget is denoted as
below schematically.

Figure 8: Leveraging Gadget notation

B.2 Circuit Computing Gadget

Each of the two computing circuits is meant to both calculate the value of the underlying CircuitFlip
instance, as well as the best neighboring solution. For technical reasons one of the two circuits will
need to output the complement of the value instead of the value itself, so that comparison can be
achieved later with a single node.

In this section we present the gadgets that implement the above circuits in a LocalNodeMax-
Cut instance. The construction below is similar to the constructions of Schäffer and Yannakakis

30

used to prove LocalMaxCut PLS-complete ([18]). Since NOR is functionally complete we can
implement any circuit with a combination of NOR gates. In particular, each NOR gate is composed
of the gadgets below. Each such gadget is parameterized by a variable n, and a NOR gadget with
parameter n is denoted NOR(n). Since we wish for earlier gates to dominate later gates we order
the gates in reverse topological order, so as to never have a higher numbered gate depend on a lower
numbered gate. The ith gate in this ordering corresponds to a gadget NOR(2N+i). Note that the
first gates of the circuit have high indices, while the final gates have the least indices.

We take care to number the gates so that the gates that each output the final bit of the value
of the circuit are numbered with the n lowest indexes, i.e. the gate of the kth bit of the value
corresponds to a gate NOR(2N+k). This is necessary so that their output nodes can be used for
comparing the binary values of the outputs.

The input nodes of these gadgets are either an input node to the whole circuit or they are the
output node of another NOR gate, in which case they have the weight prescribed by the previous
NOR gate. The input nodes of the entire circuit (which are not the output nodes of any NOR gate)
are given weight 25N .

Figure 9: The NodeMaxCut instance implementing a NOR(n) gadget.

Moreover, we have y1
i ,z1

i nodes which are meant to bias the internal nodes of each gadget and
determine its functionality. Specifically, a1

i , a
2
i , c

1
i , c

2
i , vi, b

3
i are biased to have the same value as y1

i ,
while b1

i , b
2
i , d

1
i , d

2
i , c

3
i are biased to have the same value as z1

i . This is achieved by auxiliary nodes of
weight 2−200N , shown in Figure 10.

31

Figure 10: Local bias to internal nodes from y1
i , z

1
i

We also have auxiliary nodes ρ of weight 2−500N that bias the output node gi to the correct
NOR output value. Note that these nodes have the lowest weight in the entire construction.

Figure 11: Extremely small bias to NOR output value.

These control nodes, y1, z1, y2, z2 are meant to decide the functionality of the gadget. We say
that the y, z nodes have their natural value when y = 1 and z = 0. We say they have their unnatural
value when y = 0 or z = 0. In general, when these nodes all have their natural values the NOR
gadget is calculating correctly and when they have their unnatural values the circuit’s inputs are
indifferent to the gadget.

Unlike Schäffer and Yannakakis ([18]) we add two extra control variable nodes y3, z3 to each such
NOR gadget, both of weight n− 50. The reason is to ascertain that in case of incorrect calculation
at least one y variable will have its unnatural value. Otherwise, it would be possible, for example,
to have an incorrect calculation with only z2 being in an unnatural state.

These NOR gadgets are not used in isolation, but instead compose a larger computing circuit.
As Schäffer and Yannakakis do ([18]), we connect each of the control variables zi, yi of the above
construction so as to propagate their natural or unnatural values depending on the situation. The
connection of these gadgets is done according to the ordering we established earlier. Recall that the
last m gates correspond to gadgets calculating the value bits, the n gates before them correspond
to the output gates of the next neighbor, and the rest are internal gates of the circuit.

32

Figure 12: Connecting the control nodes of the NOR gadgets. Recall that M is the number of total gates in
the circuit, n is the number of solution bits and m is the number of value bits. Note that the gates are ordered
in reverse, i.e the first gates have highest index.

These gadgets’ function is twofold. Firstly, they detect a potential error in a NOR calculation
and propagate it to further gates, if the control variables have their unnatural values. Second,if the
control variables have their unnatural values, they insulate the inputs so that they are indifferent to
the gadget and can be changed by any external slight bias.

Furthermore, all the nodes of these gadgets are all multiplied by a 2100N weight, except the
nodes of the NOR gadget corresponding to the final bits of the value which are multiplied by 290N .
This is so that a possible error in the calculation of the next best neighbor supersedes any possible
result of the comparison. The auxiliary nodes introduced above, which are meant to induce small
biases to internal nodes, are not multiplied by anything.

Lastly, for technical simplicity, we have a single node for each computing circuit meant to induce
bias to all control variable nodes y, z at the same time. The topology of the connection is presented
below.

Figure 13: We use a single node Control to bias all control nodes y, z. Note that this node is connected with
the y, z nodes through leverage gadgets

We now prove the properties of these gadgets.

Lemma 9. In an equilibrium, if z1
i = 1 and y1

i = 0, then I1(gi), I2(gi) are indifferent with respect
to the gadget Gi.

33

Proof. Since z1
i = 1 and y1

i = 0, by the previous lemma, z2
i = 1 and y2

i = 0 Since y1
i = 0,

a1
i , a

2
i , c

1
i , c

2
i , v, b

3
i have an ε = 2−200N bias towards 0. Since z1

i = 1, d, c3
i , b

1
i , b

2
i have an ε = 2−200N

bias towards 1. Assume gi = 0. Then b1
i has bias at least 2100N ∗ (2 ∗ 2i + 10) + 2−200N towards

1 which dominates his best response. Hence, b1
i = 1 in this case. Now a1

i has bias at least
w(I1) + 2100N ∗ 2i + 2−200N towards 0 which also dominates. Therefore, a1

i = 0. Similarly, a2
i = 0.

Moreover, c3
i has y2

i and g as neighbors which are both 0 so it can take its preferred value of c3
i = 1.

Assume both d1
i , d

2
i are 0. Then v = 1 and b3

i = 1 and hence at least one of d1
i , d

2
i would have

incentive to change to 1. If d1
i = 0, d2

i = 1 then v = 0 due to its 2−200N bias. Also, b3
i = 0 because

d1
i = 0, d2

i = 1, g = 0, c3
i = 1 balance each other out b3

i = 0 due to its 2−200N bias. Since d1
i

experiences at least 2100N ∗ 2 ∗ 2i + 10 + w(I1
i) + 2−200N bias towards 1 it can only be d1

i = 1 in
equilibrium. Hence, if g = 0 =⇒ d1

i = d2
i = 1, a1

i = a2
i = 0. Assume gi = 1. Then c1

i experiences
bias towards 0 from gi and z2

i which together with the 2−200N bias from y1
i means that his dominant

strategy is to take the value 0. Now b1
i experiences bias from c1

i = 0 towards 1 as well as bias
2100N ∗2i + 10 towards 1. Along with the 2−200N bias from z1

i we have that b1
i = 1 in any equilibrium.

Similarly, b2
i = 1 by symmetry. Hence, in this case as well a1

i is 0 in any equilibrium. Similarly, we
get that a2

i = 0 in any equilibrium.
Assume both d1

i = d2
i = 0 then, as above, we have that b3

i = 1 and hence at least one of the
d would gain the edge of weight 2−200N by taking the value 1. Hence, at least one d is equal to 1
and b3

i = 0 since it is indifferent with respect to g, c3
i . Since v is now indifferent with respect to

d1
i = 0, d2

i = 1 it takes its preferred value v = 0. Since b3
i = v = 0 we have that both d1

i , d
2
i must

take their preferred values d1
i = d2

i = 1 in any equilibrium.
In both cases both a1

i = a2
i = 0, d1

i = d2
i = 1 and hence I1(gi), I2(gi) are indifferent with respect

to the gadget.

Lemma 10. If gate Gi is incorrect, then z2
i = 1. If y2

i = 0 then z2
i = 1. If z2

i = 1, then for all
j < i z1

j = z2
j = z3

j = 1 and y1
j = y2

j = y3
j = 0.

Proof. There are two possibilities if Gi is incorrect. Either one of the inputs I1(gi), I2(gi) is 1 and
gi = 1 or both I1(gi) = I2(gi) = 0 and gi = 0.

In the first case, without loss of generality we have that I1(gi) = 1. This means that node a1
i is

biased towards value 0 with weight at least 2 ∗ 2i+1 ∗ 2100N by I1(gi) and constant node 1. This
bias is greater than the weight of all the other neighbors of a1

i combined. Hence, in equilibrium,
a1
i = 0. Hence, node b1

i is biased towards value 1 with weight at least 2 ∗ |a1
i |, which is greater than

the total weight of all the other neighbors of b1
i combined. Hence, b1

i = 1. Similarly, we can argue
that a2

i = 0 and b2
i = 1 if I2(gi) = 1.

Since b1
i = 1 and gi = 1, node ci is biased towards 0 with weight at least 2 ∗ 2i ∗ 2100N , which is

greater than the total weight of all the other neighbors of c1
i combined. Hence, c1

i = 0. We now
focus on node z2

i . Its neighbors are two nodes of weight 2i ∗ 2100N with constant value 0, nodes c1
i ,

c2
i , y3

i and a constant node 1 with weights 2100N ∗ (2i − 50) and some auxiliary nodes of negligible
weight. If c1

i = 0, then z2
i is biased towards 1 with weight at least 3 ∗ 2i ∗ 2100N , which is greater

than the weight of the remaining neighbors combined. Hence, in equilibrium, z2
i = 1. Hence, the

claim has been proved in this case. If I2(gi) = 1, the proof is analogous.
Now suppose I1(gi) = I2(gi) = 0 and gi = 0. Since I1(gi) = 0, node d1

i is biased towards 1 with
weight at least 2 ∗ 2i+1 ∗ 2100N , which is greater that the weight of all its other neighbors combined.
Hence, d1

i = 1. Similarly, we can prove that d2
i = 1. This means that node b3

i is biased towards

34

0 with weight at least 2 ∗ (2i + 10) ∗ 2100N , which is greater than the weight of its other nodes
combined. This implies that b3

i = 0. By the same reasoning, vi = 0. Since b3
i = gi = 0, node c3

i is
biased towards 1 with weight at least 2 ∗ 2i ∗ 2100N , which is greater than the weight of its other
nodes combined. Hence, c3

i = 1. Now we focus on node y2
i . Its neighbors are a node of weight

2i ∗ 2100N with constant value 1, node c3
i with weight 2i ∗ 2100N , z1

i ,a constant node 1 both with
weight 2100N ∗ (2i20) ,z2

i and a constant 0 with weight 2100N ∗ 2i − 10 and some auxiliary nodes of
negligible weight. Hence, y2

i is biased towards 0 with weight at least 2 ∗ 2i ∗ 2100N , which is greater
than the weight of the remaining neighbors combined. Hence, y2

i = 0.
We are now going to prove that if y2

i = 0, then z2
i = 1, which concludes the proof for this

case and is also the second claim of the lemma. We first notice that z2
i is never biased towards

0 by the nodes of the NOR gadget. Hence, if the bias of the remaining nodes is towards 1, then
z2
i = 1 in equilibrium. We notice that nodes y2

i and constant node 0 bias our node with weight
2 ∗ (2i− 10) ∗ 2100N , which is greater that any potential bias by nodes y3

i and constant 1 in the chain
of total weight 2 ∗ 2100N ∗ (2i − 50). Hence, z2

i = 1.
It remains to prove the last claim of the Lemma. It suffices to show that when a zi in the chain

is 1, the next yi+1 will be 0 and the claim will follow inductively. By a similar argument to the
one used for the second claim, node yi+1 is not biased towards 1 by any node in the NOR gadget.
However, it experiences bias towards 0 from node zi and constant node 1, which is greater than any
other potential bias from its other neighbors. Hence, yi+1 = 0 and the claim follows.

Lemma 11. Suppose z1
i = 0 and y1

i = 1. If gi is correct then z2 and y2 are indifferent with respect
to the other nodes of the gate Gi. If gi is incorrect then gi is indifferent with respect to the other
nodes of the gate Gi, but gains the node ρ of weight 2−500N .

Proof. Assume gi is corrrect.
Assume at least one of I1(gi), I2(gi) is equal to 1, say I1(gi) = 1, hence at least one of d1

i , d
2
i ,

assume d1
i , is equal to 0. This is because otherwise it would experience bias from its neighbors

I1(gi),d2
i towards 0 which, along with the bias from the auxiliary node between y1

i and d1
i , would

dominate it towards 0. Therefore, b3
i experiences bias towards 1 from both gi, which is correct, and

d1
i , which means, along with the bias from y1

i , its equal to 1. Hence, c3
i must be equal to 0, since it

is dominated by the bias from b3
i , the constant node of 1 and its auxiliary bias from z1

i . Hence, c3
i is

0 and y2
i is indifferent.

Assume I1(gi) = 0, I2(gi) = 0. Hence, d1
i = 1, d2

i = 1, which means that b3
i = 0. Since g is

correct, it must be g = 1, and therefore c3
i = 0, since it can take its preferred value of 0, towards

which it is biased by z1
i . Therefore, y2

i is indifferent to this gadget.
Moreover, since gi = 0 it must be that c1

i = c2
i = 1 since they both have gi and a constant 0

node as their neighbors, which along with the bias from yi, dominates their bias. Since z2
i neighbors

with two 1 nodes and two 0 nodes it is indifferent with respect to this gadget.
In all cases, when gi is correct, y2

i , z2
i are indifferent.

Assume gi is incorrect,
Assume at least one of I1(gi),I2(gi) is equal to 1. Similarly to above, d1

i = 0. Since, gi is incorrect
c3
i will be 0 due to the bias from gi, the constant node 1 and z1

i . Hence, b3
i = 1. The node gi is

therefore indifferent with respect to this gadget.
Furthermore, since I1(gi) = 1, a1

i = 0 and b1
i = 1. Since gi = 1 we have that c3

i = 0. Also, since
I2(gi) = 0, a2

i must take its preferred value of 1, and hence b2
i takes its preferred value of 0. Similarly,

35

c2
i can also take its preferred value of 1. Overall, gi is connected to b1

i = 1,c1
i = 0,b2

i = 0,c2
i = 1 and

hence is indifferent
Assume both I1(gi) = I2(gi) = 0. Then d1

i = d2
i = 1, which means that b3

i = 0, and since gi = 0,
we have that c3

i = 1. Hence, gi is indifferent with respect to this gadget.
Because I1(gi) = I2(gi) = 0, we have that a1

i = a2
i = 1 since they can take their preferred values.

Moreover, b1
i = b2

i = 0 since they are biased to 0 by z2
i . Given that gi = 0 it must be that both

c1
i = c2

i = 1. Therefore, gi indifferent in this case as well.
Since in all cases that gi is incorrect, it is indifferent with respect to this gadget, it will adhere

to the bias that the auxiliary gadget connecting a1
i , a

2
i , gi gives to gi. If both Ii is 1 then a1

i = 0 and
if Ii = 0 then a1

i = 1. In all cases, ai = ¬Ii. Hence, the auxiliary gadget gives bias to gi towards 0,
except when both I1(gi) = I2(gi) = 0 in which case it biases gi towards 1. This means that gi has a
2−500N bias towards its NOR value.

Lemma 12. If Control = 1 then all y, z nodes have a 2−87N bias towards their natural values. If
Control = 0 then all y, z nodes have a 2−87N bias towards their unnatural values.

Proof. The NotControl nodes are dominated by Control’s bias of 27N and hence have the opposite
value. By lemma 8 we have that Control and NotControl experience at most 26N bias, while
the y, z nodes experience 2−87N bias towards the values opposite Control and NotControl, which
proves the claim.

Lemma 13. Assuming all nodes of the computing circuit gadget are in equilibrium and have no
external biases. If Control = 1 then ∀i,z1

i = 0, y1
i = 1, z2

i = 0, y2
i = 1, z3

i = 0, y3
i = 1. If Control = 0

then ∀iz1
i = 1, y1

i = 0, z2
i = 1, y2

i = 0, z3
i = 1, y3

i = 0.

Proof. If Control = 1, consider the highest k such that yk or zk have their unnatural values, i.e.
yk = 0 or zk = 1. Since Control = 1 all y, z nodes experience a bias towards their unnatural biases
by lemma 12. Since the bias that biases them towards their unnatural values is greater than the
weight of the internal nodes connected to y1, z1, y3, z3 it must be that one of the nodes y2, z2 have
unnatural values. However, by lemma 10 all control nodes for j < k are also unnatural. Assume
that the output nodes of Gi are only internal to the circuit, i.e. no node except those belonging to
the computing gadget is connected to them. Since by lemma 9, unnatural values for y1

i , z
1
i imply

that the input nodes of gates Gi are indifferent to Gi, the node gi would be dominated by the bias
from the auxiliary node ρ. If gk is an output node by the assumption has no external bias. Hence,
in this case, gk can take the correct value, which is a contradiction since gk having the correct value
would mean y2

k, z
2
k can take their natural bias by lemma 11.

If Control = 0, consider the least k such that the y, k control nodes have their natural values.
Since the y1

i , z
1
i , y

3
i , z

3
i nodes are dominated by the 2−87N bias ensured by lemma 12 we have that

the only nodes with natural values can be y2
i , z

2
i . However, even these nodes can only be biased

towards their unnatural values since, by lemmas 10 and 11, even if the gate is correct y2
i , z

2
i are

indifferent with respect to the NOR gadget.

Having proved the above auxiliary lemmas, we can finally prove the theorem specifying the
behaviour of our computing circuits.

Theorem 3. At any equilibrium of the LocalNodeMaxCut of Figure 3.

36

1. If Control` = 1 and the nodes of Next`,V al` experience 0 bias from any other gadget beyond
C` then:

• Next` = Real-Next(I`)
• Val` = Real-Val(I`)

2. If Control` = 0 then each node in I` experiences 0 bias from the internal nodes of C`.

3. Control` experiences wControl` bias from the internal nodes of C`.

Proof.

1. Since Control` = 1 and since we assumed no node experiences any external bias, by lemma
13 we have that all y, z have their natural values and hence all gates compute correctly, by
lemma 10. Therefore, Next` = Real −Next(I`) and V al` = Real − V al(I`).

2. Since Control` = 0, by lemma 13 all y, z have their unnatural values. Since all NOR gadgets
have unnatural control nodes we have that their inputs are indifferent with respect to the
gadgets. Hence, the claim that they are unbiased follows.

3. The Control` node is connected to a node NotControl`, of weight WNotControl` = 27N , as
well as to several leverage gadgets, which contribute bias at most 2100N−94N = 26N . Hence,
the 27N bias dominates.

B.3 Equality Gadget

The Equality Gadgets are used to check whether the next best neighbor of a circuit has been
successfully transferred to the input of the other circuit. The output of the Equality gadget is
connected to the control variables of the circuit that should receive the new input. If the new input
has not been transferred, the output of this gadget biases the Control node towards 0, which biases
the internal control nodes towards unnatural values. This enables the inputs of the circuit to change
successfully to the next solution. When the new solution is transferred, the output of the gadget
changes, in order to bias the control nodes towards their natural values, so that the computation
can take place.

Since we have two possible directions, both from Circuit A to Circuit B and vice versa we need
two copies of the gadgets described in this section.

We will now describe the function of the Equality Gadget when Circuit A gives feedback to
Circuit B. The Equality Gadget takes as inputs the TA nodes from the CopyA Gadgets and IB
and simply checks whether they are equal. Due to Lemma 2, in equilibrium the TA nodes have the
same value as NextA which we want to transfer. One might try to connect NextA as input to the
Equality gadget. The reason we avoid this construction is that we do not want the output nodes of
the Circuit Computing gadget CA to experience any bias from this gadget, because the computation
changes their value with very small bias. For this reason, we connect TA nodes to the input that
are dominated by ηA nodes. The input nodes IB are dominated by either the nodes in the NOR
gadgets or ηA, hence we can connect them directly as inputs to the gadget.

37

For each bit of the next best neighbor, we construct a gadget as in Figure 14, which performs
the equality check for the i− th bit of the next best neighbor. The idea for this construction is very
simple: the weights decrease as we come closer to the output, so that the input values dominate
the final result. If the inputs are equal, the final value will be 0. Notice that we have put and
intermediate node between IB and the gadget to ensure that the two input nodes will have equal
weight. A detailed analysis is provided in the proof of Lemma 1.

Figure 14: This gadget performs equality check for the bits Ii,B and Ti,A. If they are equal, Ri,A = 0 in
equilibrium. We have n such gadgets for each of the two circuits. The n gadgets are connected to produce the
final output, which is ControlB.

Now that we have gadgets to perform bit wise equality checks, we need to connect them all to
produce the output of the Equality gadget. This is done by the construction of Figure 14 Essentially,
the idea is that if all the bits are equal, all the comparison results will be 0 and will dominate the
ControlB to take 1. If at least one result is 1, then together with the constant node 1 will bias
ControlB to take value 0.

We now prove the main lemma concerning the Equality Gadget, which states that in equilibrium,
the output of the Equality will be 1 if and only if the two inputs to the gadget are equal.

Lemma 1. Let an equilibrium of the overall LocalNodeMaxCut instance of Figure 3. Then

• ControlA = (IA = TB)

• ControlB = (IB = TA)

Proof. For simplicity we only prove the second claim, since the first follows by similar arguments.
We first focus on on the behavior of a single Equality gadget. We would like to prove that Ri,A = 0
if and only if Ii,B = Ti,A.

We first observe that node e1
i,A is biased with weight 2105N by Ii,B , which is greater that the bias

from its other neighbor e2
i,A. Hence, in equilibrium it is always the case that e1

i,A = ¬Ii,B . Moreover,

38

nodes e2
i,A and e3

i,A essentially function as the complements of e1
i,A and Ti,A. This is because they are

biased with weight 230N by them, which is greater than the bias by node e5
i,A. Hence, e2

i,A = ¬e1
i,A

and e3
i,A = ¬Ti,A.

We first examine the case where IB = TA. Then e1
i,A = ¬Ti,A. Since these nodes have equal

weights, node e4
i,A experiences 0 total bias from them and is biased by constant node 0 with weight

220N and by R2 with weight 29N . Therefore, e4
i,A = 1. By the previous observations we have that

e2
i,A and e3

i,A have opposite values, which means that e5
i,A has bias 0 from these two nodes. Is also

has bias 220N by constant 0 and 29N from Ri,A. Hence, e5
i,A = 1. Nodes e4

i,A and e5.i bias node Ri,A
towards 0 with weight 2 ∗ 220N , which is greater than the bias from constant 0 and ControlB. As a
result, we have that Ri,A = 0 and the argument is complete in this case.

Now we examine the case where Ii,B 6= Ti,A. Assume that Ii,B = 1, the other case follows
similarly. Then, e1

i,A = 0, Ti,A = 0, e2
i,A = 1, e3

i,A = 1. This means that e5
i,A is biased with weight

at least 2 ∗ 230N towards 1, which is greater than the combined weight of Ri,A and constant 0.
Therefore, e5

i,A = 0. Now we observe that Ri,A is biased with weight at least 2 ∗ 220N towards 1 by
nodes e5

i,A and constant 0, which is greater that the combined weight of e4
i,A and ControlB. Hence,

Ri,A = 1 in this case. If Ii,B = 0, then we could prove similarly that e4
i,A = 0, which implies that

Ri,A = 1 by the same argument.
We will now prove that ControlB takes the appropriate value. First of all, we observe that

ControlB is connected with NotControlB, (part of the Circuit Computing gadget) which has weight
27N and with Ri,A nodes which have weight 29N . It is also biased with weight slightly more than
26N by each of the control variables yi due to the leverage gadget. This means that for N large
enough ControlB is dominated by the behavior of the Ri,A nodes. Suppose that Ii,B = Ti,A for
all i, 1 ≤ i ≤ n. By the preceding calculations, we have that Ri,A = 0 for all i. Hence, ControlB
experiences total bias n ∗ 29N towards 1, which is greater than the weight of constant node 1. Thus,
ControlB = 1 in this case. Now suppose that there exists a j, 1 ≤ j ≤ n, such that I2,j = ¬Tj,A. By
the preceding calculations, Rj,A = 1. Hence, node ControlB is biased by nodes Rj,A and constant 1
towards 0 with weight at least (n− 1) ∗ 29N + 29N = n ∗ 29N , which is greater than the combined
weight of all the other Ri,A’s. Therefore, ControlB = 0 in this case and the proof is complete.

B.4 Copy Gadget

The Copy Gadgets transfer the values of the next best Neighbor of a circuit to the input of the
other circuit. This is fundamental for the correct computation of the local optimum. There are
some technical conditions that these gadgets should satisfy, which we discuss in the following.

The purpose of the Copy Gadgets is twofold. Firstly, when the Flag node has value 1, they
are meant to give the inputs of Circuit B a slight bias to take the values of the best flip neighbor
that Circuit A offers, that is NextA. Secondly, in this case they are meant to give zero bias to the
output nodes of Circuit A that calculate the best flip neighbors. This is because when node Flag is
1, the input of circuit A is going to change, which means that the NOR gates of this circuit will
compute the new values. A consequence of the functionality of the NOR gadgets is that the outputs
of a gadget are only biased towards the correct value with a very small weight. This is because the
gadget is constructed in a way that allows these nodes to be indifferent to all of their neighbors when
the time comes to change their value. As a result, if we connect the output nodes with other gadgets,
we have to ensure that they will experience zero bias from them in order for the computation to take

39

place properly. Since the outputs of Circuit A that produce the next best neighbor are connected to
the Copy Gadgets, we should ensure that they will experience zero bias when node Flag is 1, so
that they can change properly. A similar functionality should be implemented when node Flag is 0.

In this Section we present the gadgets that implement the above functionality. There are two
Copy gadgets with similar topology, CopyA and CopyB. For simplicity, we only describe the details
of CopyA. The gadget takes as input the value of node Flag, which determines whether a value
should be copied or whether the outputs of Circuit A should experience zero bias. It also takes as
input NextA, which is the next best neighbor calculated by Circuit A. The output of the gadget is
a bias to nodes IB and TA towards adopting the value of NextA.

At this point, one might wonder why we didn’t just connect the output of the CopyA gadget to
the input IB. This is because the value of IB also depends on the control variables. If the control
variables of the input gates have natural values, then the inputs experience great bias from the gate,
making it impossible for their values to change by the Copy Gadget. Hence, the Copy Gadget gives
a slight bias to node TA, which is an input to an auxiliary circuit that compares it with IB (i.e the
Equality gadget) . If they are not equal, this means that the output has not been transferred yet.
In this case, the output of the gadget is given a suitable value to bias the control nodes towards
unnatural values. When this happens, the inputs IB can change to the appropriate values.

Figure 15: The gadgets that copy the values from one circuit to the other

Note that we have one of the above gadgets for each of the bits of the next best neighbor solution
that the Circuit Computing gadgets output.

We have a gadget of Figure 15 for each of the m bits of the next best neighbor. Nodes Fi,A has
a very large weight in order to dominate the behavior of ηi,A. However, we do not want this node
to influence the behavior of Flag. For this reason, we connect Flag with Fi,A using a Leveraging
gadget. Notice that the behavior of Fi,A is dominated by Flag by weight at least 250N . Another
important point is that we connect the output of the CopyA gadget with the input of Circuit B
using another Leveraging gadget. This is due to the fact that the weight of the input nodes is of the
order of 2105N , which is far more than the weight of ηi,A. Hence, we do not want the input nodes to
influence the value of ηi,A, while also ensuring that the Copy gadget gives a slight bias to the inputs
IB towards the value of NextA.

40

We now prove Lemma 2, which makes precise the already stated claims about the function of
the Copy Gadgets.

Lemma 2. At any equilibrium point of the LocalNodeMaxCut instance of Figure 3:

• If Flag = 1, i.e. NextB writes on IA, then

1. TB = NextB
2. If ControlA = 0 then IA = TB = NextB

• If Flag = 0 i.e. NextA writes on IB, then

1. TA = NextA
2. If ControlB = 0 then IB = TA = NextA

Proof. We prove the claim for Flag = 1. The case Flag = 0 is identical.
We begin with the first claim. Due to the leveraging gadget, node Fi,B experiences bias from

Flag which is slightly less than 250N . Hence, it is biased towards 0 with weight at least 249N .
This is greater than the weight of ηi,B, which is the other neighbor of Fi,B. Hence, Fi,B = 0 at
equilibrium. Now node ηi,B experiences zero total bias from nodes Fi,B and constant 1 and biases
2100N by NextBi, 230N by Ti,B and slightly more that 275N by the input Ii,A due to leveraging, which
means that its value at equilibrium will be determined by NextBi. Specifically, ηi,B = ¬NextBi at
equilibrium. Now, node Ti,B experiences bias 240N from ηi,B and biases of the order of 27N from
the gates of the controller gadget. Hence, Ti,B has bias towards NextBi equal to wηi,B and will take
this value at equilibrium.

To prove the second claim, we use the already proven fact that ηi,B = ¬NextBi when Flag = 1.
Due to the Leverage gadget, node I i experiences bias slightly less than 210N from node ηi,B. Since
ControlA = 0, by Lemma 3, we have that Ii,A is indifferent with respect to the gadget CA, and will
therefore take the value of ¬ηi,B = NextBi = Ti,B

Lemma 3. At any equilibrium point of the LocalNodeMaxCut instance of Figure 3:

• If Flag = 1 then any node in NextA experience 0 bias with respect to the CopyX“ gadget.

• If Flag = 0 then then any node in NextB experience 0 bias with respect to the CopyB gadget.

Proof. We notice that due to leveraging, node Fi,A of gadget CopyA experiences bias slightly less
than 250N from node Flag = 1. This dominates its behavior, since the other neighbor ηi,A has
weight that is orders of magnitude smaller. Hence, Fi,A = 0. Now, node ηi,X“ experiences total bias
2 ∗ 2110N from nodes Fi,A and constant 0, 2100N from NextAi, 230N from Ti,A and slightly more
than 275N from Ii,B due to the Leverage gadget used. This means that ηi,A = 1. Now we are ready
to prove our claim. Node NextAi is connected to nodes ηi,A and constant 0 of gadget CopyAi. They
have the same weight and opposite values at equilibrium. This means that NextAi has 0 bias with
respect to CopyAi, i.e it is indifferent.

The case for Flag = 0 follows symmetrically.

41

B.5 Comparator gadget

The purpose of the Comparator gadget is to implement the binary comparison between the bits
of the values of the two circuits. At the same time we need to ensure that the nodes of the losing
circuit (i.e the circuit with the lower value) are indifferent with respect to the Comparator gadget,
so that Lemma 3 can be applied.

In particular, the output nodes that correspond to the bits of the value, presented in section
B.2, with weights 290N ∗ 2N+i are each connected as below.

Note that the output bits of the second circuit X” are the complement of their true values, in
order to achieve comparison with a single bit. The weight of the Flag node is 280N

Figure 16: Nodes of the Comparator gadget. Note that Circuit X” is meant to output the complement of its
true output.

To see why the value of node Flag implements binary comparison one needs to consider four
cases: In the first two, where the ith bits are both equal, the total bias Flag experiences is zero,
since it experiences bias towards a certain bit as well as the complement of said bit. In the other
two, where one bit is 1 and the other is 0, the Flag node will experience 2i bias towards either value,
which will supersede all lower bits.

42

However, the Comparator gadget is meant not only to implement comparison between values,
but also to detect whether a circuit is computing wrongly and, hence, to fix it. To this end we
connect the following control nodes to the node Flag: the control nodes y3

m+1,A for circuit A and
z3
m+1,B for circuit B, where m+ 1 is the last NOR gadget before the bits of the values (recall that
we have m value bits and that wy3

i,A
= wz3

i,B
= 2100N ∗ (2N+m+1 − 50)) (see Figure 12), as well as

the control nodes y3
i,A, z

3
i,B, ∀i ≤ m for each NOR gadget that corresponds to an output bit of the

value (which have weight wy3
i,A

= wz3
i,B

= 290N ∗ (2N+i − 50)). The nodes y3
m+1,A and z3

m+1,B are
used to check whether the next best neighbor has been correctly computed. If it isn’t, these nodes
dominate Flag, due to their large weight of 2100N compared to the weight of the value bits, which is
of the order of 290N . The control nodes of the output bits of the value are used in a more intricate
way to ensure that even if one to the results is not correct, the output of the comparison is the
desired one. Details are provided in Lemma 14. All these nodes are connected in such a way that a
control node with unnatural value, biases Flag towards fixing that circuit.

Figure 17: Connection between the control nodes and the Flag node.

We prove the following properties:

Lemma 4. Let an equilibrium of the instance of LocalNodeMaxCut of Figure 3:

• If Flag = 1 then all nodes of CA experience 0 bias to the Comparator gadget.

• If Flag = 0 then all nodes of CB experience 0 bias to the Comparator gadget.

Proof. Suppose Flag = 1. Then the only nodes of CA connected to the Comparator gadget are the
value output bits and certain control nodes, in such a way that they are connected to either Flag or

43

a constant node 0 of weight equal to Flag. In all cases, both biases cancel each other out and the
nodes of Circuit A are indifferent. Suppose Flag = 0. Then the only nodes of CB connected to Flag
are also connected with a constant 1 node. Similarly to the first case, all nodes of circuit B are
indifferent with respect to the Comparator gadget when Flag = 0.

We now prove the most important lemma of the Comparator gadget. Our goal is to compare the
output values of the two circuits, so that we change the input of the circuit with the smaller real
value. The main difficulty lies in that one or both of the circuits might produce incorrect bits in
their output. A simple idea would be to try to detect any incorrect output bits and influence Flag
accordingly, as we do with control variables y3

m+1,A and z3
m+1,B . However, if the least significant bit

of a circuit is incorrect, the weight of the corresponding control node is exponentially smaller that
the rest of the bits. Hence, it cannot dominate the outcome of the comparison. This means that
sometimes we might be in equilibrium where some output nodes are incorrect. To alleviate this
problem we propose this construction.

The idea behind this lemma is very simple: if it is guaranteed that the output of one of the
circuits is correct and we know which bits of the other circuit might be wrong, we can still compare
their true values. This is accomplished by an extension of the traditional comparison method, by
also taking into account the control variables of the output bits and examining all the possible cases.
This lemma is very useful in our proof, since by Lemma 5 we know that at least one of the circuits
computes correctly in equilibrium.
Lemma 14. At any equilibrium:

Suppose Flag = 1. If ∀i, z1
i,A = 0, y1

i,A = 1, z2
i,A = 0, y2

i,A = 1, z3
i,A = 0, y3

i,A = 1 and ∀i >
m, z1

i,B = 0, y1
i,B = 1, z2

i,B = 0, y2
i,B = 1, z3

i,B = 0, y3
i,B = 1 then Real− value(IA) ≤ Real− value(IB)

Suppose Flag = 0. If ∀i, z1
i,B = 0, y1

i,B = 1, z2
i,B = 0, y2

i,B = 1, z3
i,B = 0, y3

i,B = 1 and ∀i >
m, z1

i,A = 0, y1
i,A = 1, z2

i,A = 0, y2
i,A = 1, z3

i,A = 0, y3
i,A = 1 then Real − value(IB) ≤ Real − value(IA)

Proof. Since for all gates that do not correspond to value bits (see Figure 12), we have that they
possess natural values, and hence Flag is indifferent with respect to them, we only need to examine
the final m gates that correspond to the value bits.

We denote the kth bit of ValA,ValB as Ak, Bk. Bk corresponds to the actual value of the kth bit
of the circuit B instead of its complement for simplicity. The actual value of the node corresponding
to Bk is the opposite. We also denote z2

k,B the control node corresponding to the bit Bk. We
make the distinction between Ak, Bk and Real(Ak), Real(Bk). These may be equal or different
depending on whether the circuit calculated the kth bit correctly. By the assumption we know that
Ak = Real(Ak) since A calculates correctly. We do not know whether Bk = Real(Bk), but we do
know that Bk 6= Real(Bk) =⇒ z2

k,B = 1.
We consider three cases.
In the case that (Ak, Bk, z2

k,B) ∈ (0, 0, 0), (1, 1, 0), (0, 1, 1), Flag experiences bias at most 2 ∗
290N ∗ (50) from this bit towards Flag = 1 in any of these cases. In this case, we have that either
Real(Ak) = Real(Bk) or Real(Ak) < Real(Bk), depending on whether Bk calculated correctly.
Either way, Real(Ak) ≤ Real(Bk).

In the case that (Ak, Bk, z2
k,B) ∈ (0, 1, 0), Flag experiences bias 2 ∗ 290N ∗ (2N+k) from this bit

towards Flag = 1. In this case, we have that Real(Ak) < Real(Bk), since both calculate correctly.
In the case that (Ak, Bk, z2

k,B) ∈ (0, 0, 1), (1, 0, 0), (1, 1, 1), (1, 0, 1) then Flag experiences bias at
least 2 ∗ 290N ∗ (2N+k − 50) towards Flag = 0 from this bit in any of these cases. In these cases,
Real(Ak) might be higher, but we will show that these cases can never matter.

44

Suppose k the highest i for which (Ai, Bi, z2
k,B) /∈ (0, 0, 0), (1, 1, 0), (0, 1, 1).

If no such k exists then all bits must lie in the first case and hence ∀kReal(Ak) ≤ Real(Bk).
Hence, Real − value(IA) ≤ Real − value(IB).

If for that k, (Ak, Bk, z2
k,B) ∈ (0, 1, 0), we know that Real(Ak) < Real(Bk) while for all higher

bits kReal(Ak) ≤ Real(Bk). This means that Real− value(IA) < Real− value(IB), since the lower
bits don’t matter as long as we have a strict inequality in a high bit.

Lastly, if we have that (Ak, Bk, z2
k,B) ∈ (0, 0, 1), (1, 0, 0), (1, 1, 1), (1, 0, 1), we have that Flag

experiences bias at least 2 ∗ 290N ∗ (2N+k − 50) towards Flag = 0 from this bit. Furthermore, it
experiences bias at most 2∗290N ∗(50) towards Flag = 1 from each bit higher that k. Each bit i lower
than k causes bias at most 2∗290N ∗(2N+i) each towards Flag = 1. In total, if we havem bits, we have
at most (m−k)∗2∗290N ∗ (50)+∑i<k 2∗290N ∗ (2N+i) ≤ (m)∗2∗290N ∗ (50)+2∗290N ∗ (2N+k−2N)
towards Flag = 1 and at least 2 ∗ 290N ∗ (2N+k − 50) towards Flag = 0. For N sufficiently high, the
bias towards 0 would win, making Flag no longer have 1 as its best response, which is a contradiction.
Hence, the third case can not happen in an equilibrium with Flag = 1.

The case for Flag = 0 is identical, with the only difference being we consider y2
k,X“ instead.

Lemma 6. At any equilibrium of the NodeMaxCut instance of Figure 3:

• If Flag = 1 then NextB = Real-Next(IB)

• If Flag = 0 then NextA = Real-Next(IA)

Proof. Assume an equilibrium with Flag = 1 and NextB 6= Real −Next(IB). By Lemma 10 we
have that Circuit B is computing incorrectly and hence the control node z3

m+1,B (i.e. the last gate
before the value bits) has its unnatural value, which is z3

m+1,B = 1.
Assume that, ControlA = 0. Then by Lemma 2 we have that IA = TB, which by Lemma 1 we

have ControlA = 1, a contradiction. Hence, ControlA = 1.
Therefore, since have that ControlA = 1 and that NextA = Real − Next(IA), which by

Lemma 13, implies that the corresponding node y3
m+1,A has its natural value y3

m+1,A = 1.
This means that Flag experiences bias towards 0 at least 2∗2100N ∗(2N+m+1−50) from the nodes

z3
m+1,B,y3

m+1,A, which dominates Flag to take value 0. This is a contradiction since we assumed
that Flag = 1 at equilibrium. Hence, if Flag = 1 then it must be that NextB = Real −Next(IB).

Similarly, we can prove that if Flag = 0 then NextA = Real −Next(IA)

Lemma 7. At any equilibrium of the LocalNodeMaxCut instance of Figure 3:

• If Flag = 1, NextA = Real-Next(IA), ValA = Real-Val(IA) and NextB = Real-Next(IB) then

Real − V al(IA) ≤ Real − V al(IB)

• If Flag = 0, NextB = Real-Next(IB), ValB = Real-Val(IB) and NextA = Real-Next(IA) then

Real − V al(IB) ≤ Real − V al(IA)

Proof. Assume that, ControlA = 0. Then by Lemma 2 we have that IA = TB, which by Lemma 1
we have ControlA = 1, a contradiction. Hence, ControlA = 1.

45

Since Flag = 1 and we have that ControlA = 1, by Lemma 13 all control nodes of CA have
their natural values. Furthermore, since by the proof of Lemma 6 we know that all control nodes
of weight 2100N have their natural values, we can apply Lemma 14. Therefore, Real − V al(IA) ≤
Real − V al(IB)

The proof for Flag = 0 is identical.

46

	1 Introduction
	2 Preliminaries
	3 Computing Equilibria in Weighted Congestion Games
	4 PLS-completeness of LocalNodeMaxCut
	5 Conclusions and Future Work
	A The Proofs of the Theorems of Section 3
	A.1 The proof of Theorem 1
	A.2 The proof of Theorem 2

	B Details for the PLS-completeness Proof of LocalNodeMaxCut
	B.1 Leverage Gadget
	B.2 Circuit Computing Gadget
	B.3 Equality Gadget
	B.4 Copy Gadget
	B.5 Comparator gadget

