
Efficient Online Learning of Optimal Rankings: Dimensionality
Reduction via Gradient Descent

Dimitris Fotakis∗ Thanasis Lianeas† Georgios Piliouras‡

Stratis Skoulakis§

Abstract

We consider a natural model of online preference aggregation, where sets of preferred items R1, R2, . . . , Rt

along with a demand for kt items in each Rt, appear online. Without prior knowledge of (Rt, kt),
the learner maintains a ranking πt aiming that at least kt items from Rt appear high in πt. This is a
fundamental problem in preference aggregation with applications to, e.g., ordering product or news items in
web pages based on user scrolling and click patterns. The widely studied Generalized Min-Sum-Set-Cover
(GMSSC) problem serves as a formal model for the setting above. GMSSC is NP-hard and the standard
application of no-regret online learning algorithms is computationally inefficient, because they operate in
the space of rankings. In this work, we show how to achieve low regret for GMSSC in polynomial-time.
We employ dimensionality reduction from rankings to the space of doubly stochastic matrices, where we
apply Online Gradient Descent. A key step is to show how subgradients can be computed efficiently, by
solving the dual of a configuration LP. Using oblivious deterministic and randomized rounding schemes,
we map doubly stochastic matrices back to rankings with a small loss in the GMSSC objective.

1 Introduction
In applications where items are presented to the users sequentially (e.g., web search, news, online shopping,
paper bidding), the item ranking is of paramount importance (see e.g., [38, 12, 14, 43, 7]). More often than
not, only the items at the first few slots are immediately visible and the users may need to scroll down, in an
attempt to discover items that fit their interests best. If this does not happen soon enough, the users get
disappointed and either leave the service (in case of news or online shopping, see e.g., the empirical evidence
presented in [9]) or settle on a suboptimal action (in case of paper bidding, see e.g., [8]).

To mitigate such situations and increase user retention, modern online services highly optimize item
rankings based on user scrolling and click patterns. Each user t is typically represented by her set of preferred
items (or item categories) Rt . The goal is to maintain an item ranking πt online such that each new user t
finds enough of her favorite items at relatively high positions in πt (“enough” is typically user and application
dependent). A typical (but somewhat simplifying) assumption is that the user dis-utility is proportional to
how deep in πt the user should reach before that happens.

The widely studied Generalized Min-Sum Set Cover (GMSSC) problem (see e.g., [28] for a short survey)
provides an elegant formal model for the practical setting above. In (the offline version of) GMSSC, we are
given a set U = {1, . . . , n} of n items and a sequence of requests R1, . . . , RT ⊆ U . Each request R ⊆ U is
associated with a demand (or covering requirement) K(R) ∈ {1, . . . , |R|}. The access cost of a request R wrt.
an item ranking (or permutation) π is the index of the K(R)-th element from R in π. Formally,

AccessCost(π,R) = {the first index up to which K(R) elements of R appear in π}. (1)
∗National Technical University of Athens, fotakis@cs.ntua.gr
†National Technical University of Athens, lianeas@corelab.ntua.gr
‡Singapore University of Technology and Design, georgios@sutd.edu.sg
§Singapore University of Technology and Design, efstratios@sutd.edu.sg

1

ar
X

iv
:2

01
1.

02
81

7v
1

 [
cs

.L
G

]
 5

 N
ov

 2
02

0

The goal is to compute a permutation π∗ ∈ [n!] of the items in U with minimum total access cost, i.e.,
π∗ = arg minπ∈[n!]

∑T
t=1 AccessCost(π,Rt).

Due to its mathematical elegance and its connections to many practical applications, GMSSC and its
variants have received significant research attention [20, 5, 4, 29]. The special case where the covering
requirement is K(Rt) = 1 for all requests Rt is known as Min-Sum Set Cover (MSSC). MSSC is NP-hard,
admits a natural greedy 4-approximation algorithm and is inapproximable in polynomial time within any ratio
less than 4, unless P = NP [13]. Approximation algorithms for GMSSC have been considered in a sequence
of papers [6, 36, 30] with the state of the art approximation ratio being 12.5. Closing the approximability
gap, between 4 and 12.5, for GMSSC remains an interesting open question.
Generalized Min-Sum Set Cover and Online Learning. Virtually all previous work on GMSSC (the
recent work of [17] is the only exception) assumes that the algorithm knows the request sequence and the
covering requirements well in advance. However, in the practical item ranking setting considered above, one
should maintain a high quality ranking online, based on little (if any) information about the favorite items
and the demand of new users.

Motivated by that, we study GMSSC as an online learning problem [21]. I.e., we consider a learner that
selects permutations over time (without knowledge of future requests), trying to minimize her total access
cost, and an adversary that selects requests R1, . . . , RT and their covering requirements, trying to maximize
the learner’s total access cost. Specifically, at each round t ≥ 1,

1. The learner selects a permutation πt over the n items, i.e., πt ∈ [n!].

2. The adversary selects a request Rt with covering requirement K(Rt).

3. The learner incurs a cost equal to AccessCost(πt, Rt).

Based on the past requests R1, . . . , Rt−1 only, an online learning algorithm selects (possibly with the use
of randomization) a permutation πt trying to achieve a total (expected) access cost as close as possible to the
total access cost of the optimal permutation π∗. If the cost of the online learning algorithm is at most α
times the cost of the optimal permutation, the algorithm is α-regret [21]. If α = 1, the algorithm is no-regret.
In this work, we investigate the following question:

Question 1. Is there an online learning algorithm for GMSSC that runs in polynomial time and achieves
α-regret, for some small constant α ≥ 1?

Despite a huge volume of work on efficient online learning algorithms and the rich literature on approxi-
mation algorithms for GMSSC, Question 1 remains challenging and wide open. Although the Multiplicative
Weights Update (MWU) algorithm, developed for the general problem of Learning from Expert Advice, achieves
no-regret for GMSSC, it does not run in polynomial-time. In fact, MWU treats each permutation as a
different expert and maintains a weight vector of size n!. Even worse, this is inherent to GMSSC, due to
the inapproximability result of [13]. Hence, unless P = NP, MWU’s exponential requirements could not be
circumvented by a more clever GMSSC-specific implementation, because any polynomial-time α-regret online
learning algorithm can be turned into a polynomial-time α-approximation algorithm for GMSSC. Moreover,
the results of [32] on obtaining computationally efficient α-regret online learning algorithms from known
polynomial time α-approximation algorithms for NP-hard optimization problems do not apply to optimizing
non-linear objectives (such as the access cost in GMSSC) over permutations.
Our Approach and Techniques. Departing from previous work, which was mostly focused on black-box
reductions from polynomial-time algorithms to polynomial-time online learning algorithms, e.g., [33, 32], we
carefully exploit the structure of permutations and GMSSC, and present polynomial-time low-regret online
learning deterministic and randomized algorithms for GMSSC, based on dimensionality reduction and Online
Projected Gradient Descent.

Our approach consists of two major steps. The first step is to provide an efficient no-regret polynomial-time
learning algorithm for a relaxation of GMSSC defined on doubly stochastic matrices. To optimize over doubly
stochastic matrices, the learner needs to maintain only n2 values, instead of the n! values required to directly
describe distributions over permutations. This dimensionality reduction step allows for a polynomial-time
no-regret online algorithm for the relaxed version of GMSSC.

The second step is to provide computationally efficient (deterministic and randomized) online rounding
schemes that map doubly stochastic matrices back to probability distributions over permutations. The main

2

Figure 1: Our general approach, which is independent of the specific variant of GMSSC.

challenge is to guarantee that the expected access cost of the (possibly random) permutation obtained by
rounding is within a factor of α from the access cost of the doubly stochastic matrix representing the solution
to the relaxed problem. Once such a bound is established, it directly translates to an α-regret online learning
algorithm with respect to the optimal permutation for GMSSC. Our approach is summarized in Figure 1.
Designing and Solving the Relaxed Online Learning Problem. For the relaxed version of GMSSC,
we note that any permutation π corresponds to an integral doubly stochastic matrix Aπ, with Aπ[i, j] = 1 iff
π(j) = i. Moreover for any request R, each doubly stochastic matrix is associated with a fractional access
cost. For integral doubly stochastic matrices, the fractional access cost is practically identical to the access
cost of GMSSC in the respective permutation.

The fractional access cost is given by the optimal solution of an (exponentially large) configuration linear
program (LP) that relaxes GMSSC to doubly stochastic matrices (see also [30]), and is a convex function.
Thus, we can use Online Projected Gradient Descent (OPGD) [44] to produce a no-regret sequence of doubly
stochastic matrices for the GMSSC relaxation. However, the efficient computation of the subgradient is far
from trivial, due to the exponential size of the configuration LP. A key technical step is to show that the
subgradient of the configuration LP can be computed in polynomial time, by solving its dual (which is of
exponential size, so we resort to the elipsoid method and use an appropriate separation oracle).
Our Results. In nutshell, we resolve Question 1 in the affirmative. In addition to solving the relaxed
version of GMSSC by a polynomial-time no-regret online learning algorithm, as described above, we present
a polynomial-time randomized rounding scheme that maps any doubly stochastic matrix to a probability
distribution on permutations. The expected access cost of such a probability distribution is at most 28
times the fractional access cost of the corresponding doubly stochastic matrix. Consequently, a 28-regret
polynomial-time randomized online learning algorithm for GMSSC can be derived by applying, in each round,
this rounding scheme to the doubly stochastic matrix At, produced by OPGD. For the important special case
of MSSC, we improve the regret bound to 11.713 via a similar randomized rounding scheme that exploits the
fact that K(R) = 1 for all requests.

We also present a polynomial-time deterministic rounding scheme mapping any (possibly fractional)
doubly stochastic matrix to permutations. As before, applying this scheme to the sequence of doubly
stochastic matrices produced by OPGD for the relaxation of GMSSC leads to a polynomial-time deterministic
online learning algorithm with regret 2 maxt |Rt| for MSSC. Such a nontrivial upper bound on the regret
of deterministic online learning algorithms is rather surprising. Typically, learners that select their actions
deterministically fail to achieve any nontrivial regret bounds (e.g., recall that in Learning From Expert
Advice, any deterministic online algorithm has Ω(#experts) regret, which in case of MSSC is n!). Although
2 maxt |Rt| is not constant, one should expect that the requests are rather small in most practical applications.
The above result is approximately tight, since any deterministic online learning algorithm must have regret

3

at least maxt |Rt|/2 [17, Theorem 1.1]. We should also highlight that the positive results of [17] do not imply
the existence of computationally efficient online learning algorithms for MSSC, because their approach is
based on the MWU algorithm and uses a state space of n!. The state of the art and our results (in bold) are
summarized below.

Running Time Upper Bound (Regret) Lower Bound (Regret)

GMSSC Exponential (MWU) 1 1
GMSSC Polynomial 28 4 (any polynomial time)
MSSC Polynomial 11.713 4 (any polynomial time)
MSSC Exponential (deterministic) 2 ·maxt |Rt| maxt |Rt|

2 (any deterministic)
MSSC Polynomial (deterministic) 2 ·maxt |Rt| maxt |Rt|

2 (any deterministic)
Related Work. Our work relates with the long line of research concerning the design of time-efficient online
learning algorithms in various combinatorial domains in which the number of possible actions is exponentially
large. Such domains include online routing [26, 3], selection of permutations [40, 42, 2, 27], selection of binary
search trees [41], submodular minimization/maximization [23, 31, 37], matrix completion [24], contextual
bandits [1, 11] and many more.

Apart from the above line of works, concerning the design of time-efficient online learning algorithms in
specific settings, another line of research studies the design of online learning algorithms considering black-box
access in offline algorithms [33, 35, 39, 34, 15, 10, 25, 32, 18, 19, 22]. In their seminal work [33], Kalai et
al. showed how a polynomial-time algorithm solving optimally the underlying combinatorial problem, can
be converted into a no-regret polynomial-time online learning algorithm. The result of Kalai et al. was
subsequently improved [35, 39, 34] for settings in which the underlying problem can be (optimally) solved by
a specific approach, such as dynamic programming. Although there do not exist such general reductions for
α-approximation (offline) algorithms (without taking into account the combinatorial structure of each specific
setting [25]), Kakade et al. presented such a reduction for the (fairly general) class of linear optimization
problems [32]. Their result was subsequently improved by [18, 19, 22]. We remark that the above results do
not apply in our setting since GMSSC can neither be optimally solved in polynomial-time nor is a linear
optimization problem.

Finally our works also relates with a recent line of research studying time-efficient online learning algorithms
in settings related to selection of permutations and rankings [42, 2, 27, 38, 43]. The setting considered in
[42, 2, 27] is very similar to GMSSC with the difference that once request Rt is revealed, the learner pays
the sum of the positions of Rt’s elements in permutation πt. In this case the underlying combinatorial
optimization problem can be solved in polynomial-time meaning that the reduction of [33] produces a
time-efficient no-regret online learning algorithm. As a result, all the above works focus on improving the
vanishing rate of time-average regret. The setting considered in [38] is based on the submodular maximization
problem. In particular, the number of available positions is less than the number of elements, while the cost
of the selected assignment depends on the set of elements assigned to the slots (their order does not matter).
Although this problem is NP-hard, it admits an (1− 1/e)-approximation algorithm which is matched by the
presented online learning algorithm. Finally in [43], the cost of the selected permutation is its distance from
a permutation selected by the adversary. In this case the underlying combinatorial optimization problem
admits an offline 11/9-approximation algorithm, while a polynomial-time online learning algorithm with
3/2-regret is presented. We note that GMSSC admits a fairly more complicated combinatorial structure from
the above settings and this is indicated by its 4 inapproximability result.

2 Definitions and Notation
Definition 1 (Subgradient). Given a function f : D 7→ R, with D ⊆ Rn, a vector g ∈ Rn is a subgradient of
f at point x ∈ Rn, denoted g ∈ ∂F (x), if f(y) ≥ f(x) + g>(y − x) , for all y ∈ D.

A matrix A ∈ [0, 1]n×n is doubly stochastic, if (i) Aij ≥ 0, for all 1 ≤ i, j ≤ n, (ii)
∑n
i=1Aij = 1, for all

1 ≤ j ≤ n, and (iii)
∑n
j=1Aij = 1, for all 1 ≤ i ≤ n. We let DS denote the set of n × n doubly stochastic

matrices.
Any permutation π ∈ [n!] can be represented by an integral doubly-stochastic Aπ, where Aπij = 1 iff

4

π(j) = i. Under this representation, the access cost of GMSSC, defined in (1), becomes:

AccessCost(π,R) =

n∑
i=1

min

1,

K(R)−
i−1∑
j=1

∑
e∈R

Aπej


+

 , (2)

where we define (x− y)+ = max{x− y, 0}.
A key notion for our algorithms and analysis is that of configurations. Given a request R ⊂ U , a

configuration F is an assignment of the elements e ∈ R to positions j ∈ [n] such that no two elements e, e′ ∈ R
share the same position. Intuitively, a configuration wrt. a request R is the set of all permutations π ∈ [n!]
with the elements of R in the exact same positions as indicated by F . As a result, all permutations π ∈ [n!]
that agree with a configuration F wrt. a request R have the same AccessCost(π,R). In the following, F(R)
denotes the set of all configurations wrt. a request R and CF denotes the access cost AccessCost(π,R) of
any permutation π ∈ [n!] that agrees with the configuration F ∈ F(R).

Example 1. Let R = {2, 5, 7} with K(R) = 2. The configuration F1 = {(2, 3), (5, 1), (7, 10)} stands for the
set of permutations π ∈ [n!] in which (i) π(3) = 2, (ii) π(1) = 5, and (iii) π(10) = 7. The configuration
F1 is valid (i.e., F1 ∈ F(R)), because no elements of R share the same position. Moreover, CF1 = 3,
because any permutation π agreeing with F has cost 3 for K(R) = 2. Similarly, for the configuration
F2 = {(2, 3), (5, 1), (7, 2)}, CF2

= 2.

3 Solving a Relaxation of Generalized Min-Sum Set Cover
Next, we present an online learning problem for a relaxed version of GMSSC in the space of doubly stochastic
matrices. Specifically, we consider an online learning setting where, in each round t ≥ 1,

1. The learner selects a doubly stochastic matrix At ∈ DS.

2. The adversary selects a request Rt with covering requirements K(Rt).

3. The learner incurs the fractional access cost FACRt(A
t) presented in Definition 2.

Definition 2 (Fractional Access Cost). Given a request R with covering requirements K(R), the fractional
access cost of a doubly stochastic matrix A, denoted as FACR(A) is the value of the following linear program:

minimize
∑

F∈F(R)

CF · yF +
n4

ε
·
∑
e∈R

n∑
j=1

|Aej −
∑

F :(e,j)∈F

yF |

subject to
∑

F∈F(R)

yF = 1

yF ≥ 0, ∀F ∈ F(R)

(FLP)

We always assume a fixed accuracy parameter ε (see also Theorem 1 about the role of ε). Hence, for
simplicity, we always ignore the dependence of FACR(A) on ε. We should highlight that we need to deviate
from the configuration LP of [30, Sec. 2], because OPGD requires an upper bound in the subgradient’s norm.
The n4 term in (FLP) was appropriately selected so as to ensure that the access cost of the probability
distribution on permutations produced by a doubly stochastic matrix is upper bounded by its fractional
access cost (see Section B.1).

An important property of the fractional access cost in Definition 2 is that for all integral doubly stochastic
matrices, it is bounded from above by the access cost of GMSSC in (2). For that, simply note that a feasible
solution is setting yF = 1 only for the configuration that “agrees” in the resources of R with the permutation
of the integral matrix A.

Corollary 1. For any integral doubly stochastic matrix Aπ corresponding to a permutation π ∈ [n!],

FACR(Aπ) ≤ AccessCost(π,R).

For A1, A2 ∈ DS, it is FACRt
(
λA1 + (1− λ)A2

)
≤ λ · FACRt

(
A1
)

+ (1− λ) · FACRt
(
A2
)
, meaning that

FACRt(·) is a convex function in the space of doubly stochastic matrices. Since doubly stochastic matrices
form a convex set, Online Projected Gradient Descent [44] is a no-regret online learning algorithm for the
relaxed version of GMSSC.

5

3.1 Implementing Online Gradient Descent in Polynomial-time
Online Gradient Descent requires, in each round t, the computation of a subgradient of the fractional access
cost FACRt(At) (see also Definition 1). Specifically, given a request R and a doubly stochastic matrix A, a
vector g ∈ Rn2

belongs to the subgradient ∂FACR(A), if for any B ∈ DS,

FACR(B) ≥ FACR(A) + g>(B −A) , (3)

where we slightly abuse the notation and think of matrices A and B as vectors in [0, 1]n
2

.
Computing a subgradient g ∈ ∂FACR(A) in polynomial-time is far from trivial, because the fractional

access cost FACR(A) does not admit a closed form, since its value is determined by the optimal solution to
(FLP). Moroever, (FLP) has exponentially many variables yF , one for each configuration F ∈ F(R). We next
show how to compute a subgradient g ∈ ∂FACR(A) by using linear programming duality and solving the
dual of (FLP), which is presented below:

maximize λ+
∑
e∈R

n∑
j=1

Aej · λej

subject to λ+
∑

(e,j)∈F

λej ≤ CF , for all F ∈ F(R)

|λej | ≤ n4/ε

(4)

Lemma 1. For any request R and any stochastic matrix A ∈ DS, let g ∈ Rn2

denote the vector consisting of
the n2 values of the variables λ∗ej in the optimal solution of (4). Then, for any B ∈ DS,

FACR(B) ≥ FACR(A) + g>(B −A)

Moreover the Euclidean norm of g is upper bounded by n5/ε, i.e., ‖g‖2 ≤ n5/ε.

Lemma 1 shows that a subgradient g ∈ ∂FACR(A) can be obtained from the solution to the dual LP
(4). Although (4) has exponentially many constraints, we can solve it in polynomial-time by the ellipsoid
method, through the use of an appropriate separation oracle.1 In fact, our separation oracle results from a
simple modification of the separation oracle in [30, Sec. 2.3] (see also Section A). Now, the reasons for the
particular form of fractional access cost in Definition 2 become clear: (i) it allows for efficient computation
of the subgradients, and (ii) the dual constraints |λej | ≤ n4/ε imply that the subgradient’s norm is always
bounded by n5/ε.

Remark 1. For the Min-Sum Set Cover problem, the use of the ellipsoid method (for the computation of the
subgradient vector) can be replaced by a more efficient quadratic-time algorithm (see Appendix B.2).

Having established polynomial-time computation for the subgradients, Online Projected Gradient Descent
takes the form of Algorithm 1 in our specific setting.

Algorithm 1 Online Projected Gradient Decent in Doubly Stochastic Matrices
1: Initially, the player selects the matrix A1 = 1/n · 1n×n.
2: for all rounds t = 1 · · ·T do
3: The adversary selects a request Rt ⊆ U with covering requirements K(Rt).
4: The learner receives cost, FACRt(A

t).
5: The learner computes a subgradient gt ∈ ∂FACRt(A

t) by solving the dual of (FLP).
6: The learner computes the matrix, Â = At − 2ε · gt/(n4.5

√
t).

7: The learner adopts the matrix, At+1 = arg minA∈DS‖A− Â‖F
8: end for

1Interestingly, GMSSC seems to be the most general version of min-sum-set-cover-like ranking problems that allow for an
efficient subgradient computation through the dual of the configuration LP (FLP). E.g., for the version of Min-Sum-Set-Cover
with submodular costs considered in [4], determining the feasibility of a potential solution to (4) is NP-hard. This is true even
for very special case where the cover time function used in [4] is additive.

6

Step 6 of Algorithm 1 is the gradient step. In Online Projected Gradient Descent, this step is performed
with step-size D/(G

√
t), where D and G are upper bounds on the diameter of the action space and on the

Euclidean norm of the subgradients. In our case, the action space is the set of doubly stochastic matrices.
Since maxA,B∈DS‖A−B‖F ≤ 2

√
n the parameter D = 2

√
n, and G = n5/ε, by Lemma 1. Hence, our step-size

is 2ε/(n4.5
√
t). The projection step (Step 7) is implemented in polynomial-time, because projecting to doubly

stochastic matrices is a convex problem [16]. We conclude the section by plugging in the parameters G = n5/ε
and D = 2

√
n to the regret bounds of Online Projected Gradient Descent [44], thus obtaining Theorem 1.

Theorem 1. For any ε > 0 and any request sequence R1, . . . , RT , the sequence of doubly stochastic matrices
A1, . . . , AT produced by Online Projected Gradient Descent (Algorithm 1) satisfies, 1

T

∑T
t=1 FACRt(A

t) ≤
1
T minA∈DS

∑T
t=1 FACRt(A) +O

(
n5.5

ε
√
T

)
.

4 Converting Doubly Stochastic Matrices to Distributions on Per-
mutations

Next, we present polynomial-time rounding schemes that map a doubly stochastic matrix back to a probability
distribution on permutations. Our schemes ensure that the resulting permutation (random or deterministic)
has access cost at most α times the fractional access cost of the corresponding doubly stochastic matrix.
Combining such schemes with Algorithm 1, we obtain polynomial-time α-regret online learning algorithms
for GMSSC.

Due to lack of space, we only present the deterministic rounding scheme, which is intuitive and easy to
explain. Most of its analysis and the description of the randomized rounding schemes are deferred to the
supplementary material.

Algorithm 2 Converting Doubly Stochastic Matrices to Permutations
Input: A doubly stochastic matrix A ∈ DS, a parameter r and a parameter α > 0.
Output: A deterministic permutation πA ∈ [n!].
1: Rem← {1, . . . , n}
2: for k = 1 to bn/rc do
3: Let Rk be any (1 + α)-approximate solution to the following problem:

min
R⊆Rem:|R|=r

n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

4: Assign the elements of Rk to positions (k − 1) · r + 1, . . . , k · r of πA in any order.
5: Rem← Rem \Rk
6: end for
7: return the resulting permutation πA ∈ [n!].

Algorithm 2 aims to produce a permutation πA ∈ [n!] from the doubly stochastic matrix A such that the
AccessCost(πA, R) is approximately bounded by FARR(A) for any request R with |R| ≤ r and K(R) = 1.
Algorithm 2 is based on the following intuitive greedy criterion:

Assign to the first r available positions of πA the elements of the request of size r with minimum
fractional cost of Definition 2 wrt. the doubly stochastic matrix A. Then, remove these elements
and repeat.

Unfortunately the greedy step above involves the solution to an NP-hard optimization problem. Nev-
ertheless, we can approximate it with an FPTAS (Fully Polynomial-Time Approximation Scheme). The
(1+α)-approximation algorithm used in Step 3 of Algorithm 2 runs in Θ(n4r3/α2) and is presented and
analyzed in Section B.5. Theorem 2 (proved in Section B.3) summarizes the guarantees on the access cost of
a permutation πA produced by Algorithm 2.

7

Theorem 2. Let πA denote the permutation produced by Algorithm 2 when the doubly stochastic matrix A is
given as input. Then for any request R with K(R) = 1 and |R| ≤ r,

AccessCost(πA, R) ≤ 2(1 + ε)(1 + α)2r · FACR(A),

with ε > 0 as in Definition 2. Moreover, Step 3, can be implemented in Θ(n4r3/α2) steps.

We now show how Algorithm 1 and Algorithm 2 can be combined to produce a polynomial-time determin-
istic online learning algorithm for MSSC with regret roughly 2 max1≤t≤T |Rt|. For any adversarially selected
sequence of requests R1, . . . , RT with K(Rt) = 1 and |Rt| ≤ r, the learner runs Algorithm 1 in the background,
while at each round t uses Algorithm 2 to produce the permutation πAt by the doubly stochastic matrix
At ∈ DS. Then,

1

T

T∑
t=1

AccessCost(πAt , Rt) ≤ 1

T
·
T∑
t=1

2(1 + ε)(1 + α)2r · FACRt(A
t)

≤ 2r

T
(1 + ε)(1 + α)2 · min

A∈DS

T∑
t=1

FACRt(A) +O

(
n5.5

ε
√
T

)

≤ 2r

T
(1 + ε)(1 + α)2 ·

T∑
t=1

FACRt(A
π∗) +O

(
n5.5

ε
√
T

)

≤ 2r

T
(1 + ε)(1 + α)2 ·

T∑
t=1

AccessCost(π∗, Rt) +O

(
n5.5

ε
√
T

)
The first inequality follows by Theorem 2, the second by Theorem 1 and the last by Corollary 1.
Via the use of randomized rounding schemes we can substantially improve both on the assumptions and

the guarantee of Theorem 2. Algorithm 3 (presented in Section B.1), describes such a scheme that converts
any doubly stochastic matrix A to a probability distribution over permutations, while Theorem 3 (also proven
in Section B.1) establishes an approximation guarantee (arbitrarily) close to 28 on the expected access cost.

Theorem 3. Let PA denote the probability distribution over permutations that Algorithm 3 produces given
as input an A ∈ DS. For any request R,

E
π∼PA

[AccessCost(π,R)] ≤ 28(1 + ε) · FACR(A)

where ε > 0 is the parameter used in Definition 2.

Using Theorem 3 instead of Theorem 2 in the previously exhibited analysis, implies that combining
Algorithms 1 and 3 leads to a polynomial-time randomized online learning algorithm for GMSSC with
28(1 + ε) regret.

In Section B.2 we improve Theorem 3 for the the special case of MSSC. The randomized rounding scheme
described in Algorithm 4 admits the approximation guarantee of Theorem 4, which implies a polynomial-time
randomized online learning algorithm for MSSC with 11.713(1 + ε) regret

Theorem 4. Let PA denote the probability distribution over permutations that Algorithm 4 produces given
as input an A ∈ DS. For any request R with covering requirement K(R) = 1,

E
π∼PA

[AccessCost(π,R)] ≤ 11.713(1 + ε) · FACR(A)

where ε > 0 is the parameter used in Definition 2.

5 Experimental Evaluations
In this section we provide experimental evaluations of all the proposed online learning algorithms (both
deterministic and randomized) for Min-Sum Set Cover. Surprisingly enough our simulations seem to

8

suggest that the deterministic rounding scheme proposed in Algorithm 2, performs significantly better
than its theoretical guarantee, stated in Theorem 2, that associates its regret with the cardinality of
the sets. The following figures illustrate the performance of Algorithm 2 and Algorithm 4, and compare
it with the performance of the offline algorithm proposed by Feige et al. [13] and the performance of
selecting a permutation uniformly at random at each round. In the left figure each request contains either
element 1 or 2 and four additional randomly selected elements, while in the right figure each request
contains one of the elements {1, 2, 3, 4, 5} and nine more randomly selected elements.2 We remark that
in our experimental evaluations, we solve the optimization problem of Step 3 in Algorithm 2 through
a simple heuristic that we present in Appendix B.6, while for the computation of the subgradients we
use the formula presented in Corollary 3. The code used for the presented simulations can be found at
https://github.com/sskoul/ID2216.

6 Conclusion
This work examines polynomial-time online learning algorithms for (Generalized) Min-Sum Set Cover. Our
results are based on solving a relaxed online learning problem of smaller dimension via Online Projected
Gradient Descent, the solution of which is transformed at each round into a solution of the initial action space
with bounded increase in the cost. To do so, the cost function of the relaxed online learning problem is defined
by the value of a linear program with exponentially many constraints. Despite its exponential size, we show
that the subgradients can be efficiently computed via associating them with the variables of the LP’ s dual.
We believe that the bridge between online learning algorithms (e.g. online projected gradient descent) and
traditional algorithmic tools (e.g. duality, separation oracles, deterministic/randomized rounding schemes),
introduced in this work, is a promising new framework for the design of efficient online learning algorithms in
high dimensional combinatorial domains. Finally closing the gap between our regret bounds and the lower
bound of 4, which holds for polynomial-time online learning algorithms for MSSC, is an interesting open
problem.

Broader Impact
We are living in a world of abundance, where each individual is provided myriad of options in terms of
available products and services (e.g. music selection, movies etc.). Unfortunately this overabundance makes
the cost of exploring all of them prohibitively large. This problem is only compounded by the fast turn
around of new trends at a seemingly ever increasing rate. Our algorithmic techniques provide a practically
applicable methodology for managing this complexity.

2In the subsequent figures the curves describing the performance of each algorithm are placed in the following top-down order
i) Selecting a permutation uniformly at random, ii) Algorithm 2, iii) Algorithm 4 and iv) Feige-Lovasz-Tetali algorithm [13].

9

https://github.com/sskoul/ID2216

Funding Disclosure
Dimitris Fotakis and Thanasis Lianeas are supported by the Hellenic Foundation for Research and Innovation
(H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers’
and the procurement of high-cost research equipment grant”, project BALSAM, HFRI-FM17-1424. Stratis
Skoulakis was supported by NRF 2018 Fellowship NRF-NRFF2018-07. G. Piliouras gratefully acknowledges
AcRF Tier-2 grant (Ministry of Education – Singapore) 2016-T2-1-170, grant PIE-SGP-AI-2018-01, NRF2019-
NRF-ANR095 ALIAS grant and NRF 2018 Fellowship NRF-NRFF2018-07 (National Research Foundation
Singapore).

References
[1] Alekh Agarwal, Daniel J. Hsu, Satyen Kale, John Langford, Lihong Li, and Robert E. Schapire. Taming

the monster: A fast and simple algorithm for contextual bandits. In Proceedings of the 31th International
Conference on Machine Learning, ICML 2014.

[2] Nir Ailon. Improved bounds for online learning over the permutahedron and other ranking polytopes. In
Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, AISTATS 2014.

[3] Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive routing. J. Comput.
Syst. Sci., 2008.

[4] Yossi Azar and Iftah Gamzu. Ranking with submodular valuations. In Proceedings of the 22nd Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2011.

[5] Yossi Azar, Iftah Gamzu, and Xiaoxin Yin. Multiple intents re-ranking. In Proceedings of the 41st
Annual ACM Symposium on Theory of Computing, STOC 2009.

[6] Nikhil Bansal, Anupam Gupta, and Ravishankar Krishnaswamy. A constant factor approximation
algorithm for generalized min-sum set cover. In Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2010.

[7] Omer Ben-Porat and Moshe Tennenholtz. A game-theoretic approach to recommendation systems with
strategic content providers. In Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018.

[8] Guillaume Cabanac and Thomas Preuss. Capitalizing on order effects in the bids of peer-reviewed
conferences to secure reviews by expert referees. 64(2):405–415, 2013.

[9] Mahsa Derakhshan, Negin Golrezaei, Vahideh Manshadi, and Vahab Mirrokni. Product ranking on
online platforms. In Proc. of the 21st ACM Conference on Economics and Computation, EC 2015.

[10] Miroslav Dudík, Nika Haghtalab, Haipeng Luo, Robert E. Schapire, Vasilis Syrgkanis, and Jennifer Wort-
man Vaughan. Oracle-efficient online learning and auction design. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017.

[11] Miroslav Dudík, Daniel J. Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev Reyzin, and
Tong Zhang. Efficient optimal learning for contextual bandits. In Proceedings of the Twenty-Seventh
Conference on Uncertainty in Artificial Intelligence, UAI 2011.

[12] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation methods for the web. In
Proceedings of the 10th International Conference on World Wide Web, WWW 2001.

[13] Uriel Feige, Laszlo Lovasz, and Prasad Tetali. Approximating min-sum set cover. Technical report.

[14] Tanner Fiez, Nihar Shah, and Lillian Ratliff. A super* algorithm to determine orderings of items to
show users. In Conference on Uncertainty in Artificial Intelligence, UAI 2020.

10

[15] Maria florina Balcan and Avrim Blum. Approximation algorithms and online mechanisms for item
pricing. In ACM Conference on Electronic Commerce, 2006.

[16] Fajwel Fogel, Rodolphe Jenatton, Francis Bach, and Alexandre d’Aspremont. Convex relaxations for
permutation problems. In Proceedings of the 26th International Conference on Neural Information
Processing Systems, NIPS 2013.

[17] Dimitris Fotakis, Loukas Kavouras, Grigorios Koumoutsos, Stratis Skoulakis, and Manolis Vardas. The
online min-sum set cover problem. In Proc. of the 47th International Colloquium on Automata, Languages
and Programming, ICALP 2020.

[18] Takahiro Fujita, Kohei Hatano, and Eiji Takimoto. Combinatorial online prediction via metarounding.
In 24th International Conference on Algorithmic Learning Theory, ALT 2013.

[19] Dan Garber. Efficient online linear optimization with approximation algorithms. In Proceedings of the
30th International Conference on Neural Information Processing Systems, NIPS 2017.

[20] Refael Hassin and Asaf Levin. An approximation algorithm for the minimum latency set cover problem.
In 13th Annual European Symposium on Algorithms, ESA 2005.

[21] Elad Hazan. Introduction to Online Convex Optimization. Foundations and Trends in Optimization.
2017.

[22] Elad Hazan, Wei Hu, Yuanzhi Li, and Zhiyuan Li. Online improper learning with an approximation
oracle. In Advances in Neural Information Processing Systems, NeurIPS 2018.

[23] Elad Hazan and Satyen Kale. Online submodular minimization. J. Mach. Learn. Res., 2012.

[24] Elad Hazan, Satyen Kale, and Shai Shalev-Shwartz. Near-optimal algorithms for online matrix prediction.
In 25th Annual Conference on Learning Theory, COLT 2012.

[25] Elad Hazan and Tomer Koren. The computational power of optimization in online learning. In Proceedings
of the 48th Annual ACM Symposium on Theory of Computing, STOC 2016.

[26] David P. Helmbold, Robert E. Schapire, and M. Long. Predicting nearly as well as the best pruning of a
decision tree. In Machine Learning, 1997.

[27] David P. Helmbold and Manfred K. Warmuth. Learning permutations with exponential weights. In
Proceedings of the 20th Annual Conference on Learning Theory, COLT 2007.

[28] Sungjin Im. Min-sum set cover and its generalizations. In Encyclopedia of Algorithms, pages 1331–1334.
2016.

[29] Sungjin Im, Viswanath Nagarajan, and Ruben van der Zwaan. Minimum latency submodular cover.
ACM Trans. Algorithms, 2016.

[30] Sungjin Im, Maxim Sviridenko, and Ruben van der Zwaan. Preemptive and non-preemptive generalized
min sum set cover. Math. Program., 2014.

[31] Stefanie Jegelka and Jeff A. Bilmes. Online submodular minimization for combinatorial structures. In
Proceedings of the 28th International Conference on Machine Learning, ICML 2011.

[32] Sham Kakade, Adam Tauman Kalai, and Katrina Ligett. Playing games with approximation algorithms.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, STOC 2007.

[33] Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. In J. Comput. Syst.
Sci. Springer, 2003.

[34] Wouter M. Koolen, Manfred K. Warmuth, and Jyrki Kivinen. Hedging structured concepts. In the 23rd
Conference on Learning Theory, COLT 2010.

11

[35] Holakou Rahmanian and Manfred K. K Warmuth. Online dynamic programming. In Advances in Neural
Information Processing Systems, NIPS 2017.

[36] Martin Skutella and David P. Williamson. A note on the generalized min-sum set cover problem. Oper.
Res. Lett., 2011.

[37] Matthew J. Streeter and Daniel Golovin. An online algorithm for maximizing submodular functions. In
22nd Annual Conference on Neural Information Processing Systems, NIPS 2008.

[38] Matthew J. Streeter, Daniel Golovin, and Andreas Krause. Online learning of assignments. In 23rd
Annual Conference on Neural Information Processing Systems, NIPS 2009.

[39] Daiki Suehiro, Kohei Hatano, Shuji Kijima, Eiji Takimoto, and Kiyohito Nagano. Online prediction
under submodular constraints. In Algorithmic Learning Theory, ALT 2012.

[40] Eiji Takimoto and Manfred K. Warmuth. Predicting nearly as well as the best pruning of a planar
decision graph. In Theoretical Computer Science, 2000.

[41] Eiji Takimoto and Manfred K. Warmuth. Path kernels and multiplicative updates. J. Mach. Learn. Res.,
2003.

[42] Shota Yasutake, Kohei Hatano, Shuji Kijima, Eiji Takimoto, and Masayuki Takeda. Online linear
optimization over permutations. In Proceedings of the 22nd International Conference on Algorithms and
Computation, ISAAC 2011.

[43] Shota Yasutake, Kohei Hatano, Eiji Takimoto, and Masayuki Takeda. Online rank aggregation. In
Proceedings of the 4th Asian Conference on Machine Learning, ACML 2012.

[44] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Machine
Learning, Proceedings of the Twentieth International Conference, ICML 2003.

12

Supplementary Material
Efficient Online Learning of Optimal Rankings:
Dimensionality Reduction via Gradient Descent

A Omitted Proofs of Section 3
Proof of Lemma 1. To simplify notation, let λ∗(A), λ∗ej(A) denote the values of the variables λ∗(A), λ∗(A)ej
in the optimal solution of the dual program written with respect to doubly stochastic matrix A ∈ DS.
Respectively λ∗(B), λ∗ej(B) for the doubly stochastic matrix B ∈ DS. By strong duality, we have that

FACR(A) = λ∗(A) +
∑
e∈R

n∑
j=1

Aej · λ∗ej(A) and FACR(B) = λ∗(B) +
∑
e∈R

n∑
j=1

Bej · λ∗ej(B)

Since matrices A and B only affect the objective function of the dual and not its constraints, the solution
λ∗(A), λ∗ej(A) is a feasible solution for the dual program written according to matrix B. By the optimality of
λ∗(B), λ∗ej(B) we get,

FACR(B) = λ∗(B) +
∑
e∈R

n∑
j=1

Bej · λ∗ej(B) ≥ λ∗(A) +
∑
e∈R

n∑
j=1

Bej · λ∗ej(A)

As a result, we get that FACR(B)− FACR(A) ≥
∑
e∈R

∑n
j=1 λ

∗
ej(A) · (Bej −Aej) implying that the vector

g containing the λ∗ej(A)’s, is a subgradient of FACR(·) at point A, i.e., g ∈ ∂FACR(A). The inequality
‖g‖2 ≤ n5/ε directly follows by the fact that |λ∗(A)ej | ≤ n4/ε.

Separation Oracle for the LP in Equation 4: The dual linear program of (4) is differs from the LPdual in [30,
Sec. 2.2] only in the constraints |λej | ≤ n4/ε, which are only present in (4). [30, Sec. 2.2] present a separation
oracle for their LPdual (i.e., for (4), without the constraints |λej | ≤ n4/ε), which is based on formulating and
solving a min-cost flow problem. Since, in case of (4), the we have only n2 additional constraints |λej | ≤ n4/ε,
we can first check whether these constraints are satisfied by the current solution and then run the separation
oracle of [30].

B Omitted Proofs of Section 4

B.1 Proof of Theorem 3
In Algorithm 3, we present the online randomized rounding scheme that combined with Projected Gradient
Descent (Algorithm 1) produces a polynomial-time randomized online learning algorithm for GMSSC with
(roughly) 28 regret. The randomized rounding scheme described in Algorithm 3 was introduced by [36] to
provide a 28-approximation algorithm for the (offline) GMSSC. [36] proved that this randomized rounding
scheme produces a random permutation with access cost at most 28 times greater than the optimal fractional
value of the LP relaxation of GMSSC introduced in [6]. We remark that this LP relaxation cannot be
translated to an equivalent relaxed online learning problem as the one we formulated using the fractional
access cost of Definition 2. The goal of the section is to prove Theorem 3 which extends the result of [36] to
the fractional access cost of Definition 2.

13

Algorithm 3 Converting Doubly Stochastic Matrices to Probability Distributions over Permutations
Input: A doubly stochastic matrix A ∈ DS.
Output: A probability distribution over permutations, PA ∼ π ∈ [n!]

1: Randomly pick α ∈ (0, 1) with probability density function f(α) = 2α.
2: Set B ← (5.03/α) ·A
3: for all elements e = 1 to n do
4: for all positions j = 1 to bn/2c do
5: Be,2j ← Be,2j +Be,j .
6: end for
7: end for
8: for all elements e = 1 to n do
9: Pick αe uniformly at random in [0, 1].

10: Find the effecive index iαe ← arg maxi{i :
∑i−1
j=1Bej < αe}.

11: end for
12: Output the elements according to the order of ie’s.

Definition 3. For a request R with covering requirements K(R), we define the cost SWR : DS 7→ R on the
doubly stochastic matrices as follows: For any doubly stochastic matrix A ∈ DS, the value SWR(A) equals the
value of the following linear program,

minimize
n∑
i=1

(1− zi)

subject to (K(R)− |M |) · zi ≤
i−1∑
j=1

∑
e∈R\M

Aej for all M ⊆ R

zi ∈ [0, 1] for all 1 ≤ i ≤ n

Lemma 2. [36] For any doubly stochastic matrix A ∈ DS,

E
π∼PA

[AccessCost(π,R)] ≤ 28 · SWR(A)

where PA is the probability distribution over the permutation produced by Algorithm 3 when the matrix A was
given as input.

In Lemma 3 we associate the cost SWR(·) of Definition 3 with the fractional access cost FACR(·) of
Definition 2. Then Theorem 3 directly follows by Lemma 2 and Lemma 3.

Lemma 3. For any doubly stochastic matrix A ∈ DS,

SWR(A) ≤ (1 + ε) · FACR(A)

where ε > 0 is the parameter of the linear program (FLP) in Definition 2.

Proof. Starting from the optimal solution yF of the linear program (FLP) of FACR(A) in Definition 2, we
construct a feasible solution for the linear program of SWR(A) of Definition 3 with cost approximately
bounded by (1 + ε) · FACR(A). We first prove Claim 1 that is crucial for the subsequent analysis.

Claim 1. For any element e ∈ R and position 1 ≤ j ≤ n, |Aej −
∑

F :(e,je,e,j)∈F
y∗F | ≤ ε/n3.

Proof. Since A is a doubly stochastic matrix, by the Birkhoff-von Neumann theorem there exists a vector ŷ
with ŷF ≥ 0 and

∑
F∈F(R) ŷF = 1 such that

|Aej −
∑

F :(e,j)∈F

ŷF | = 0 for all e ∈ R and 1 ≤ j ≤ n

14

Since y∗ is the optimal solution, we have that

∑
F∈F(R)

CF · y∗F +
n4

ε
·
∑
e∈R

n∑
j=1

|Aej −
∑

F :(e,j)∈F

y∗F | ≤
∑

F∈F(R)

CF · ŷF .

Now the claim follows by the fact that 1 ≤ CF ≤ n, ŷF ≥ 0 and
∑
F∈F(R) ŷF = 1.

Having established Claim 1, we construct the solution z∗ that is feasible for the linear program of Definition 3
and its value (under the linear program of Definition 3), is upper bounded by (1 + ε) · FACR(A). For each
position 1 ≤ i ≤ n,

z∗i =

 ∑
F∈F(R):CF≤i−1

y∗F −
ε

n


+

We first prove that z∗ is feasible for the linear program of Definition 3. At first observe that in case
z∗i = 0 or K(R)− |M | ≤ 0 for some M ⊆ R, the constraint (K(R)− |M |) · zi ≤

∑i−1
j=1

∑
e∈R\M Aej is trivially

satisfied. We thus turn our attention in the cases where z∗i =
∑
F :CF≤i−1 y

∗
F − ε/n > 0 and K(R)− |M | ≥ 1

(recall, K(R) and |M | are integers). Applying Claim 1 we get that,

∑
e∈R\M

i−1∑
j=1

Aej ≥
∑

e∈R\M

i−1∑
j=1

 ∑
F :(e,j)∈F

y∗F − ε/n3


≥
∑

e∈R\M

i−1∑
j=1

∑
F :(e,j)∈F

y∗F − ε/n

=
∑

F∈F(R)

y∗F
∑

e∈R\M

i−1∑
j=1

1[(e, j) ∈ F]− ε/n

≥
∑

F :CF<i

y∗F
∑

e∈R\M

i−1∑
j=1

1[(e, j) ∈ F]− ε/n

≥ (K(R)− |M |)
∑

F :CF<i

y∗F − ε/n

= (K(R)− |M |) · z∗i + ε
K(R)− |M |

n
− ε/n

≥ (K(R)− |M |) · z∗i

where the second to last inequality follows from CF < i, and the last equation and the last inequality follow
from z∗i + ε/n =

∑
F :CF≤i−1 y

∗
F and K(R)− |M | ≥ 1, respectively.

We complete the proof of Lemma 3 by showing that
∑n
i=1(1− z∗i) ≤ (1 + ε) · FACR(A).

SWR(A) ≤
n∑
i=1

(1− z∗i)

≤
n∑
i=1

(
1−

∑
F :CF<i

y∗F + ε/n

)

=

n∑
i=1

(
1−

∑
F :CF<i

y∗F

)
+ ε

=

n∑
i=1

∑
F :CF≥i

y∗F + ε

=
∑

F∈F(R)

CF · y∗F + ε

15

≤ (1 + ε) · FACR(A)

B.2 Proof of Theorem 4
We first present the online sampling scheme, described in Algorithm 4, that produces the 11.713 guarantee of
Theorem 4.

Algorithm 4 Converting Doubly Stochastic Matrices to Probability Distribution (the case of MSSC)
Input: A doubly stochastic matrix A ∈ DS.
Output: A probability distribution over permutations, PA ∼ π ∈ [n!].
1: Randomly pick α ∈ (0, 1) with probability density function f(α) = 2α.
2: Set B ← Q ·A where Q← 1.6783/α.
3: for all elements e = 1 to n do
4: for all positions j = 1 to bn/2c do
5: Be,2j ← Be,2j +Be,j
6: end for
7: end for
8: for all elements e = 1 to n do
9: Pick αe uniformly at random in [0, 1].

10: ie ← max{i :
∑i−1
j=1Bej < αe}

11: end for
12: Output the elements according to the order of ie’s.

We dedicate the rest of the section to prove Theorem 4. Notice that Algorithm 4 is identical to Algorithm 3
with a slight difference in Step 2. Taking advantage of K(R) = 1, with tailored analysis, we significantly
improve to 11.713 the 28 bound of Lemma 2. Once Lemma 4 below is established, Theorem 4 follows by the
exact same steps that Theorem 3 follows using Lemma 2. The proof of Lemma 4 is concluded at the end of
the section.

Lemma 4. Let PA denote the probability distribution over permutations produced by Algorithm 4 when
matrix A is given as input. For all requests R with K(R) = 1,

E
π∼PA

[AccessCost(π,R)] ≤ 11.713 · SWR(A)

where SWR(·) is the cost of Definition 3.

In fact SWR(·) takes a simpler form.

Corollary 2. For any request R with covering requirement K(R) = 1, the cost SWR(·) of Definition 3 takes
the following simpler form,

SWR(A) =

n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

Lemma 5. [36] For the matrix B constructed at Step 2 of Algorithm 4, the following holds:

1.
2ki∑
j=1

Bej ≥ (k + 1)
i∑

j=1

Aej

2.
i∑

j=1

n∑
e=1

Bej ≤ 2Q · i.

Condition 2 of Lemma 5 allows for a bound on the expected access cost of the probability distribution
produced by Algorithm 4 with respect to the indices ie of Step 10. This is formally stated below.

16

Lemma 6. Let PAα denote the probability distribution produced in Steps 2− 11 of Algorithm 4 for a fixed
value of α. Then for any request R with covering requirements K(R) = 1,

E
π∼PA

α

[AccessCost(π,R)] ≤ 2Q · E[min
e∈R

ie] + 1,

with ie as defined in Step 10 of Algorithm 4.

Proof. Let ORi denote the set of elements outside R with index value ie ≤ i,

ORi = {e /∈ R : ie ≤ i}.

Notice that Algorithm 4 orders the elements with respect to the values ie (Step 12). Since the covering
requirements of the request R is K(R) = 1,

AccessCost(π,R) ≤ |ORmine∈R ie |+ 1.

The latter holds since R is covered at the first index in which one of its elements appears (K(R) = 1). As a
result,

E
π∼PAα

[AccessCost(π,R)] ≤ E[|ORmine∈R ie |] + 1 ≤
∑
e′ /∈R

Pr[ie′ ≤ min
e∈R

ie] + 1

It is not hard to see that,

∑
e′ /∈R

Pr[ie′ ≤ min
e∈R

ie] + 1 = E[
∑
e′ /∈R

mine∈R ie∑
j=1

Be′j] + 1 ≤ 2Q · E[min
e∈R

ie] + 1

where the first equality follows by the fact that, once B is fixed, Pr[ie ≤ k] =
∑k
j=1Bej (Step 10 of

Algorithm 4) and the last inequality follows by Case 2 of Lemma 5.

Lemma 7. Let iαR denote the first position at which
iαR∑
j=1

∑
e∈R

Aej ≥ α then

∫ 1

0

iαR dα ≤
n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

= SWR(A)

Proof. In order to prove Lemma 7, let us assume that a random variable β is selected according to the uniform
probability distribution in [0, 1], i.e., with density function f(β) = 1. As a result,

∫ 1

0
iαR dα =

∫ 1

0
iβR dβ =

E[iβR] =
n∑
i=1

Pr[iβR ≥ i]. Since i
β
R is the first position at which

iβR∑
j=1

∑
e∈R

Aej ≥ β,

Pr[iβR ≥ i] = Pr[β >

i−1∑
j=1

∑
e∈R

Aej] = max

1−
i−1∑
j=1

∑
e∈S

Aej , 0

 ≤ n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

with the second equality following because β is selected according to the uniform distribution in [0, 1].

To this end we have upper bounded the expected access cost of Algorithm 4 by E[mine∈R ie] (Lemma 4)
and lower bounded SWR(A) by

∫ 1

0
iαR dα (Lemma 7). In Lemma 8 we associate these bounds. At this point

the role of Condition 1 of Lemma 5 is revealed.

Lemma 8. Let iαR denote the first position at which
iαR∑
j=1

∑
e∈R

Aej ≥ α then

E[min
e∈R

ie] ≤ iαR/(1− 2e−αQ).

17

Proof.

Pr[min
e∈R

ie ≥ 2k · iαR + 1] = Πe∈R Pr[ie ≥ 2k · iαR + 1]

= Πe∈R Pr[αe >

2k·iαR∑
j=1

Bej]

= Πe∈R

1−
2k·iαR∑
j=1

Bej


+

≤ e
−

∑
e∈R

2k·iαR∑
j=1

Bej

≤ e
−(k+1)Q

∑
e∈S

iαR∑
j=1

Aej

≤ e−(k+1)Qα = pk+1

where the second inequality follows by Case 1 of Lemma 5 and the definition (and manipulation) of matrix B
inside Algorithm 4.

E[min
e∈R

ie] = iαR +

∞∑
k=1

Pr[2k−1 · iαR + 1 ≤ iR ≤ 2k · iαR] · 2k · iαR

≤ iαR +

∞∑
k=1

2k · iαR · e−kQα = iαR/(1− 2e−Qα)

Lemma 9. Let Q := z/α for some positive constant z. For any request R with covering requirement
K(R) = 1,

E
π∼PA

[AccessCost(π,R)] ≤
(

4z

1− 2e−z
+ 1

)
·
n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

Proof.

E
π∼PA

[AccessCost(π,R)] =

∫ 1

0

E
π∼PAα

[AccessCost(π,R)] · (2α) dα

≤
∫ 1

0

2Q · E[min
e∈R

ie] · (2α) dα+

∫ 1

0

(2α) dα (Lemma 6)

=

∫ 1

0

4z · E[min
e∈R

ie]dα+ 1 (Q = z/α)

≤
∫ 1

0

4z · iαR/(1− 2e−z) dα+ 1 (Lemma 8 and Q = z/α)

=
4z

1− 2e−z

∫ 1

0

iαR dα+ 1 (z = αQ is constant)

≤
(

4z

1− 2e−z
+ 1

) n∑
i=1

1−
i−1∑
j=1

∑
e∈S

Aej


+

(Lemma 8)

=

(
4z

1− 2e−z
+ 1

)
SWR(A) (Corollary 2)

18

Lemma 4 directly follows by setting z := 1.6783 in Lemma 9.
We conclude the section with the following corollary that provides with a quadratic-time algorithm for

computing the subgradient in case of Min-Sum Set Cover problem.

Corollary 3. Let a doubly stochastic matrix A and a request R. Let i∗ denotes the index at which
∑i−1
j=1Aej ≤

1 and
∑i−1
j=1Aej > 1. Let also the n× n matrix B defined as follows,

Bej =

{
i∗ − j if j ≤ i∗ − 1 and e ∈ R
0 otherwise

The matrix B (vectorized) is a subgradient of the SWR(·) at point A.

B.3 Proof of Theorem 2
All steps of Algorithm 2 run in polynomial-time. In Step 3 of Algorithm 2, any (1 + α)-approximation,
polynomial-time algorithm for minR∈[Rem]r AccessCost(R,A) can be used. The first choice that comes in
mind is exhaustive search over all the requests of size r, resulting in Θ(nr) time complexity. Since the latter is
not polynomial, we provide a (1 +α)-approximation algorithm running in polynomial-time in both parameters
n and r. For clarity of exposition the algorithm used in Step 3 is presented in Section B.5. In the following
we focus on proving Theorem 2.

We remark that by Corollary 2 of Section B.2 and Lemma 3 of Section B.1, for any request R with
covering requirement K(R) = 1,

n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej , 0


+

≤ (1 + ε) · FACR(A) for any A ∈ DS

where ε is the parameter used in Definition 2. As a result, Theorem 2 follows directly by Theorem 5, which is
stated below and proved in the next section.

Theorem 5. Let πA ∈ [n!] denote the permutation of elements produced by Algorithm 2 when the doubly
stochastic matrix A ∈ DS is given as input. Then for any request R with |R| ≤ r and K(R) = 1,

AccessCost(πA, R) ≤ 2(1 + α)2r ·
n∑
i=1

1−
i−1∑
j=1

∑
e∈R

Aej


+

.

B.4 Proof of Theorem 5
Consider a request R ∈ [nr] such that

(L− 1) · r + 1 ≤ AccessCost(πA, R) ≤ L · r (5)

for some integer L. Since K(R) = 1 this means that the first element of R appears between positions
(L− 1) · r + 1 and L · r in permutation πA.

To simplify notation we set Cost(A,R) :=
∑n
i=1

(
1−

∑i−1
j=1

∑
e∈RAej

)
+
. To prove Theorem 5 we show

the following, which can be plugged in (5) and give the result:

Cost(A,R) ≥ L

2(1 + α)2
.

Let R` denote the request of size r composed by the elements lying from position (`− 1) · r + 1 to ` · r
in the produced permutation πA. Recall the minimization problem of Step 3. R` is a (1+α) approximately
optimal solution for that problem and thus its corresponding cost is at most (1+α) times the corresponding
cost of any other same-cardinality subset of the remaining elements. Since in πA all the elements of R lie on
the right of position (L− 1) · r, all elements of R are present at the L-th iteration and thus,

Cost(A,RL) ≤ (1 + α) · Cost(A,R)

19

Moreover, by the same reasoning,

Cost(A,R`) ≤ (1 + α) · Cost(A,RL), for all ` = 1, . . . , L.

Thus it suffices to show that Cost(A,RL) ≥ L/2(1 + α). The latter is established in Lemma 10, which
concludes the section.

Lemma 10. Let R1, R2, . . . , RL be disjoint requests of size r such that for all ` = 1, . . . , L, Cost(A,R`) ≤
(1 + α) · Cost(A,RL). Then,

Cost(A,RL) ≥ L

2(1 + α)

Proof. For each request R` we define the quantity B`i as follows:

B`i =


∑
e∈R` Aei if

∑i
j=1

∑
e∈R` Aej < 1

1−
∑i−1
j=1

∑
e∈R` Aej if

∑i
j=1

∑
e∈R` Aej ≥ 1 and

∑i−1
j=1

∑
e∈R` Aej < 1

0 otherwise

Observation 1. The following 3 equations hold,

1.
∑n
i=1B`i = 1.

2. B`i ≤
∑
e∈R` Aei.

3. Cost(A,R`) =
∑n
i=1

(
1−

∑i−1
j=1

∑
e∈R` Aej

)
+

=
∑n
i=1

(
1−

∑i−1
j=1B`j

)
Since (1 + α) · Cost(A,RL) ≥ Cost(A,R`) for all ` = 1, . . . , L,

Cost(A,RL) ≥ 1

1 + α
· 1

L

L∑
`=1

Cost(A,R`) =
1

1 + α
·

 1

L

L∑
`=1

n∑
i=1

1−
i−1∑
j=1

B`j


=

1

1 + α
·

n− 1

L

L∑
`=1

n∑
i=1

i−1∑
j=1

B`j


=

1

1 + α
·

n− 1

L

n∑
i=1

i−1∑
j=1

Cj

 (where Cj =

L∑
`=1

B`j)

=
1

1 + α
·

[
n− 1

L

n∑
i=1

(n− i) · Ci

]
=

1

1 + α
·

[
n− n

L

n∑
i=1

Ci +
1

L

n∑
i=1

i · Ci

]

Observe that
∑n
i=1 Ci =

∑n
i=1

∑L
`=1B`i =

∑L
`=1

∑n
i=1B`i = L, where in the last equality we used

∑n
i=1B`i =

1. Thus we get that

Cost(A,RL) ≥ 1

1 + α

[
1

L

n∑
i=1

i · Ci

]
To this end, to conclude the result, one can prove that

∑n
i=1 i · Ci ≥ L2/2 using that

∑n
i=1 Ci = L and

Ci ≤ 1. Ci ≤ 1 follows by the disjoint property of the requests R1, . . . , RL. More precisely,

Ci =

L∑
`=1

B`i ≤
L∑
`=1

∑
r∈R`

Ari

≤
n∑
e=1

Aei = 1

where the first inequality follows from Observation 1 and the last inequality by R1, . . . , RL not sharing any
element.

20

B.5 Implementing Step 3 of Algorithm 2 in Polynomial-Time
In this section we present a polynomial time algorithm implementing Step 3 of Algorithm 2. More precisely,
we present a Fully Polynomial-Time Approximation Scheme (FTPAS) for the combinatorial optimization
problem defined below, in Problem 1.

Problem 1. Given an n× n doubly stochastic matrix A and a set of elements Rem ⊆ {1, . . . , n}. Select the
r elements of Rem (R∗ ⊆ Rem with R∗ = r) minimizing,

n∑
i=1

1−
i−1∑
j=1

∑
e∈R∗

Aej


+

.

In fact we present a (1 + α)-approximation algorithm for a slightly more general problem, Problem 2.

Problem 2. Given a set of m vectors B1, . . . , Bm, of size n such that,

0 = Be1 ≤ Be2 ≤ . . . ≤ Ben = 1, for each e = 1,. . . ,m

Select the r vectors (R∗ ⊆ [m] with R∗ = r) minimizing

n∑
i=1

(
1−

∑
e∈R∗

Bei

)
+

Setting Bei =
∑i−1
j=1Aej , one can get Problem 1 as a special case of Problem 2.

Theorem 6. There exists a (1 + α)-approximation algorithm for Problem 2 that runs in Θ(n4r3/α2) steps.

The (1 + α)-approximation algorithm of Problem 2 heavily relies on solving the Integer Linear Program
defined in Problem 3.

Problem 3. Given a set of m triples of integers (we, ce, de) such that ce, de ≥ 0 for each e ∈ {1,m} and two
positive integers C,D,

minimize
m∑
e=1

wexe

subject to
m∑
e=1

cexe ≥ C
m∑
e=1

dexe ≤ D
m∑
e=1

xe = r

xe ∈ {0, 1} e = 1, ...,m

Lemma 11. Problem 3 can be solved in Θ(n · C ·D · r) steps via Dynamic Programming.

Proof. Let DP(n, r, C,D) denotes the value of the optimal solution. Then

DP(n, r, C,D) = min (DP(n− 1, r − 1, C − xn, D − dn),DP(n− 1, r, C,D))

In the rest of the section, we present the (1 + α)-approximation algorithm for Problem 2 as stated in
Lemma 6 using the algorithmic primitive of Lemma 11.

We first assume the entries of the input vectors are multiples of small constant α << 1, Bei = kei · α for
some integer kei. Under this assumption we can use the algorithm (stated in Lemma 11) for Problem 3 to
find the exact optimal solution of Problem 2 in Θ(n2r/α2) steps.

21

More precisely, for a fixed index k, let OPTk denotes the optimal solution among the set of vectors of size
r that additionally satisfy, ∑

e∈R
Be(k−1) < 1 and

∑
e∈R

Bek ≥ 1 (6)

It is immediate that OPT = arg min1≤k≤n OPTk and thus the problem of computing OPT reduces into
computing OPTk for each index k. We can efficiently compute OPTk for each index k by solving an
appropriate instance of Problem 3. To do so, observe that for any set of vectors R satisfying the constraints
of Equation (6) for the index k,

n∑
i=1

(
1−

∑
e∈R

Bei

)
+

=

k−1∑
i=1

(
1−

∑
e∈R

Bei

)
=
∑
e∈R

k−1∑
i=1

(
1

r
−Bei

)
︸ ︷︷ ︸

we

where the first equality comes from the fact that Be1 ≤ . . . ≤ Ben. It is not hard to see that OPTk can be
computed via solving the instance of Problem 3 with triples

(
we =

∑k−1
i=1

(
1
r −Bei

)
, ce = Be(k−1), de = Bek

)
for each e = 1 . . . ,m, D = 1 and C = 1. Moreover by Lemma 11 this is done in Θ(nr/α2) steps. Thus the
overall time complexity in order to compute the optimal solution of Problem 2 (in case the entries Bei are
multiplies of α) is Θ(n2r/α2).

We now remove the assumption that the entries Bei are multiples of α via relaxing the optimality
guarantees by a factor of (1 + α). We first construct a new set of vector with entries rounded to the closest
multiple of α, B̂ei = bBei/αc · α and solve the problem as if the entries where B̂ei in Θ(n2r/α2) steps. The
quality of the produced solution, call it Sol can be bounded as follows

n∑
i=1

(
1−

∑
e∈Sol

Bei

)
+

≤
n∑
i=1

(
1−

∑
e∈Sol

B̂ei

)
+

≤
n∑
i=1

(
1−

∑
e∈Sol

B̂ei

)
+

≤
n∑
i=1

(
1−

∑
e∈OPT

(Bei − α)

)
+

≤
n∑
i=1

(
1−

∑
e∈OPT

Bei

)
+

+ nr · α

Setting α := α′/nr, we get that

n∑
i=1

(
1−

∑
e∈Sol

Bei

)
+

≤
n∑
i=1

(
1−

∑
e∈OPT

Bei

)
+

+ α′ ≤ (1 + α′)

n∑
i=1

(
1−

∑
e∈OPT

Bei

)
+

since Be1 = 0 for all e. Thus, the overall time needed to produce a (1 + α′)-approximate solution is
Θ(n4r3/(α′)2), proving the result.

B.6 A simple heuristic for Problem 1
In this section we present a simple heuristic for Problem 1 that can be a good alternative of the algorithm
elaborated in Section B.5. We remark that Algorithm 5 may provide highly sub-optimal solutions in the
worst case however our experiments suggest that it works well enough in practice. As explained in Section 5,
in our experimental evaluations we use this heuristic to implement Step 3 of Algorithm 2. This was done
since this heuristic is easier and faster to implement.

22

Algorithm 5 A simple heuristic for Problem 1
Input: A doubly stochastic matrix A ∈ DS.
Output: A set R (of r elements) approximating Problem 1
1: R = ∅
2: Target = (1, . . . , 1)︸ ︷︷ ︸

n

3: for ` = 1 to r do
4: e` ← arg mine∈{1,...,n}/R

(∑n
j=1 max(Target[j]−

∑j−1
s=1Aej , 0)

)
5: R← R ∪ {e`}
6: Target← (Target− (Ae1, . . . , Aen))+
7: end for
8: Output the set of elements R.

23

	1 Introduction
	2 Definitions and Notation
	3 Solving a Relaxation of Generalized Min-Sum Set Cover
	3.1 Implementing Online Gradient Descent in Polynomial-time

	4 Converting Doubly Stochastic Matrices to Distributions on Permutations
	5 Experimental Evaluations
	6 Conclusion
	A Omitted Proofs of Section 3
	B Omitted Proofs of Section 4
	B.1 Proof of Theorem 3
	B.2 Proof of Theorem 4
	B.3 Proof of Theorem 2
	B.4 Proof of Theorem 5
	B.5 Implementing Step 3 of Algorithm 2 in Polynomial-Time
	B.6 A simple heuristic for Problem 1

