
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΛΟΓΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΜΩΝ (Co.Re.Lab.)

Παίγνια Συµφόρησης: Στοχαστικές Επεκτάσεις και
Τεχνικές Μείωσης του Τιµήµατος της Αναρχίας

∆Ι∆ΑΚΤΟΡΙΚΗ ∆ΙΑΤΡΙΒΗ

του

Αθανασίου Β. Λιανέα

Αθήνα, ∆εκέµβριος 2014

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ
ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΛΟΓΙΚΗΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΜΩΝ

Παίγνια Συµφόρησης: Στοχαστικές Επεκτάσεις και
Τεχνικές Μείωσης του Τιµήµατος της Αναρχίας

∆Ι∆ΑΚΤΟΡΙΚΗ ∆ΙΑΤΡΙΒΗ

του

Αθανασίου Β. Λιανέα

Συµβουλευτική Επιτροπή: Ευστάθιος Ζάχος (Επιβλέπων)
∆ηµήτριος Φωτάκης
Αριστείδης Παγουρτζής

Εγκρίθηκε από την επταµελή εξεταστική επιτροπή την 16η ∆εκεµβρίου 2014.

..
Ευστάθιος Ζάχος
Καθηγητής ΕΜΠ

..
∆ηµήτριος Φωτάκης
Επ. Καθηγητής ΕΜΠ

..
Αριστείδης Παγουρτζής
Επ. Καθηγητής ΕΜΠ

..
Αντώνιος Συνµβώνης
Καθηγητής ΕΜΠ

..
Σταύρος Κολλιόπουλος
Αν. Καθηγητής ΕΚΠΑ

..
Ευάγγελος Μαρκάκης
Επ. Καθηγητής ΟΠΑ

..
Βασίλειος Ζησιµόπουλος

Καθηγητής ΕΚΠΑ

Αθήνα, ∆εκέµβριος 2014.

.....................................
Αθανάσιος Β. Λιανέας
∆ιδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

ς� 2014, Αθανάσιος Β. Λιανέας (Athanasios V. Lianeas).
Με επιφύλαξη παντός δικαιώµατος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανοµή της παρούσας εργασίας, εξ
ολοκλήρου ή τµήµατος αυτής, για εµπορικό σκοπό. Επιτρέπεται η ανατύπωση,
αποθήκευση και διανοµή για σκοπό µη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής
ϕύσης.
Οι απόψεις και τα συµπεράσµατα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον
συγγραφέα και δεν πρέπει να ερµηνευθεί ότι αντιπροσωπεύουν τις επίσηµες ϑέσεις
του Εθνικού Μετσόβιου Πολυτεχνείου.

Περίληψη

Το αντικείµενο της διατριβής είναι η ϑεωρητική ανάλυση και γενίκευση
µοντέλων παιγνίων συµφόρησης, µε στόχο την µελέτη µεθόδων µείωσης του
Τιµήµατος της Αναρχίας και τη µελέτη στοχαστικών επεκτάσεων των παιγνίων
συµφόρησης µε παράλληλη έρευνα του κατά πόσο µπορούν αυτές να επηρε-
άσουν, είτε ϑετικά είτε αρνητικά, το Τίµηµα της Αναρχίας. Αρχικά, παρου-
σιάζονται ϐασικά στοιχεία της ϐιβλιογραφίας που έχουν άµεση σχέση µε τα
προβλήµατα που µελετήθηκαν και στην συνέχεια ακολουθεί µια εκτεταµένη
παρουσίαση των αποτελεσµάτων της εργασίας.

Παρουσιάζονται αποτελέσµατα που αφορούν το παράδοξο του Braess σε
παίγνια συµφόρησης όπου το κόστος κάθε παίκτη ισούται µε το κόστος της
πιο ακριβής ακµής (ακµή συµφόρησης) που χρησιµοποιεί και το κόστος του
δικτύου ισούται µε το κόστος της πιο ακριβής ακµής που χρησιµοποιείται.
Μελετάται το πρόβληµα εύρεσης έστω και προσεγγιστικά καλύτερου υποδι-
κτύου σε τέτοιου είδους παίγνια. Παρότι το αντίστοιχο πρόβληµα σε παίγνια
µε προσθετικά κόστη είχε κατηγοριοποιηθεί από πλευράς χρονικής πολυπλο-
κότητας για το εν λόγω πρόβληµα υπήρχαν κάποια αποτελέσµατα µόνο για
γενικεύσεις του και µάλιστα αρκετά πιο ασθενή από αυτά που παρουσιάζονται
στην διατριβή. Για την πιο απλή εκδοχή του προβλήµατος, µέσω µιας σύν-
ϑετης αναγωγής, αποδεικνύονται αποτελέσµατα δυσκολίας στην προσέγγιση
του καλύτερου υποδικτύου: είναι ΝΡ-δύσκολο το πρόβληµα εύρεσης έστω
και O(n0.121) προσεγγιστικά καλού υποδικτύου (όπου n ο αριθµός κόµβων
δικτύου). Παράλληλα καταδεικνύονται δύο υποκατηγορίες τέτοιων παιγνίων
που δεν πάσχουν καθόλου από το παράδοξο ενώ δίνεται ένας προσεγγιστι-
κός αλγόριθµος για περιπτώσεις δικτύων όπου η αναγωγή της απόδειξης της
ΝΡ-δυσκολίας δεν µπορεί να εφαρµοστεί.

Παρουσιάζονται, επίσης, αποτελέσµατα που έχουν να κάνουν µε το παρά-
δοξο του Braess σε παίγνια συµφόρησης µε προσθετικά κόστη. Για τέτοιου
είδους παίγνια επάνω σε Erdös-Rényi τυχαίους γράφους (ως υποκείµενα δί-
κτυα) έχει αποδειχτεί ότι µε µεγάλη πιθανότητα εµφανίζεται το παράδοξο του
Braess. Στην εργασία αυτή, το πρόβληµα εύρεσης καλύτερου υποδικτύου σε
τέτοιου είδους παίγνια, διαισθητικά ανάγεται σε πρόβληµα εύρεσης καλύτε-
ϱου υποδικτύου σε παίγνια όπου το υποκείµενο δίκτυο ανήκει στην πιο απλή
οικογένεια υποδικτύων που ϑα µπορούσαν να πάσχουν από το παράδοξο, µε
την δυσκολία εύρεσης καλύτερου υποδικτύου σε τέτοια δίκτυα να παραµένει
άγνωστη. Χρησιµοποιώντας ένα πολύ πρόσφατο αποτέλεσµα από τη ϑεωρία

πιθανοτήτων, δίνεται ένας πολυωνυµικός αλγόριθµος προσέγγισης του κα-
λύτερου υποδικτύου σε τέτοια δίκτυα και ακολούθως, χρησιµοποιώντας τις
επεκτατικές ιδιότητες των Erdös-Rényi γράφων, άγεται ένα προσεγγιστικά
καλό υποδίκτυο του αρχικού δικτύου.

Σε λιγο διαφορετική κατεύθυνση, µελετώνται τα ϐασικά χαρακτηριστικά
παιγνίων συµφόρησης µε αβεβαιότητα στις ακµές και παίκτες ευαίσθητους
στο ϱίσκο. Η κλασική µοντελοποίηση των παιγνίων συµφόρησης αγνοεί την
αβεβαιότητα στις ακµές που ενυπάρχει σε αρκετές περιπτώσεις της καθηµερι-
νότητας. Μοντελοποιώντας την αιτία της αβεβαιότητας στα κόστη των ακµών,
στην εργασία, ορίζονται δύο ¨ορθογώνια¨ µοντέλα, ένα µε στοχαστικούς παί-
κτες, όπου οι παίκτες συµµετέχουν ή όχι στο παίγνιο µε δεδοµένη πιθανότητα
και άρα η πραγµατική συµφόρηση για τις ακµές που επιλέγουν αποκτά τυ-
χαιότητα, και ένα µε στοχαστικές ακµές, όπου οι ακµές δύνανται µε κάποια
πιθανότητα να έχουν ¨µη-κανονική¨ συµπεριφορά και να προσδίδουν µε-
γαλύτερη καθυστέρηση κατά την χρήση τους. Σε αυτά τα παίγνια γίνεται
µελέτη ως προς την ύπαρξη σηµείων ισορροπίας και συναρτήσεων δυναµικού
ενώ µελετάται και η συµπεριφορά του τιµήµατος της αναρχίας.

Ενοποιώντας τις δύο κατευθύνσεις, στην εργασία δίδεται ένας νέος τρόπος
ϐελτίωσης του τιµήµατος της αναρχίας σε παίγνια µε αβεβαιότητα στις ακµές
και παίκτες ευαίσθητους στο ϱίσκο. Πιο συγκεκριµένα, δείχνεται ότι αν είναι
δυνατή η προσθήκη επιπλέον αβεβαιότητας σε επιλεγµένες ακµές µε τρόπον
ώστε να µην αλλάζει το αναµενόµενο κόστος τους, τότε, λόγω της ευαισθησίας
των παικτών στο ϱίσκο, αυτές οι ακµές γίνονται λιγότερο προτιµητέες από
τους παίκτες και συνεπώς το τίµηµα της αναρχίας δύναται να ϐελτιωθεί λόγω
της στροφής των παικτών προς ακµές που η ϐέλτιστη λύση ϑα επέλεγε για
αυτούς. Το πρόβληµα που ορίζεται προς αυτή την κατεύθυνση µοιάζει µε την
περιορισµένη χρήση διοδίων σε δίκτυα και αποτελέσµατα µπορούν να προ-
κύψουν από εκεί. Στην εργασία δίνονται αποτελέσµατα που προσπαθώντας
να ακολουθήσουν τις Karush Kuhn Tucker συνθήκες ϐελτιστότητας δίνουν
µια ¨οικονοµικότερη¨ και καλύτερη διαχείριση της αβεβαιότητας και παρέ-
χουν καλύτερη διαίσθηση για την προκύπτουσα ϐελτίωση του τιµήµατος της
αναρχίας.

Abstract

The subject of this thesis is the theoretical analysis and generalization
of congestion games models and it aims to provide a study on mehtods for
reducing the Price of Anarchy and a study related to stochastic extensions
of congestion games and in which extend the Price of Anarchy may be af-
fected within them. First, the literature that relates mostly to the problems
studied is presented and rightafter an extensive presentation of the results
of the thesis follows.

The problem of finding or approximating the best subnetwork in bot-
tleneck routing games is studied. Although the corresponding problem in
additive costs congestion games is almost fully understood, for the prob-
lem studied here, the existing results hold for more general games and in
fact are much weaker than the ones presented here. For the simplest ver-
sion of this problem, via a complex reduction, an NP-hardness results for
finding or approximating the best subnetwork of the underlying network is
proved: it is NP-hard to approximate the best subnetwork by a factor less
than O(n0.121) (where n is the number of nodes of the network). In the pos-
itive side it is proven that in some subclasses of these games the paradox
does not appear at all and also it is given an approximation algorithm for
some cases where the NP-hardness reductions cannot apply.

Results that have to do with Braess paradox in additive costs congestion
games are presented. Prior to the work presented here, it has been proved
that if the underlying network of a congestion game is a random Erdös-
Rényi graph then with high probability it suffers from Braess Paradox.
Here, it is proven that the problem of finding the best subnetwork in such
random networks can be essentially reduced to the problem of finding the
best subnetwork of a network belonging to the simplest class of graphs that
may suffer from the paradox. Using a very recent result from the theory of
probabilities, it is given a polynomial approximation algorithm for finding
best subnetworks in such networks. Then, the expansion properties of
Erdös-Rényi graphs are used and an approximately good subnetwork for
the initial network is drawn.

By slightly changing direction, the basic properties of congestion games
with uncertain delays and risk averse users are studied. The classic for-
mulation of congestion games ignores uncertainty in delays that arises in
many real life situations. Modeling the cause of uncertainy in delays, two
orthogonal models are introduced, one with stochastic players, where each
players participates in the game with a given probability and thus the ac-
tual delay on the edges that players choose gets uncertain, and another
with stochastic edges where each edge, with a given probability, may ‘‘fail’’
and provide greater delay to the players using it. For the arising classes
of games, the existence of pure Nash equilibrium and potentials and the
behavior of the price of anarchy is studied.

Uniting the above directions, a new way for improving the price of an-
archy in congestion games with uncertain delays and risk averse users is
given. More specifically, it is shown that if one can insert uncertainty in
the edges of the network in a way that the expected cost of those edges
remains the same, then, because of the risk aversion of the players, these
edges become less attractive for the players. Thus, the price of anarchy
may improve as more players may turn to edges that the optimal solu-
tion would choose for them. The arising algorithmic problem relates to
congestion games with restricted tolls and results can also be drawn from
there. In this thesis Karush Kuhn Tucker conditions are closely followed
and there are given results that give a better and ‘‘less cheap’’ use of extra
uncertainty and provide better insight of the improvement in the price of
anarchy.

στους αλληλεπιδρώντες µου,

σε αντίστοιχο ποσοστό

Ευχαριστίες

Ευχαριστώ τους καθηγητές µου: Στάθη Ζάχο για την πλήρως ενεπνευ-
στική του διδασκαλία, εντός κι εκτός αµφιθεάτρου, καθ’ολη την διάρκεια
των σπουδών µου, ∆ηµήτρη Φωτάκη που µε ϐοήθησε υπέρ το δέον χωρίς να
του Ϲητήσω καν ϐοήθεια, ΄Αρη Παγουρτζή που µε ηρεµία και καταννόηση α-
παντούσε και απαντά στις ερωτήσεις ϕοιτητών (εµού συµπεριλαµβανοµένου),
Νίκο Παπαγεωργίου γιατί διπλασίασε την αγάπη µου για τα µαθηµατικά και
∆ηµήτρη Πετσετίδη γιατί µε εµαθε να συγκεντρώνοµαι στο Ϲητούµενο. Επίσης
οφείλω ένα µεγάλο ευχαριστώ στα υπόλοιπα µέλη της επταµελούς επιτροπής
εξέτασης του παρόντος διδακτορικού, Αντώνη Συµβώνη, Σταύρο Κολλιόπου-
λο, Βαγγέλη Μαρκάκη και Βασίλη Ζησιµόπουλο.

Ευχαριστώ τους +αδέλφους µου στο Εργαστήριο Λογικής και Επιστή-
µης Υπολογισµών (Co.Re.Lab.) της Σχολής Ηλεκτρολόγων Μηχανικών και
Μηχανικών Υπολογιστών του Εθνικού Μετσόβιου Πολυτεχνείου, που ϐοήθη-
σαν τόσο στην ακαδηµαϊκή µου ανάπτυξη όσο και στην δηµιουργία ιδανικού
περιβάλλοντος στο εργαστήριο όλα αυτά τα χρόνια. Επιλέγοντας έναν αντι-
πρόσωπο για κάθε έτος (που όλοι στο εργαστήριο αγαπάµε όπου και αν τους
ϐρίσκουµε), ευχαριστώ τους : ΄Αρη Τέντε, Βαγγέλη Μπαµπά, Αντρέα Γκέµπελ,
Αντρέα Γαλάνη, Θέµη Γουλεάκη, Χάρη Αγγελιδάκη, Μανώλη Ζαµπετάκη και
Ναταλία Κωτσάνη. Επι τη ευκαιρία, προσθέτω ένα µεγάλο ευχαριστώ στα
µέλη του πιο ϕοβερού study group του ΕΜΠ για όλους τους δρόµους... που
ϐαδίσαµε µαζί.

Τέλος, ένα µεγάλο ευχαριστώ προς : τα πολυαγαπηµένα µου ξαδέρφια
Βασίλη, Γιωργία και Θανάση γιατί προσπαθώντας να τους µοιάσω έπρεπε να
αναπτύξω πολλές πλευρές της προσωπικότητάς µου, τον αδερφό µου Γιώργο
για τους ίδιους λόγους αλλά και γιατί µάλλον υπήρξε η αιτία να ανοίξω από
νωρίς τα ϐιβλία και του γονείς µου Βασίλη και Αναστασία για την πέρα από
κάθε περιγραφή ϐοήθειά τους όλα τα 30,997+0,75 χρόνια της Ϲωής µου.

Θανάσης Λιανέας
Αθήνα, ∆εκέµβριος 2014

∆ιάρθρωση της ∆ιατριβής

Τα παίγνια συµφόρησης αποτελούν σηµαντικό κοµµάτι της (αλγοριθµι-
κής) ϑεωρίας παιγνίων. Αφού συνοψίσουµε κάποια ϐασικά στοιχεία της ϐι-
ϐλιογραφίας που µελετήθηκε, ϑα επικεντρωθούµε σε ϑέµατα αυτής µε τα
οποία ασχοληθήκαµε ερευνητικά και ϑα παραθέσουµε τα ευρήµατα των προ-
σπαθειών µας, που έχουν να κάνουν µε το παράδοξο του Braess, αλλά και
µε τη συµπεριφορά δύο γενικεύσεων παιγνίων συµφόρησης που προσπαθούν
να προσοµοιάσουν καλύτερα κάποιες πραγµατικές καταστάσεις της Ϲωής.

Στο πρώτο κεφάλαιο συγκεντρώνουµε όλη την ϐιβλιογραφία που σχετίζεται
µε τα παίγνια συµφόρησης και την ερευνητική µας δουλειά και παρουσιά-
Ϲουµε τις τεχνικές που προσπαθούν να µειώσουν την υποβάθµιση του δικτύου
που προκαλεί η εγωιστική συµπεριφορά των παικτών.

Στο δεύτερο κεφάλαιο παρουσιάζουµε διαισθητικά την συνεισφορά µας ε-
νώ στο τρίτο κεφάλαιο δίνουµε γενικούς ορισµούς που ϑα χρησιµοποιήσουµε
στην παρουσίαση της δουλειάς µας.

Στο τέταρτο και πέµπτο κεφάλαιο ϑα εστιάσουµε στο παράδοξο του Braess,
η εξάλειψη του οποίου αποτελεί τον πιο σίγουρο και άµεσο τρόπο για την
µείωση της υποβάθµισης του δικτύου. Θα παρουσιάσουµε τεχνικά την δική
µας συνεισφορά στο πεδίο αυτό µε αποτελέσµατα που έχουν να κάνουν 1)
µε την εξάλειψη του παραδόξου σε τυχαίας ϕύσης δίκτυα που αποδεδειγ-
µένα πάσχουν από το παράδοξο όταν τα κόστη είναι προσθετικά και 2) µε
την δυσκολία εντοπισµού του παραδόξου και αποδοτικής εύρεσης έστω και
προσεγγιστικά καλού υποδικτύου σε παίγνια όπου τα κόστη των µονοπατιών
ισούνται µε το ϐάρος της ϐαρύτερής τους ακµής.

Στο έκτο κεφάλαιο, αφού ορίσουµε δύο γενικεύσεις των παιγνίων συµ-
ϕόρησης που αφορούν παίκτες ευαίσθητους στην αβεβαιότητα, ϑα τις ανα-
λύσουµε ως προς την ύπαρξη ισορροπιών και συναρτήσεων δυναµικού και
ϑα µελετήσουµε την συµπεριφορά του τιµήµατος της αναρχίας, τη µονάδα
µέτρησης της υποβάθµισης του δικτύου.

Στο έβδοµο κεφάλαιο, δείχνουµε πως µπορούµε, σε παίγνια µε παίκτες
ευαίσθητους στην αβεβαιότητα, να χρησιµοποιήσουµε την ευαισθησία των
παικτών και προσθέτωντας αβεβαιότητα σε µέρος του δικτύου να ϐελτιώσουµε
την συµπεριφορά του τιµήµατος της αναρχίας.

Στο όγδοο και τελευταίο κεφάλαιο, εξάγουµε τελικά συµπεράσµατα, και
παραθέτουµε-καταδεικνύουµε ανοικτά προβλήµατα.

Περιεχόµενα

1 Introduction 19
1.1 Congestion Games . 19
1.2 Bibliography Overview . 22
1.3 Reducing the Price of Anarchy 24

1.3.1 Taxing the Edges of the Network 24
1.3.2 Stackelberg Strategies 27
1.3.3 Tackling the Braess’s Paradox 29

1.4 Stochastic Congestion Games 33

2 Contribution 35
2.1 Braess’s Paradox in Bottleneck Costs Games 36
2.2 Braess’s Paradox in Additive Costs Games 38
2.3 Stochastic Congestion Games 40
2.4 Improving Selfish Routing through Risk Aversion 42

3 Congestion Games Preliminaries 47
3.1 General Notation and Conventions 47
3.2 Congestion Games Definitions 47
3.3 Equilibria . 49
3.4 Price of Anarchy and Price of Stability 50

4 On the Hardness of Network Design for Bottleneck Routing Ga-
mes 53
4.1 Problem-Specific Definitions and Facts 54
4.2 Paradox-Free Network Topologies and Paradox-Free Nash

Flows . 55
4.3 Recognizing Paradox-Ridden Instances is Hard 57
4.4 Approximating the Best Subnetwork is Hard 62
4.5 Networks with Quasipolynomially Many Paths 72

17

18 ΠΕΡΙΕΧΟΜΕΝΑ

5 Resolving Braess’s Paradox in Random Networks 77
5.1 Problem-Specific Definitions 77
5.2 The Approximation Scheme and Outline of the Analysis . . 80
5.3 Network Simplification . 82
5.4 Approximating the Best Subnetwork of Simplified Networks 86
5.5 Extending the Solution to the Good Network 90

6 Congestion Games with Risk Averse Players 99
6.1 Introducing the Models . 99
6.2 Congestion Games with Stochastic Players 100

6.2.1 The Model . 100
6.2.2 Stochastic Players on Parallel Links: Existence and

Computation of PNE 101
6.2.3 Price of Anarchy for Games with Affine Latencies . . 106

6.3 Congestion Games with Stochastic Edges 109
6.3.1 The Model . 109
6.3.2 Stochastic Edges on Parallel Links: Existence and

Computation of PNE 109
6.3.3 Price of Anarchy . 111

7 Improving Selfish Routing through Risk Aversion 113
7.1 Introducing γ-modifiable CGs 113
7.2 Modifying Routing Games in Parallel-Link Networks 116
7.3 Connection to Routing Games with Restricted Tolls 123
7.4 Modifying Routing Games in more General Settings 124

8 Discussion 127
8.1 Braess’ Paradox in Additive Costs Games 127
8.2 Braess’ Paradox in Bottleneck Costs Games 129
8.3 Stochastic Congestion Games 130
8.4 Abusing Uncertainty . 131

Bibliography 133

List of Figures 141

Chapter 1

Introduction

Congestion Games provide a natural model for non-cooperative resource
allocation in large-scale communication networks and have been the sub-
ject of intensive research in Algorithmic Game Theory. In this chapter, we
first give a small introduction to the ‘‘Congestion Games Space", inside of
which all the (leading, studied) different cases and generalizations of Con-
gestion Games (CGs in short) lie. A literature overview follows right after
with emphasis given to the bibliography part that strongly relates to our
work.

1.1 Congestion Games

In a Congestion Game [73], a set of identical non-cooperative players, con-
trolling an equal amount of load, compete over a finite set of resources. All
players using a particular resource, experience a cost (or latency) given by
a non-negative and non-decreasing function of the resource’s load (or con-
gestion). Each player selects her strategy, a subset of resources, selfishly
trying to minimize her individual cost.

The focus on CGs is on the so-called network CGs where there is an
underlying network given and each player’s strategy space is formed by
the paths from her origin node to her destination node in the network.
The edges of the network, that come together with a cost function, are the
resources of the network CG. The following hold for general CGs although
most of the work in the literature and also our work deals with network
CGs.

19

20 INTRODUCTION

Cases

Many different cases of CGs arise if one considers different assumptions
on the players’ strategy spaces, on the players’ types or on the players’
strategies’ costs. More specific, players may all have the same strategy
space, symmetric games case, or different strategy spaces, asymmetric
games case. Also, players might be finite and route a significant amount
(a unit) of load through the network, and thus may affect the resources’
cost, atomic games case, or be infinite and route a negligible (infinitesimally
small) amount of flow through the network and thus cannot unilaterally
affect the resources’ costs, non atomic games. Moreover each player’s costs
might be the sum of the resources’ costs on player’s strategy, additive
costs games, or the maximum resource’s cost among the resources’ costs
in player’s strategy, bottleneck costs. Figure 1.1 schematically presents
the above.

Figure 1.1: Network Congestion Games (small) map. The upper part captures the
leading generalizations of CGs. The lower part captures the different cases arising
by considering assumptions on the players’ strategy spaces, on the players’ types
and on the players’ strategies’ costs.

1.1. CONGESTION GAMES 21

Generalizations

CGs can be naturally generalized to games where players have different
demands (for the atomic case), called weights, i.e. route different amounts
of flow through the network (in network congestion games). These games
are called weighted CGs. Another natural generalization assumes that
resources’ cost functions are player dependent, i.e. each player perceives
a (possibly) different cost function on each resource. These are CGs with
player-specific cost functions. Deciding under uncertainty has drawn much
attention in CGs in the very last few years. Models of congestion games with
stochastic delays and risk averse players extend CGs in order to capture
real life situations and predict human behavior. Figure 1.1 helps.

Performance

In a Congestion Game, a natural solution concept is that of a pure Nash
equilibrium (PNE), a configuration where no player can decrease her cost by
unilaterally changing her strategy. At the other end, the network manager
cares about the public benefit and aims to minimize the total cost incurred
by all players. Since a Nash equilibrium does not need to optimize the
total cost, one seeks to quantify the inefficiency due to selfish behavior.
The Price of Anarchy was introduced in [57] and has become a widely ac-
cepted measure of the performance degradation due to the players’ selfish
behavior. The (pure) Price of Anarchy is the worst-case ratio of the total
cost of a (pure) Nash equilibrium to the optimal total cost. Many recent
contributions have provided strong upper and lower bounds on the Price
of Anarchy (PoA) for several classes of CGs. The forthcoming literature
overview includes also these results.

The prevailing questions in CGs of any of the different cases described
above (or even for subcases of them), have to do with the existence and
computation of equilibria, with the convergence time of better or best re-
sponse dynamics (i.e. the steps to reach an equilibrium starting from
an initial configuration and letting players do a better or best response,
one at a time), with deriving bounds on the PoA and with exploring ways
to improve network’s performance (tolls, stackelberg strategies, exploiting
braess paradox, see section 1.3). Citations (together with some details) of
published work dealing with these questions and the main results of the
literature part that relates the most to our work paper are given in the
remaining of the chapter.

22 INTRODUCTION

1.2 Bibliography Overview

Next we put together bibliography sources dealing with the prevailing ques-
tions in the different variants of CGs. The biggest portion of this literature
concerns additive costs games although there is a non negligible portion
concerning bottleneck costs games. For results on improving network’s
performance continue to section 1.3 and for games with stochastic delays
see section 1.4

Additive Costs

For results on the existence of Nash equilibrium one should see [73] where
the method of potential function is used to prove the existence of a pure
Nash Equilibrium (PNE) in CGs and [66] where the equivalence of CGs with
potential games is proved. On section 3.3 we open the first pages of these
works.

For results on the complexity of finding PNE see e.g. [33], where the
class PLS was proved to fully capture the difficulty of finding pure Nash
equilibrium in general, symmetric or asymmetric CGs, [30], where hard-
ness results for the existence of PNE in weighted games is given and [3]
where hardness results for the existence and computation of PNE in player-
specific CGs is given.

For results on the PoA in non atomic games see e.g. [74], where PoA
bounds are given that actually depend only to the class of the cost functions
of the resources and are independent of the network topology and [28],
where a simpler proof of the previous result was given that also can be
applied in more general settings. Also, one could see [64], where it is
shown that topological properties might help the network in performing
well.

For results on the PoA in atomic games see e.g. [8], where PoA bounds
are given for cases where the costs are linear functions or polynomials of
degree d, [23], where also bounds (slightly stronger for some cases) for
cases where the costs are linear functions or polynomials of degree d are
given but also a more general method for bounding PoA is introduced and
[4], where exact bounds are given using similar techniques to [23] that also
apply to weighted CGs.

For results on the convergence times to PNE see e.g. [32], where bounds
on convergence time for singleton CGs (strategies are singletons) for both
weighted and unweighted CGs, [39], where, among others, the convergence
time to PNE is investigated for the case of network CGs with linearly in-
dependent paths. For results on the convergence times to approximate

1.2. BIBLIOGRAPHY OVERVIEW 23

Nash equilibrium (where players costs are approximately equal) see e.g.
[81], where strong hardness results on convergence times of best response
dynamics are drawn, [21], where positive results for the convergence times
in symmetric games are given, [9], where the above work is extended to
the asymmetric case when a special property that helps to bypass the in-
approximability of [81] holds and [1] where properties of strategies’ spaces
are investigated so as to have fast convergence times.

For games with player-specific cost functions see e.g. [63], where the
study of player-specific cost functions was initiated in singleton CGs, [2],
where, among others, more general networks that guarantee PNE exis-
tence are investigated, [61], where the differences in the player-specific cost
functions that players perceive are only constants, [2], where the networks
found in [61] are proved to be optimal topologically and a polynomial algo-
rithm of finding the guaranteed to exist pure PNE is given and [46] where
properties of the class of cost functions are investigated for both the cases
of weighted or unweighted CGs in order to have PNE.

For games with weighted players see e.g. [44], where the model of
weighted CGs is introduced and results on the existence of equilibrium
and potential functions are presented, [69] for experimental results on
computing PNE in the model of [44], [2] where, as in player-specific games,
more general networks that guarantee PNE existence are investigated, [14],
where the PoA (whenever a PNE exists) is related with the class of allowable
cost functions and worst case results are proved in close relation with the
ones in unweighted games, [65], where topological properties are shown
to strongly relate with the existence of a PNE and [50], where an exact
characterization of the set of cost functions that guarantee a PNE existence
is given.

Bottleneck Costs

For results in non atomic games see e.g. [27], where the theoretical study
of bottleneck games were initiated and [62], where the uniqueness and op-
timality of PNE is investigated in parallel-links, series parallel and general
networks. For results concerning Braess’s paradox see section 1.3.

For results in atomic games see e.g. [11], where the study for atomic
games was initiated, the non uniqueness of PNE was proved, convergence’s
rates were studied and bounds on PoA were achieved, [18], where results
on the PoA related to the network structure are presented while existence of
a social optimal PNE is also proved, [31], where complete characterizations
of the networks that have optimal PoA is given (series-parallel networks for
the pre-described version of bottleneck games and extended parallel net-

24 INTRODUCTION

works for another version defined therein) and [19], where results related to
the existence, complexity, and price of anarchy of PNE for several network
games (symmetric and asymmetric, with identical or weighted players) are
given.

1.3 Reducing the Price of Anarchy

The degradation of the network due to players’ selfish behavior has drawn
much attention in the past. In the literature, there are three prevailing
ways to tackle this degradation.

Taxing the edges: changing the cost functions of the players by adding
taxes on the edges (resources) of the network.

Stackelberg strategies: changing the fraction of selfish players by assum-
ing that some players are willing to cooperate for social welfare.

Excluding the Braess’s paradox: changing the network topology by mak-
ing some edges (resources) unavailable.

1.3.1 Taxing the Edges of the Network

A CG with taxes is a typical CG with an extra tax vector that gives the
taxes for the edges of the network. The players’ cost are modified so as
to consider also the cost due to taxes on the edges they choose. Players
may have different sensitivities in taxes and this is captured by a constant
coming along with each player.

Taxes increase the cost of the players without affecting the social cost
function and thus can be used without charge by the network manager.
Ideally, one would like, by taxing the edges, to have the Nash Equilibria of
the new game be an optimum flow in the original game. These taxes are
called optimal taxes.

Non Atomic Case

In non atomic games the problem of designing optimal tax vectors has been
studied extensively. A classic result going all the way back to Pigou [70]
states that marginal cost taxes induce the optimal traffic pattern for homo-
geneous players [13]. A significant volume of recent work on optimal taxes
for non atomic CGs considers the more intriguing and realistic case of het-
erogeneous players, which may have different valuations of time (latency)

1.3. REDUCING THE PRICE OF ANARCHY 25

in terms of money (taxes). Yang and Huang [86] established the existence
of optimal taxes for non atomic asymmetric network CGs with heteroge-
neous players. Subsequently, their result was rediscovered by Fleischer,
Jain, and Mahdian [36], and Karakostas and Kolliopoulos [54]. Previously
the single-source special case had been investigated by Cole, Dodis, and
Roughgarden [26].

The existence of optimal taxes for non atomic CGs with heterogeneous
players follows from Linear Programming duality ([36, 54]), and thus an
optimal tax vector can be computed efficiently by solving a linear program.

For non atomic games, under mild assumptions on the latency func-
tions the edge flow at equilibrium is unique. Hence the taxes of [13, 26, 36,
54, 86] induce the optimal solution as the unique edge flow of the equilibria
of the game with taxes.

Atomic Case

Atomic CGs, even with splittable traffic (players can use more than one
paths to route their flow), may admit many different Nash equilibria, pos-
sibly with different edge flows. Therefore, when considering atomic games,
one has to distinguish between

• weakly-optimal tax vectors, for which at least one Nash equilibrium
of the game with taxes minimizes the total latency, and

• strongly-optimal tax vectors, for which all Nash equilibria of the game
with taxes minimize the total latency.

For atomic CGs with splittable traffic and heterogeneous players, Swamy
[82] proved that weakly-optimal tax vectors exist and can be computed ef-
ficiently. In fact they can be computed by solving a convex program similar
to the ones in [36] and [54].

As for atomic CGs with unsplittable traffic, the existence and efficient
computation of optimal taxes has been studied in the setting of homoge-
neous players.

Caragiannis, Kaklamanis, and Kanellopoulos [20] considered atomic
games with linear latency functions and homogeneous players, and inves-
tigated how much taxes can improve the price of anarchy. On the negative
side, they established that if the players either do not share the same
source and sink or have different traffic demands, then strongly-optimal
taxes may not exist. On the positive side, they presented an efficient con-
struction of strongly-optimal taxes for parallel-link games with linear la-
tencies and unit-demand players.

26 INTRODUCTION

Subsequently, Fotakis and Spirakis [45] proved that weakly-optimal
taxes exist and can be computed efficiently for atomic symmetric network
CGs, and that such taxes are strongly-optimal if the network is series-
parallel.

For the case of heterogeneous players, results follow from the technique
used in the non atomic case. Fotakis, Karakostas and Kolliopoulos in
[43], using a linear program like one in [54], prove the existence of weakly
optimal tolls for games with heterogeneous players with the same source
node. Also, in [43], it is given a counter example that shows that players’
heterogeneity precludes the existence of strongly-optimal taxes even on the
simplest topology of parallel-link networks.

Restrictions on the Allowable Taxes

More recently, Höfer et al. ([51]) studied non atomic CGs with taxes where
only a subset of the resources is allowed to get taxes and, on the negative
side they provided an NP-hardness result for finding optimal taxes for gen-
eral networks with linear latency functions and two commodities while on
the positive side, for single-commodity networks with parallel links and lin-
ear latency function, they provided a polynomial time algorithm for finding
optimal taxes.

Following this work, Bonifaci et al. ([17]) studied the (non atomic) case
where along with each edge, an upper bound on the allowable tax on that
edge is given. They provide a characterization for the flows that can be
imposed by the restricted taxes and compute the optimal taxes when the
optimal flow is inducible. Also based on this characterization, they manage
to compute the taxes that induce the smallest cost at equilibrium for par-
allel links networks. They also derive tight (even for parallel link networks)
bounds on the efficiency of restricted tolls for multi-commodity networks
and polynomial latency functions.

Jelinek et al. in [53] generalized the above model to atomic CGs and to
CGs with taxes with heterogeneous players. For non atomic and hetero-
geneous players, they prove that the problem is NP-hard even for single-
commodity networks and affine latency functions. On the positive side
they give an algorithm for optimally taxing subnetworks with affine latency
functions. For weighted atomic players, the problem is NP-hard already
for parallel-arc networks and linear latency functions, even if players are
homogeneous. Focusing on parallel links games, for unweighted atomic
and homogeneous players, they develop an algorithm to compute optimal
restricted tolls and for unweighted atomic and heterogeneous players, they
derive an algorithm for optimally taxing subnetworks.

1.3. REDUCING THE PRICE OF ANARCHY 27

1.3.2 Stackelberg Strategies

In Stackelberg routing, the network manager, as a central authority, coor-
dinates a fixed fraction α of the players and assigns them to appropriately
selected strategies trying to minimize the performance degradation due to
the selfish behavior of the remaining players.

A Stackelberg strategy is an algorithm that determines the strategies
of the coordinated players. The problem that arises for the coordinating
authority is, given a fraction α under her influence, to find the best stack-
elberg strategy so as to minimize the inefficiency caused by the selfishness
of the other players. Note that for α = 0 we get a classical congestion game.

The first case that has been thoroughly studied is the case of parallel
link networks (networks with two nodes and parallel edges joining them)
with linear latency functions.

Roughgarden in [75] proved that it is NP-hard to compute the optimal
Stackelberg strategy via a technical reduction from the 1

3
2
3PARTITION prob-

lem. He also presented three simple strategies with provable performance
guarantees. The first of the three, computes the optimum of the game
with αn players (n the number players in the original game) and finds the
edges for these players. In the original game the algorithm assigns the
coordinated players on the same edges they would stay in the optimum he
computed. The second one, namely the SCALE algorithm, after computing
the optimal solution x∗ assign to each link e, αx∗e players. The third one,
the Largest Latency First (LLF) algorithm, computes the optimal solution
and assigns the coordinated players to the most costly edges (links), fulling
them in decreasing order.

Swamy in [82] obtained the first results for non atomic routing in graphs
more general than parallel-link graphs, and strengthen existing results for
parallel-link graphs. In series-parallel graphs (sepa) he showed that Stack-
elberg routing reduces the PoA to a constant (depending on the fraction of
flow controlled). The algorithm that does the work is the LLF . For general
graphs, he obtained latency-class specific bounds on the PoA with Stackel-
berg routing, which give a continuous trade-off between the fraction of flow
controlled and the PoA. The bounds come from analyzing the performance
of the SCALE and the LLF algorithm. A part of this proof followed the same
technique as the one in Correa et. al ([28]). In parallel-link graphs, he
showed that Stackelberg routing reduces the PoA to a convex combination
of the worst case PoA when α = 0 and the optimal performance when α = 1.
The convex combination factors are 1 − α and α repsectively.

Karakostas and Kolliopoulos in [54] analyzed LLF and SCALE algo-
rithms, for general topology networks, multicommodity players, and linear

28 INTRODUCTION

latency functions. They showed a PoA bound for SCALE which decreases
from worst case PoA to 1 as α increases from 0 to 1, and depends only on
α, generalizing this way the known bound for the parallel links network
which nevertheless has one single commodity. An interesting fact is that a
good lower bound for SCALE is the instance of Braess’s Paradox which we’ll
see later on (section 1.3.3). A weaker bound for LLF and some extensions
to general latency functions were also shown.

Bonifaci et al. in [16], constructed a family of singlecommodity (non
atomic) instances such that every Stackelberg strategy induces a price
of anarchy that grows linearly with the size of the network. This bound
does not depend on the fraction α of the coordinated players. Moreover,
they prove upper bounds on the price of anarchy of the largest-latency-
first (LLF) strategy that only depend on the size of the network. Besides
other implications, this rules out the possibility to construct constant-
size networks to prove an unbounded price of anarchy. They also analyze
the effectiveness of SCALE, proving bounds for a general class of latency
functions that includes polynomial latency functions as a special case.
Their analysis is based on an approach that is simple yet powerful enough
to obtain (almost) tight bounds for SCALE in general networks improving
this way the bounds of Swamy ([82]) presented above

Fotakis in [38] investigated the effectiveness of Stackelberg strategies
for atomic CGs with unsplittable demands. Two orthogonal cases were
considered: i) linear CGs with arbitrary strategies and ii) CGs on parallel
links with arbitrary non-negative and non-decreasing latency functions.
For the second case, the same bound as in non atomic games (Swamy [82])
was proved. For the case of linear CGs with arbitrary strategies, algorithms
SCALE (changed appropriately for the atomic case) and LLF were analyzed
and upper and lower bounds were derived

In [38], a new stackelberg strategy was proposed. An interesting case
arises when the number of players is large and the number of coordinated
players is considerably larger than the number of resources, even if α is
small. To take advantage of this possibility, a simple Stackelberg strategy
was introduced, called COVER. Assuming that the ratio of the number of
coordinated players to the number of resources is no less than a positive
integer λ, COVER assigns to every resource either at least λ or as many
coordinated players as the resource has in the optimal configuration. The
PoA of COVER tends to the PoA of the corresponding non atomic linear CG
as λ grows. The idea proposed was to combine algorithms LLF and SCALE
with COVER to take advantage of the above fact. On the negative side,
in [38], it is presented a lower bound that holds not only for SCALE, but

1.3. REDUCING THE PRICE OF ANARCHY 29

also for any randomized Stackelberg strategy that assigns the coordinated
players to their optimal strategies.

1.3.3 Tackling the Braess’s Paradox

Braess’s Paradox is a counter intuitive fact stating that when removing
(adding) edges from (to) a network, its performance may increase (de-
crease). Figures 1.2 and 1.3 are examples for additive and bottleneck
costs games respectively.

Figure 1.2: A unit of flow is to be routed from s to t. (a). The optimal (additive
costs) flow routes 1/2 unit of traffic on the upper path (s, v, t) and 1/2 unit on
the lower path (s,w, t), and achieves a total latency of 3/2. In the Nash flow, all
traffic goes through the path (s, v,w, t). The players’ latency is 2, and the PoA is
4/3. (b). Without the edge (v,w), the Nash flow coincides with the optimal flow.

The idea is to improve the network performance at equilibrium by ex-
ploiting the essence of the Braess’s paradox, that is to remove some net-
work edges in order to decrease the latency of the Nash flow (the induced
flow on Nash equilibrium). Thus, given a CG, we seek for the best sub-
network, i.e. the subnetwork minimizing the players’ latency at (worst)
equilibrium.

Valiant and Roughgarden [84], in order to theoretically support that
Braess’s paradox is not an artifact of theory, proved that (under additive
costs) it occurs with high probability on random networks, and that for a
natural distribution of linear latencies, edge removal may improve, with
high probability, the equilibrium latency by a constant factor. Across the
same lines, Chung and Young in [24] adopting the random graphs model
of Erdös-Rényi showed that Braess’s paradox occurs when np ≥ c log(n)
for some c > 1 (n, p the random graphs’ parameters). See also [47] for a
slight generalization by the same authors.

30 INTRODUCTION

Additive Costs Games

Unfortunately, Roughgarden [78] proved that it is NP-hard not only to
find the best subnetwork, but also to compute any meaningful approxima-
tion to the equilibrium latency on the best subnetwork. In particular, he
showed that even for linear latencies, it is NP-hard to distinguish between
paradox-free instances, where edge removal cannot improve the equilib-
rium latency, and paradox-ridden instances, where the total latency of the
Nash flow on the best subnetwork is equal to the optimal total latency
(i.e. edge removal can decrease the PoA to 1). This implies that the only
known algorithm for approximating the equilibrium latency on the best
subnetwork is the trivial one, which does not remove any edges!

Fotakis, Kaporis and Spirakis in ([42]) examined the "Braess’s paradox
problems" for some practically interesting settings and managed to provide
a polynomial-time algorithm that decides if a network is paradox-ridden,
when latencies are linear and strictly increasing, a polynomial-time algo-
rithm for the problem of finding the best subnetwork, which outperforms
any known approximation algorithm for the case of strictly increasing lin-
ear latencies and an algorithm for finding a subnetwork that is almost
optimal wrt equilibrium latency which is subexponential when the number
of paths is polynomial and each path is of polylogarithmic length.

They also prove that the problem of deciding if a network with arbitrary
linear latencies is paradox-ridden reduces to the problem of generating all
optimal basic feasible solutions of a Linear Program that describes the op-
timal traffic allocations to the edges with constant latency. As an extension
of exploiting the paradox, it was provided a polynomial-time method that
turns the optimal flow into a Nash flow by deleting the edges not used by
the optimal flow, and performing minimal modifications to the latencies of
the remaining ones.

Since Roughgarden’s negative results, trying to detect Braess’s Para-
dox wasn’t incentive. Considering the results of [42] though, the problem
of detecting the "bad", Braess’s paradox’s edges, if any, gets a lot more
interesting.

Bottleneck Costs Games

Every bottleneck routing game is known to admit a Nash flow that is opti-
mal for the network, in the sense that it minimizes the maximum latency
on any used edge, a.k.a. the bottleneck cost of the network (see e.g. [11,
Corollary 2]). On the other hand, bottleneck routing games usually admit
many different Nash flows, some with a bottleneck cost quite far from the

1.3. REDUCING THE PRICE OF ANARCHY 31

optimum. Hence, there has been a considerable interest in quantifying the
performance degradation due to the players’ non-cooperative and selfish
behavior in (several variants of) bottleneck routing games.

Simple examples (see, e.g., figure 8.2 or [27, Figure 2]) demonstrate
that the PoA of bottleneck routing games with linear latency functions can
be as large as Ω(n), where n is the number of vertices of the network.

Figure 1.3: An example of Braess’s paradox for bottleneck routing games. We
consider a routing instance with identity latency functions and a unit of traffic to
be routed from s to t. The worst Nash flow, in (a), routes all flow through the path
(s, u, v, t), and has a bottleneck cost of 1. On the other hand, the optimal flow
routes 1/2 unit through the path (s, u, t) and 1/2 unit through the path (s, v, t),
and has a bottleneck cost of 1/2. Hence, PoA = 2. In the subnetwork (b), obtained
by removing the edge (u, v), we have a unique Nash flow that coincides with the
optimal flow, and thus the PoA becomes 1.

For atomic splittable bottleneck routing games, where the population of
players is finite, and each player controls a non-negligible amount of traffic
which can be split among different paths, Banner and Orda [11] observed
that the PoA can be unbounded, even for very simple networks, if the
players have different origins and destinations and the latency functions
are exponential. On the other hand, Banner and Orda proved that if the
players use paths that, as a secondary objective, minimize the number
of bottleneck edges, then all Nash flows are optimal. For a variant of
non atomic bottleneck routing games, where the social cost is the average
(instead of the maximum) bottleneck cost of the players, Cole, Dodis, and
Roughgarden [27] proved that the PoA is 4/3, if the latency functions are
affine and a subclass of Nash flows, called subpath-optimal Nash flows, is
only considered. Subsequently, Mazalov et al. [62] studied the inefficiency
of the best Nash flow under this notion of social cost.

For atomic unsplittable bottleneck routing games, where each player
routes a unit of traffic through a single s − t path, Banner and Orda [11]
proved that for polynomial latency functions of degree d, the PoA is O(md),
wherem is the number of edges of the network. On the other hand, Epstein

32 INTRODUCTION

et al. ([31]) proved that for series-parallel networks with arbitrary latency
functions, all Nash flows are optimal. Subsequently, Busch and Magdon-
Ismail [18] proved that the PoA of atomic unsplittable bottleneck routing
games with identity latency functions can be bounded in terms of natural
topological properties of the network. In particular, they proved that the
PoA of such games is bounded from above by O(l + logn), where l is the
length of the longest s − t path, and by O(k2 + log2 n), where k is length of
the longest cycle.

Once again, in this setting, one may distinguish two extreme classes
of instances: paradox-free instances, where edge removal cannot improve
the bottleneck cost of the worst Nash flow, and paradox-ridden instances,
where the bottleneck cost of the worst Nash flow in the best subnetwork
is equal to the optimal bottleneck cost of the original network (see also
[78, 42]).

The approximability of selective network design, a generalization of net-
work design where we cannot remove certain edges, was considered by Hou
and Zhang [52]. For atomic unsplittable bottleneck routing games with a
different traffic rate and a different origin and destination for each player,
they proved that if the latency functions are polynomials of degree d, it is
NP-hard to approximate selective network design within a factor of O(md−ε),
for any constant ε > 0. Moreover, for atomic k-splittable bottleneck rout-
ing games with multiple origin-destination pairs, they proved that selective
network design is NP-hard to approximate within any constant factor.

However, a careful look at the reduction of [52] reveals that their strong
inapproximability results crucially depend on both (i) that we can only
remove certain edges from the network, so that the subnetwork actually
causing a high PoA cannot be destroyed, and (ii) that the players have
different origins and destinations (and also are atomic and have different
traffic rates). As for the importance of (ii), in a different setting, where the
players’ individual cost is the sum of edge latencies on their path and the
social cost is the bottleneck cost of the network, it is known that Braess’s
paradox can be dramatically more severe for instances with multiple origin-
destination pairs than for instances with a single origin-destination pair.
More precisely, Lin et al. [59] proved that if the players have a common
origin and destination, the removal of at most k edges from the network
cannot improve the equilibrium bottleneck cost by a factor greater than
k + 1. On the other hand, Lin et al. [58] presented an instance with two
origin-destination pairs where the removal of a single edge improves the
equilibrium bottleneck cost by a factor of 2Ω(n). Therefore, both at the
technical and at the conceptual level, the inapproximability results of [52]
do not really shed light on the approximability of the (simple, non-selective)

1.4. STOCHASTIC CONGESTION GAMES 33

network design problem in the simplest, and most interesting, setting of
non atomic bottleneck routing games with a common origin-destination
pair for all players.

1.4 Stochastic Congestion Games

Most research work on CGs essentially ignores the stochastic nature of
edge delays, a feature of most practical applications, and assumes that
the players select their strategies based on precise knowledge of the edge
latencies, which are considered to be deterministic. On the contrary, in
real life transportation or telecommunication networks, the players cannot
accurately predict the actual edge delays. This happens not only because
the players cannot know the exact congestion of every edge, but also due to
(a priori unknown) external events (e.g., some construction work, a minor
accident, a link failure) that may affect the edge latencies and introduce
uncertainty. It is therefore natural to assume that the players decide on
their strategies based only on estimations of their actual delay, and most
important, that they are fully aware of the uncertainty and of the potential
inaccuracy of their estimations. So, to secure themselves from the event
of an increased delay, whenever this may have a considerable influence,
the players select their paths taking uncertainty into account (e.g., people
either take a safe route or plan for a larger-than-usual delay when they
head to an important meeting).

Such considerations give rise to CGs with stochastic delays and risk-
averse players, where instead of the path that minimizes her predicted (or
expected) delay, each player selects a path that guarantees her a reason-
ably low actual delay with a reasonably high confidence. To take uncer-
tainty into account, the actual delay of each player can be modeled by a
random variable. Then, a common assumption is that the players seek to
minimize either a convex combination of the expectation and the variance
of their delay, or a player-specific quantile of the delay distribution (see
also [83, 34] about the cost functions of risk-averse players, and [72] about
possible ways of risk quantification in optimization under uncertainty).

Following the research direction above, Ordóñez and Stier-Moses [68]
considered non atomic CGs, where the population of players is infinite and
each player controls a negligible amount of load, and suggested that each
path should be penalized by an additive term that increases with the risk-
aversion of the players and with the maximum deviation from the expected
delay of the path (however, this term does not depend on the actual load
of the edges). For each path, the additive term can be chosen either as a

34 INTRODUCTION

δ-fraction of (resp. a δ-quantile of a random variable depending on) the
maximum deviation from the expected delay of the path, or simply, as the
sum of the δ-fractions of the maximum deviation from the expected delay of
each edge in the path, where δ quantifies the risk-aversion of the players.
Under some general assumptions, [68] proves that an equilibrium exists
and is essentially unique in all the cases above.

Subsequently, Nikolova and Stier-Moses [67] suggested a model of
stochastic selfish routing with risk-averse players, where each player se-
lects a path that minimizes the expected delay plus δ times the standard
deviation of the delay, where δ quantifies the risk-aversion of the players.
They considered non atomic and atomic CGs, mostly with homogeneous
players, that share the same risk attitude, and distinguished between the
case where the standard deviation of a path’s delay is exogenous, i.e., it
does not depend on the load of the edges in the path, and the case where
the standard deviation is endogenous, i.e., it is a function of the load.
Nikolova and Stier-Moses [67] proved that in the exogenous case, which
is similar to the model of [68], (non atomic and atomic) stochastic routing
games essentially retain the nice properties of standard CGs: they admit
a potential function and, in the non atomic setting, a unique equilibrium,
and the inefficiency of equilibria can be bounded as for standard CGs.
In the endogenous case, they proved that non atomic stochastic routing
games admit an equilibrium, which is not necessarily unique, but may
not admit a cardinal potential. Moreover, atomic stochastic routing games
may not admit a PNE even in simple extension-parallel networks with 2
players and linear delays.

Following this research agenda, a better understanding of the proper-
ties of (atomic) CGs with stochastic delays and risk-averse players seems
meaningful while cases with different risk-aversions for the players have
not been studied at all.

Actually, there is a significant volume of work on theoretical and prac-
tical aspects of transportation networks with uncertain delays (see e.g.,
the discussion and the references in [67]). However, that line of research
focuses on the non atomic setting and adopts specific notions of individ-
ual cost and viewpoints. Motivated from applications where the players
have only partial knowledge of the number of players participating in the
game, Ashlagi, Monderer, and Tennenholtz [7] considered CGs on paral-
lel links with stochastic players. However, the players’ individual cost in
their model is the expected delay of the link chosen, and thus the players
are risk-neutral. They studied mixed Nash equilibria, and proved that a
generalization of the fully mixed equilibrium remains a mixed equilibrium
if the players are stochastic.

Chapter 2

Contribution

Congestion Games constitute one of the most extensively studied fields of
Algorithmic Game Theory. Nevertheless, as expected, there are still open
problems in this area.

Our focus was twofold, yet finally connected. In one direction we dealt
with problems related to detecting and excluding the Braess’s Paradox,
both in additive costs and bottleneck costs games, which lie in the family
of problems related to reducing the Price of Anarchy of CGs.

In the other direction we addressed with the problem of generalizing
CGs in such a way that uncertainty on the delays is taken under consid-
eration, focusing basically on modeling the source of uncertainty on the
resources. Apart from the drawn results for this model, surprisingly, this
modeling shed light to a new way for improving the Price of Anarchy of a
network, i.e. abuse the players’ risk averse behavior and improve the net-
work’s performance by adding extra uncertainty as "noise" in its resources.
By considering this, the directions of our work get an immediate relation.

Next we outline our contribution in each of the problems we investi-
gated, while in the following sections we get into more detail for each of
them.

• Braess Paradox in (the different versions of) bottleneck routing games
was not fully understood and we managed to clear the field for the
basic version of them (subsection 2.1 and chapter 4).

• Random networks (considered thus far in the literature) with high
probability suffer from the Braess’s Paradox when costs are additive.
We managed to prove essentially that the way to prove the above can
be cleverly yet carefully used to efficiently exploit the paradox in those
networks (subsection 2.2 and chapter 5).

35

36 CHAPTER 2. CONTRIBUTION

Figure 2.1: The main results (hardness results) of our work apply to both sym-
metric and asymmetric non atomic bottleneck costs games.

• Stochastic CGs and risk aversion has drawn much attention in the
very recent years. By the work in chapter 6 (contribution in subsec-
tion 2.3), we move one step forward on understanding these classes
of games.

• In certain settings, stochastic delays can actually improve the net-
work performance at equilibrium (see e.g. [71]). In chapter 7 (con-
tribution in 2.4), we show how we can abuse the risk aversion of the
players and improve the network’s performance.

2.1 Braess’s Paradox in Bottleneck Costs Games

We investigate the approximability of the network design problem for the
simplest, and seemingly easier to approximate, variant of non-atomic bot-
tleneck routing games (with a single origin-destination pair). Our main
result is that network design is hard to approximate within reasonable
factors, and holds even for the special case of strictly increasing linear
latencies. To the best of our knowledge, this is the first work that in-
vestigates the impact of Braess’s paradox and the approximability of the
network design problem for the basic variant of bottleneck routing games.
For the original work see [41]. Figure 2.1 captures the model on which the
results of this work hold.

2.1. BRAESS’S PARADOX IN BOTTLENECK COSTS GAMES 37

In Section 4.2, we use techniques similar to those in [31, 27], and show
that bottleneck routing games do not suffer from Braess’s paradox either if
the network is series-parallel, or if we consider only subpath-optimal Nash
flows (definition in section 4.1).

On the negative side, we employ, in Section 4.3, a reduction from
the 2-Directed Disjoint Paths problem, and show that for linear bottle-
neck routing games, it is NP-hard to recognize paradox-ridden instances
(Lemma 4.1). In fact, the reduction shows that it is NP-hard to distin-
guish between paradox-ridden instances and paradox-free instances, even
if their PoA is equal to 4/3, and thus, it is NP-hard to approximate the
network design problem within a factor less than 4/3.

In Section 4.4, we apply essentially the same reduction, but in a re-
cursive way, and obtain a much stronger inapproximability result. In
particular, we assume the existence of a γ-gap instance, which establishes
that network design is inapproximable within a factor less than γ, and
show that the construction of Lemma 4.1, but with some edges replaced
by copies of the gap instance, amplifies the inapproximability threshold
by a factor of 4/3, while it increases the size of the network by roughly a
factor of 8 (Lemma 4.4). Therefore, starting from the 4/3-gap instance of
Lemma 4.1, and recursively applying this construction a logarithmic num-
ber times, we show that it is NP-hard to approximate the network design
problem for linear bottleneck routing games within a factor of O(n0.121−ε),
for any constant ε > 0. An interesting technical point is that we man-
age to show this inapproximability result, even though we do not know
how to efficiently compute the worst equilibrium bottleneck cost of a given
subnetwork. Hence, our reduction uses a certain subnetwork structure
to identify good approximations to the best subnetwork. To the best of
our knowledge, this is the first rime that a similar recursive construction
is used to amplify the inapproximability threshold of the network design
problem, and of any other optimization problem related to selfish routing.

In Section 4.5, we consider latency functions that satisfy a Lipschitz
condition, and present an algorithm for finding a subnetwork that is almost
optimal w.r.t. the bottleneck cost of its worst Nash flow, when the worst
Nash flow in the best subnetwork routes a non-negligible amount of flow
on all used edges. The algorithm is based on Althöfer’s Sparcification
Lemma [5], and is motivated by its recent application to network design
for additive routing games [42]. For any constant ε > 0, the algorithm
computes a subnetwork and an ε/2-Nash flow whose bottleneck cost is
within an additive term of O(ε) from the worst equilibrium bottleneck cost
in the best subnetwork. The running time is roughly |P|poly(logm)/ε2, and is
quasipolynomial, when the number |P| of paths is quasipolynomial.

38 CHAPTER 2. CONTRIBUTION

Figure 2.2: The case where the random networks under study lay

2.2 Braess’s Paradox in Additive Costs Games

Departing from [24, 25, 84], that proved that random Erdös-Rényi Gn,p
graphs are prone to the paradox, we adopt a purely algorithmic approach.
We focus on the class of so-called good selfish routing instances, namely
instances with the properties used by [24, 84] to demonstrate the occur-
rence of Braess’s paradox in random networks with high probability. In
fact, one can easily verify that the random instances of [24, 84] are good
with high probability. Rather surprisingly, we prove that, in many inter-
esting cases, we can efficiently approximate the best subnetwork and its
equilibrium latency.

What may be even more surprising is that our approximation algorithm
is based on the expansion property of good instances, namely the very
same property used by [24, 84] to establish the prevalence of the paradox
in good instances! To the best of our knowledge, our results are the first of
theoretical nature which indicate that Braess’s paradox can be efficiently
eliminated in a large class of practically interesting instances. For the
original work see [40]. Figure 2.2 captures the model considered in this
work.

Technically, we present essentially an approximation scheme; given a
good instance and any constant ε > 0, we compute a flow g that is an
ε-Nash flow for the subnetwork consisting of the edges used by it, and
has a latency of L(g) ≤ (1 + ε)L∗ + ε, where L∗ is the equilibrium latency
of the best subnetwork (Theorem 5.1). Flow g whp has these properties.

2.2. BRAESS’S PARADOX IN ADDITIVE COSTS GAMES 39

Our results hold for any network in the class of good networks. This, of
course, includes Gn,p with p above the connectivity threshold, but it might
also include other types of random expanders. Our approximation scheme
runs in polynomial time for the most interesting case that the network
is relatively sparse and the traffic rate r is O(poly(ln lnn)), where n is the
number of vertices. Specifically, the running time is polynomial if the
good network has average degree O(poly(lnn)), i.e., if pn = O(poly(lnn)),
for random Gn,p networks, and quasipolynomial for average degrees up
to o(n). As for the traffic rate, most work on selfish routing and selfish
network design problems assumes that r = 1, or at least that r does not
increase with the network’s size (see e.g., [77], and the references there
in). So, we can approximate, in polynomial-time, the best subnetwork for
a large class of instances that, with high probability, include exponentially
many s − t paths and paths of length Θ(n). For such instances, a direct
application of [42, Theorem 3] gives an exponential-time algorithm.

The main idea behind our approximation scheme, and our main techni-
cal contribution, is a polynomial-time approximation-preserving reduction
of the best subnetwork problem for a good network G to a corresponding
best subnetwork problem for a 0-latency simplified network G0, which is
a layered network obtained from G if we keep only s, t and their imme-
diate neighbors, and connect all neighbors of s and t by direct edges of
0 latency. We first show that the equilibrium latency of the best subnet-
work does not increase when we consider the 0-latency simplified network
G0 (Lemma 5.2). Although this may sound reasonable, we highlight that
decreasing edge latencies to 0 may trigger Braess’s paradox (e.g., start-
ing from the network in Fig. 5.1.a with d(v,w)(x) = 1, and decreasing it to
d(v,w)(x) = 0 is just another way of triggering the paradox). The importance
of our 0-latency simplified network is that it greatly simplifies the network
design problem, since it allows us to focus on the loads of the s, t incident
edges. In sharp contrast, the corresponding subnetworks in [84, Fig. 3b],
[25, Sect. 2.3 Fig. 2], implicitly exhibit the paradox: they apply Chernoff’s
bounds to show that appropriate parts of these subnetworks whp have
large cardinalities, implying that even more flow r can be routed through
these subnetworks without increasing the selfish latency of the original
network. The paradox implicitly follows by an non obvious yet intuitive
fact [49, 59]: the selfish common latency is strictly increasing with the
total flow r. Hence, we approximate the best subnetwork problem (Theo-
rem 5.7) for our 0-latency simplified network by employing an approximate
version of Caratheodory’s Theorem (Theorem 5.6).

The final (and crucial) step of our approximation preserving reduction
is to start with the flow-solution to the best subnetwork problem for the

40 CHAPTER 2. CONTRIBUTION

0-latency simplified network, and extend it to a flow-solution to the best
subnetwork problem for the original (good) instance. To this end, we show
how to ‘‘simulate’’ 0-latency edges by low latency paths in the original good
network. Intuitively, this works because due to the expansion properties
and the random latencies of the good network G, the intermediate subnet-
work of G, connecting the neighbors of s to the neighbors of t, essentially
behaves as a complete bipartite network with 0-latency edges. This is also
the key step in the approach of [24, 84], showing that Braess’s paradox
occurs in good networks with high probability (see [24, Section 2]). Hence,
one could say that to some extent, the reason that Braess’s paradox exists
in good networks is the very same reason that the paradox can be efficiently
resolved. Though conceptually simple, the full construction is technically
involved and requires dealing with the amount of flow through the edges
incident to s and t and their latencies. Our construction employs a care-
ful grouping-and-matching argument, which works for good networks with
high probability, see Lemmas 5.8 and 5.9.

We highlight that the reduction itself runs in polynomial time. The time
consuming step is the the one returning the (approximate) solution to the
0-latency simplified network. Since such networks have only polynomially
many (and very short) s − t paths, they escape the hardness result of
[78]. The approximability of the best subnetwork for 0-latency simplified
networks is an intriguing open problem arising from our work that we
discuss in section 8.1.

Our result shows that a problem, that is NP-hard to approximate, can
be very closely approximated in random (and random-like) networks. This
resembles e.g., the problem of finding a Hamiltonian path in Erdös-Rényi
graphs, where again, existence and construction both work just above the
connectivity threshold, see e.g., [15]. However, not all hard problems are
easy when one assumes random inputs (e.g., consider factoring or the
hidden clique problem, for both of which no such results are known in full
depth).

2.3 Stochastic Congestion Games

We restrict our attention to atomic CGs, and introduce two variants of
stochastic CGs, which are inspired by the main sources of uncertainty in
delays of real transportation and telecommunication networks. We start
from the observation that the variability of edge delays comes either from
the variability of the traffic demand, and the subsequent variability of the
edge loads, or from the variability of the edge performance level. Decou-

2.3. STOCHASTIC CONGESTION GAMES 41

pling them, we introduce two variants of stochastic CGs, namely Conges-
tion Games with Stochastic Players and Congestion Games with Stochastic
Edges, each capturing one of the two sources of uncertainty above. For
the original work see [6]. Figure 2.3 places our models on the congestion
games map.

Figure 2.3: The introduced models and their positioning on the map.

CGs with Stochastic Players aim to model the variability of the traffic
demand. Specifically, each player i participates in the game, by actually
traversing her path, independently with probability pi. As a result, the total
network load, the edge loads, and the edge and the path latencies are all
random variables. On the other hand, CGs with Stochastic Edges aim to
model variability in the network operation. Now, each edge e may operate
either at the ‘‘standard’’ mode, where its latency is given by a function
fe(x), or at the ‘‘faulty’’ mode, where its latency is given by ge(x), where
ge(x) ≥ fe(x) for all x ≥ 0 (e.g., an edge operates at the ‘‘faulty’’ mode after a
minor accident or a link failure). Each edge e switches to the ‘‘faulty’’ mode
independently with a given probability pe. Hence, the network load and the
edge loads are now deterministic, but the edge and the path latencies are
random variables. In both variants, we assume that the players adopt a
risk-averse attitude to the stochastic delays. Specifically, each player i has
a (possibly different) desired confidence level δi, and her individual cost on
a path q is the δi-quantile (a.k.a. value-at-risk) of the delay distribution of
q. In words, the individual cost of player i is the minimum delay she can
achieve along q with probability at least δi.

42 CHAPTER 2. CONTRIBUTION

At the conceptual level, the model of CGs with Stochastic Players is
similar to the model with endogenous standard deviations of [67]. In fact,
using Chernoff bounds, we can show that for linear latency functions, if
the expected edge loads are not too small, our δi-quantile individual cost
can be approximated by the individual cost used in [67]. However, we also
consider stochastic demands, a direction suggested in [67, Sec. 7] to enrich
the model, and players that are heterogeneous with respect to risk attitude.
As for CGs with Stochastic Edges, the model is conceptually similar to the
model with exogenous standard deviations of [67].

In the technical part, we restrict ourselves to the important special case
of parallel-link networks with symmetric player strategies, and investigate
how the properties of stochastic CGs depend on whether the players have
the same participation probabilities and/or confidence levels or not. We
first observe that such games admit a potential function and an efficiently
computable PNE, if the players are homogeneous, namely if they have
the same confidence level δ and, in case of stochastic players, the same
participation probability p (Theorems 6.1 and 6.8). We also show that if
the players have different confidence levels (and the same participation
probability, if they are stochastic), stochastic CGs belong to the class of
player-specific congestion games [63], and thus admit a PNE computable
in polynomial time (Corollaries 6.2 and 6.9). On the negative side, we
prove that such games do not admit a potential function (Theorems 6.3
and 6.10). For CGs with Stochastic Players that have the same confidence
level and different participation probabilities, we show that they admit a
lexicographic potential (Theorem 6.5), and thus a PNE, and also that a PNE
can be computed by a simple greedy best response algorithm (Theorem
6.4), where the players sequentially adopt their best response strategy in
non-decreasing order of participation probabilities, given the strategies of
the previous players in the order. As for the inefficiency of PNE, we focus
on parallel-link networks with linear latency functions, and prove that the
Price of Anarchy (PoA) is Θ(n), where n is the number of players, in the
case of stochastic players (Theorems 7.3 and 6.7), and may be unbounded,
in the case of stochastic edges (Theorem 6.11).

2.4 Improving Selfish Routing through Risk Aversion

Motivated by the results of [71], we consider (nonatomic) routing games
with risk-averse players and investigate how one can exploit risk-aversion
and modify the perceived cost of the players so that the PoA wrt. the total
latency of the players is significantly improved. To the best of our knowl-

2.4. IMPROVING SELFISH ROUTING THROUGH RISK AVERSION 43

edge, this is the first time that risk-aversion is proposed and investigated
as a remedy to the inefficiency of selfish routing.

Our starting point is that in some practical applications, we may care-
fully introduce exogenous variance in the edge delays so that the expected
delay does not change, but the risk-averse cost of the players increases.
For example, in a transportation network, this can be done by randomly
increasing or decreasing the proportion of time allocated to the green traffic
light for short time intervals or by opening or closing an auxiliary traffic
lane. In a telecommunications network, we might randomly increase or
decrease the link capacity allocated to a particular type of traffic or change
its priority. Thus, we assume that for each edge e, we can increase (by a
small multiplicative factor) the delay through e with some positive prob-
ability pe and also decrease it with some positive probability qe, where pe
and qe are typically small, so that the expected latency through e remains
de(x). On the other hand, the variance in the delay introduced by such
random changes increases the perceived cost of risk-averse players. There-
fore, by carefully adjusting the perceived cost of the players, we can control
the network congestion, in a way conceptually similar to that of refund-
able tolls, and improve the PoA through a delicate and easy to implement
mechanism that exploits the risk-aversion of the players.

More specifically, we assume that all the players are homogenous wrt.
their risk attitude and that random changes on the edge delays cause the
perceived delays of the players to increase by a (typically small) multiplica-
tive factor1. In fact, we assume that the perceived delay function of each
edge e changes from de(x) to (1 + γe)de(x), where γe > 0 may depend on
the edge, the type and the probability of random changes, the risk atti-
tude of the players, the exact formula of the risk-averse individual cost
and most importantly, the practical setting. Although we briefly discuss,
in Section 7.1, how γe is determined and provide some examples, for sim-
plicity and generality, we deliberately avoid getting into the details of how
γe ’s are precisely calculated. In contrast, we simply assume a given upper
bound γ on the largest possible change in the delay functions and refer to
the corresponding routing game as a γ-modifiable game (or instance), with
the understanding in each particular application, γ can be determined by
considering all the factors mentioned above. In this setting, a flow (and

1We mostly have in mind random (relatively small and short-term) changes that affect
the link ‘‘capacity’’, e.g., opening or closing an auxiliary lane for a short time, increasing
or decreasing the capacity of a telecommunication link by a certain factor, etc. As a
result, we assume that the perceived cost of the players increases by a small multiplicative
factor. This also distinguishes our technical approach and our results from the extensively
studied case of additive refundable tolls (see e.g., [27, 35, 54, 55]).

44 CHAPTER 2. CONTRIBUTION

in particular, the optimal flow, which minimizes the total actual latency of
the players) is γ-enforceable (or simply, enforceable) if it is a Nash flow of
the modified routing game with the perceived cost of each edge e equal to
(1 + γe)de(x), for some γe ∈ [0, γ].

On the technical side, we observe that the maximum ratio of the op-
timal marginal-cost toll to the optimal edge latency gives an upper bound
on the value of γ required to enforce the optimal flow (Proposition 8). This
establishes the applicability of our approach and formalizes its connection
to refundable tolls. However, in addition to the fact that we use multiplica-
tive latency modifications, an important difference of our approach from
(additive) refundable tolls is that we always assume an upper bound γ on
the change of the perceived latencies, while optimal tolls do not assume
any bounds and can become arbitrarily large, e.g., as large as the delay
on the maximum delay s − t path used by the optimal flow (see e.g., [35,
Theorem 4.1]).

Next, to demonstrate the efficiency of our approach, we focus on the
simple and important special case of parallel-link networks (Section 7.2).
We characterize the class of γ-modifiable routing games on parallel-links
for which the optimal flow is enforceable (Theorem 7.1). Based on this char-
acterization, we present a recursive procedure that given a γ-modifiable
routing game and its optimal flow, computes a set of γ-bounded latency
modifications and a γ-enforceable flow with PoA significantly less than the
PoA of the original game (Lemma 7.2). Generalizing the variational in-
equality approach of [29], we prove that the PoA of the resulting flow is at
most max{1, (1 − �γ(D))−1}, where D is the class of the delay functions of
the original routing game and

�γ(D) = sup
d∈D,x≥y≥0

y(d(x) − d(y)) − γ(x − y)d(x)
xd(x)

is a natural generalization of the quantity �(D) introduced in [29] (Theo-
rem 7.3). For example, our analysis implies that for linear delays, the PoA
of the γ-enforceable flow computed by our approach is at most max{1, (1 −
(1 − γ)2/4)−1} (Corollary 7.5), which is significantly less that 4/3 even for
small values of γ (e.g., it is less than 6/5 for γ = 0.1). We also show
that our PoA analysis in terms of γ is tight wrt. all γ-enforceable flows
(Theorem 7.7). Finally, we give a procedure that computes a set of γ-
bounded latency modifications and a γ-enforceable flow with such PoA in
time polynomially related to the time needed for computing Nash flows
in parallel-links (Lemma 7.8). Therefore, given any γ-modifiable game on
parallel-links, we can efficiently (for a wide class of latency functions) com-
pute a game with perceived delays changed by a factor of at most 1 + γ

2.4. IMPROVING SELFISH ROUTING THROUGH RISK AVERSION 45

such that the PoA is at most max{1, (1 − �γ(D))−1}.
In Section 7.3 we relate γ-modifiable CGs to routing games with re-

stricted tolls ([17]). We point out the results of [17] that can be applied to
γ-modifiable CGs while we support our constructive and more complicated
approach for providing better insight for the problem of finding optimal
γ-modifications and for the improvement on the PoA.

In section 7.4, we discuss how our approach can be extended to more
general settings. First we give the intuition of how similar to the parallel
links case results can be derived for the case of series parallel networks.
Since we have completed the proofs that our results can be extended to
the case of series parallel networks only recently, we chose not to include
these results in this thesis. Instead, we explain the approach and provide
sketches of the main ideas. Right after we discuss how we can derive
similar results for the case of parallel links with heterogeneous players and
more general restrictions on the uncertainty that is allowed to be added.
Note here that this case is not solved by none of [51], [17] and [53], that
deal with CGs with bounds on the allowable tolls.

46 CHAPTER 2. CONTRIBUTION

Chapter 3

Congestion Games Preliminaries

In this chapter we state basic definitions needed in the following chap-
ters. Model specific definitions and properties are given separately at the
beginning of each chapter.

3.1 General Notation and Conventions

For a random variable X , E[X] denotes the expectation of X and Var[X]
denote the variance of X . For an event E in a sample space, Pr[E] denotes
the probability of E happening. We say that an event E occurs with high
probability, if there is a constant α ≥ 1, such that Pr[E] ≥ 1−n−α, where n
usually denotes the number of vertices of the network G to which E refers.
We implicitly use the union bound to account for the occurrence of more
than one low probability events.
For any integer n ≥ 1, we let [n] = {1, . . . , n}
A latency function ce(x) is linear if ce(x) = aex, for some ae > 0, and affine
if ce(x) = aex + be, for some ae, be ≥ 0. We say that a latency function ce(x)
satisfies the Lipschitz condition with constant ξ > 0, if for all x, y ∈ [0, r],
|ce(x) − ce(y)| ≤ ξ |x − y|.

3.2 Congestion Games Definitions

An atomic Congestion Game is a tuple G(N, E, (Si)i∈N , (de)e∈E), where N de-
notes the set of players, E denotes the set of resources, Si ⊆ 2E \{∅} denotes
the strategy space of each player i and de : IN 7→ IR≥0 is a non-negative and
non-decreasing latency function associated with each resource e.

47

48 CONGESTION GAMES PRELIMINARIES

Network Congestion Games are CGs in which players have a source
node, si, and a target node, ti, on a directed graph (network) and the
strategy space of each player i is consisted by the paths that connect si
with ti. The resources of the CG are exactly the edges of the network each
of which comes together with a latency (cost) function.
An atomic Network CG is a tuple G(G(V, E), (de)e∈E, K, {N}i=1...|K |), where
G = (V, E) denotes a directed network, K ⊆ V × V is a set of si − ti source
target pairs, de : IR≥0 7→ IR≥0 is a non-negative and non-decreasing latency
function associated with each edge e and N = (n1, . . . , n|K |) is the vector of
players, where ni is the number of players that must move from source si
to target ti.

Non atomic network CGs are like atomic network CGs with infinite,
infinitesimal players, i.e. the presence or the absence of a player on a
resource does not affect the congestion on the resource. The infinite players
that share the same si − ti pair form an amount of flow that must be routed
from si to ti.
A non atomic Network CG is a tuple G(G(V, E), (de)e∈E, K, r), where G =

(V, E) denotes a directed network, K ⊆ V × V is a set of si − ti source
target pairs, de : IR≥0 7→ IR≥0 is a non-negative and non-decreasing latency
function associated with each edge e and r = (r1, . . . , r|K |) is a vector of flows
that must be routed, where ri is the amount of flow that must be routed
from source i to target i.

Network CGs are also referred as Selfish Routing Games. In a CG,
if all players share the same strategy space then we have a symmetric
CG. We deal with symmetric network CGs case where K contains a single
s − t pair and thus, assuming that s and t are specified in G, we use the
terminology G(G(V, E), (de)e∈E, n) for atomic network CGs, where n is the
number of players that use the network, and G(G(V, E), (de)e∈E, r) for non
atomic network CGs, where r is an amount of flow to be routed in the
network. We let P be the set of paths connecting s to t. We may also
use G(G(V, E), n) or G(G(V, E), r) respectiely if the set of latency functions
under use is clear from the context or is assumed to be given within the
network G.
Subnetworks and Subinstances. Given an instanceG = (G(V, E), (de)e∈E, x),
any subgraph H(V, E′), E′ ⊆ E, obtained from G by edge deletions, is a
subnetwork of G. H has the same origin s and destination t as G, and
the edges of H have the same latency functions as in G. Each instance
H = (H(V, E′), (de)e∈E′ , x), where H(V, E′) is a subnetwork of G(V, E), is a
subinstance of G.
In atomic CGs, a configuration is a vector s = (s1, . . . , sn) consisting of

3.3. EQUILIBRIA 49

a strategy si ∈ Si for each player i. We let se = |{i : e ∈ si}| denote the
congestion induced on each resource e by s.
In non atomic network CGs, a (feasible) flow f is a non-negative vector
indexed by P so that

∑
p∈P fp = r. For a flow f and each edge e, we let

fe =
∑
p:e∈p fp denote the amount of flow that f routes through e. An edge

e is used by flow f if fe > 0. A path p is used by flow f if all its edges are
used, i.e. mine∈p{fe} > 0. Somehow abusing notation, if p is used we may
write fp > 0.
Additive Costs. In additive costs atomic CGs, the cost of the strategy si
of player i under configuration s is di(s) =

∑
e∈si de(se). Similar, for addi-

tive costs non atomic network CGs, the cost of a path p under flow f is
dp(f) =

∑
e∈p de(se)

Bottleneck Costs. In bottleneck costs atomic CGs, the cost of the strat-
egy si of player i under configuration s is bi(s) = maxe∈si de(se). Similar, for
bottleneck costs non atomic network CGs, the cost of a path p under flow
f is bp(f) = maxe∈p de(se).

3.3 Equilibria

There are different ways to define an equilibrium. We are concerned in the
case of Pure Nash Equilibrium. Informally, a configuration s or a flow f
is a Pure Nash equilibrium if no player can improve her individual cost by
unilaterally changing her strategy.
Pure Nash Equilibrium - Nash flows. For an atomic additive costs CG, a
configuration s is said to be a Pure Nash Equilibrium (PNE) if di(si , s−i) ≤
di(s′i , s−i),∀s

′
i ∈ Si, where di(k, s−i) denotes the cost of player i for the config-

uration where i plays strategy k and the rest of the players play according
to configuration s. For a non atomic additive costs network CG, f is a
Nash Equilibrium or a Nash flow if for all s − t paths p, p′, if fp > 0, then
dp(f) ≤ dp′(f).

Similar, for an atomic bottleneck costs CG, a configuration s is said to
be a Pure Nash Equilibrium if bi(si , s−i) ≤ bi(s′i , s−i),∀s′i ∈ Si, where bi(k, s−i)
denotes the cost of player i for the configuration where i plays strategy k
and the rest of the players play according to configuration s. For a non
atomic bottleneck costs network CG, f is a Nash Equilibrium or a Nash
flow if for all s− t paths p, p′, if fp > 0, then bp(f) ≤ bp′(f). A basic property
of non atomic network CGs is that all players incur the same latency either
under additive or under bottleneck costs.
ε-Nash Equlibria (Flows). The definition of a Nash Equilibrium can be

50 CONGESTION GAMES PRELIMINARIES

generalized to that of an ‘‘almost Nash’’ Equilibrium: For some constant
ε > 0, a configuration or flow x is an ε-Nash Equilibrium if for all s − t
paths p, p′, if xp > 0, dp(x) ≤ dp′(x) + ε, for additive costs games and
bp(x) ≤ bp′(x) + ε, for bottleneck costs games.
Potential Functions. Games do not always possess PNE, though additive
costs CGs always posses one. This can be proved via a potential function
method. A function Φ : S1 × · · · × Sn 7→ IR≥0 is an ordinal potential function
for a CG if di(s−i , s′i) − di(s) < 0⇔ Φ(s−i , s′i) − Φ(s) < 0

Intuitively an ordinal potential is a function that follows the sign of
change of any players cost when she changes unilaterally. The admittance
of the above type of potential is a necessary and sufficient condition for a
game to have the Finite Improvement Property, i.e. every best response
sequence is finite. So if letting the players, one at a time, to change their
strategy to their best response then, at the end, we get a configuration that
is a PNE.

A more strong kind of potential is the one encountered so far in CGs
where a function tracks not only the sign but also the amount of the
change. A function Φ : S1 × · · · × Sn 7→ IR≥0 is an exact potential for a
CG if Φ(s−i , s′i) − Φ(s) = di(s−i , s′i) − di(s)

Games that admit an exact potential are called Potential Games. It can
be proved that additive costs CGs are isomorphic to Potential games. One
direction is easy: CGs (atomic or non atomic with additive costs) always
admit an exact potential:

atomic case

Φ(s) =
∑
e∈E

se∑
i=1

de(i)

non atomic case

Φ(s) =
∑
e∈E

∫ se

0
de(x)dx

For CGs with bottleneck costs, best response dynamics can also be
used to prove the existence of (optimal) equilibrium, e.g. [11, Corollary 2],
although, directly, the optimal solution (with respect to the social cost
function defined in the next section) is a Nash equilibrium.

3.4 Price of Anarchy and Price of Stability

Players’ strategies choices cause an overall charge on the resources of the
game that can be seen as an overall cost charging the network manager or

3.4. PRICE OF ANARCHY AND PRICE OF STABILITY 51

the players’ ‘‘society’’. This is quantified via a Social Cost Function.
A Social Cost Function, for atomic games, is a function SC(s) : S1 × . . . ×
Sn → IR≥0 . The most popular Social Cost Function used in additive costs
CGs is the sum of the players’ costs (or, somehow equivalently, the average
of the players’ costs), i.e. SC(s) =

∑
i di(si). For bottleneck costs games,

the most used social cost function is SC(s) = maxi bi(si) = maxe:se>0 de(se).
Similar, for non atomic network CGs it is SC(f) : Space of Flows → IR≥0

and for additive costs CGs, SC(f) =
∑
p fpdp(fp) while for bottleneck costs

CGs, SC(f) = maxp:fp>0 bp(fp) = maxe:fe>0 de(se). For ease of notation, for
bottleneck CGs, we may use B(s) and B(f) instead of SC(s) and SC(f) re-
spectively.
Optimal Solutions. A configuration that minimizes the social cost func-
tion is an optimum configuration called OPT. Similar, the optimal flow is
defined as the flow that minimizes the social cost function. PNE are con-
sidered as the possible outcomes of the game, yet they do not necessarily
minimize social cost. This causes inefficiency to the network. To capture
this inefficiency there are two measures, one adopting a worst case ap-
proach (PoA) and the other a best case approach (PoS).
Price of Anarchy (PoA) and Price of Stability (PoS). By letting x denote
a configuration for the case of atomic CGs and a flow for the case of non
atomic CGs, define

PoA = max
{ SC(x)
SC(OPT)

|x is a PNE
}

PoS = min
{ SC(x)
SC(OPT)

|x is a PNE
}

The PoA of symmetric non atomic additive costs CGs is independent
of the structure of the network as it was first shown in [74]. Correa
et al. in [28] prove a general tight bound for the PoA based only on
the class D of latency functions, which is ρ(D) = (1 − �(D))−1, where
�(D) = supd∈D,x≥y≥0

y(d(x)−d(y))
xd(x) . The same bound holds for the PoS in sym-

metric atomic network CGs and for the PoA on games on extension parallel
networks as shown in [39]. See also e.g. [22] and [79] for similar results
for atomic CGs.

For bottleneck network CGs, although the PoS is equal to 1 (see e.g.
[11, Corollary 2]) the PoA behaves way much worse as simple examples
give a tight bound of Ω(|V |) (see figure 8.2 or e.g. [27, Figure 2]), where |V |
is the number of vertices of the network.

52 CONGESTION GAMES PRELIMINARIES

Chapter 4

On the Hardness of Network Design for
Bottleneck Routing Games

In this chapter, we investigate the computational complexity and the ap-
proximability of the network design problem for non-atomic bottleneck
routing games, where the individual cost of each player is the bottleneck
cost of her path, and the social cost is the bottleneck cost of the network,
i.e. the maximum latency of a used edge.

We first show that bottleneck routing games do not suffer from Braess’s
paradox either if the network is series-parallel, or if we consider only
subpath-optimal Nash flows, a subclass of Nash flows (formally defined
in section 4.1).

On the negative side, we prove that even for games with strictly increas-
ing linear latencies, it is NP-hard not only to recognize instances suffering
from the paradox, but also to distinguish between instances for which
the Price of Anarchy (PoA) can decrease to 1 and instances for which the
PoA cannot be improved by edge removal, even if their PoA is as large as
Ω(n0.121). This implies that the network design problem for linear bottle-
neck routing games is NP-hard to approximate within a factor of O(n0.121−ε),
for any constant ε > 0. The proof is based on a recursive construction of
hard instances that carefully exploits the properties of bottleneck routing
games, and may be of independent interest.

On the positive side, we present an algorithm for finding a subnetwork
that is almost optimal w.r.t. the bottleneck cost of its worst Nash flow,
when the worst Nash flow in the best subnetwork routes a non-negligible
amount of flow on all used edges. We show that the running time is
essentially determined by the total number of paths in the network, and is
quasipolynomial when the number of paths is quasipolynomial.

53

54 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

4.1 Problem-Specific Definitions and Facts

We deal with a typical instance of a non-atomic bottleneck routing game,
G = (G(V, E), (de)e∈E, r).
Optimal and Nash Flow Properties. Let o denote the optimal flow of an
instance G. We let B∗(G) = B(o). We note that for every subinstance H of
G, B∗(H) ≥ B∗(G).

As noted earlier, in a Nash flow f all players incur a common bottleneck
cost, i.e. B(f) = minp bp(f), and for every s − t path p′, B(f) ≤ b′p(f). We
observe that if a flow f is a Nash flow for an s − t network G(V, E), then
the set of edges e with de(fe) ≥ B(f) comprises an s − t cut in G. For the
converse, if for some flow f , there is an s− t cut consisting of edges e either
with fe > 0 and de(fe) = B(f), or with fe = 0 and de(fe) ≥ B(f), then f is a
Nash flow. Moreover, for all bottleneck routing games with linear latencies
aex, a flow f is a Nash flow iff the set of edges e with de(fe) = B(f) comprises
an s − t cut.

It can be shown that every bottleneck routing game admits at least
one Nash flow (see e.g., [27, Proposition 2]), and that there is an optimal
flow that is also a Nash flow (see e.g., [11, Corollary 2]). In general, a
bottleneck routing game admits many different Nash flows, each with a
possibly different bottleneck cost of the players. Given an instance G, we
let B(G) denote the bottleneck cost of the players in the worst Nash flow of
G, i.e. the Nash flow f that maximizes B(f) among all Nash flows. We refer
to B(G) as the worst equilibrium bottleneck cost of G. For convenience, for
an instance G = (G, c, r), we sometimes write B(G, r), instead of B(G), to
denote the worst equilibrium bottleneck cost of G. We note that for every
subinstance H of G, B∗(G) ≤ B(H), and that there may be subinstances
H with B(H) < B(G), which is the essence of Braess’s paradox (see e.g.,
Fig. 5.1).

The following proposition considers the effect of a uniform scaling of the
latency functions.

Proposition 1. Let G = (G, c, r) be a routing instance, let α > 0, and let
G′ = (G, αc, r) be the routing instance obtained from G if we replace the
latency function de(x) of each edge e with αde(x). Then, any G-feasible flow
f is also G′-feasible and has BG′(f) = αBG(f). Moreover, a flow f is a Nash
flow (resp. optimal flow) of G iff f is a Nash flow (resp. optimal flow) of G′.

Proof. Since the traffic rate of both G and G′ is r, any G-feasible flow f is
also G′-feasible. Moreover, the G′-latency of f on each edge e is αde(fe).
This immediately implies that BG′(f) = αBG(f), and that f is a Nash flow
(resp. optimal flow) of G iff f is a Nash flow (resp. optimal flow) of G′.

4.2. PARADOX-FREE NETWORK TOPOLOGIES AND PARADOX-FREE NASH FLOWS 55

Subpath-Optimal Nash Flows. For a flow f and any vertex u, let bf (u)
denote the minimum bottleneck cost of f among all s − u paths. The flow
f is a subpath-optimal Nash flow [27] if for any vertex u and any s − t path
p with fp > 0 that includes u, the bottleneck cost of the s − u part of p is
bf (u). For example, the Nash flow f in Fig. 5.1.a is not subpath-optimal,
because bf (v) = 0, through the edge (s, v), while the bottleneck cost of the
path (s, u, v) is 1. For this instance, the only subpath-optimal Nash flow
is the optimal flow with 1/2 unit on the path (s, u, t) and 1/2 unit on the
path (s, v, t).

We formally define the problems we will see
Problem Definitions.

• Paradox-Ridden Recognition (ParRidBC) : Given an instance G, de-
cide if G is paradox-ridden.

• Best Subnetwork (BSubNBC) : Given an instance G, find the best
subnetwork H∗ of G.

We investigate the complexity and the approximability of these funda-
mental selfish network design problems for bottleneck routing games.

We note that the objective function of BSubNBC is the worst equilib-
rium bottleneck cost B(H, r) of a subnetwork H. Thus, a (polynomial-time)
algorithm A achieves an α-approximation for BSubNBC if for all instances
G, A returns a subnetwork H with B(H, r) ≤ αB(H∗, r). A subtle point is
that given a subnetwork H, we do not know how to efficiently compute
the worst equilibrium bottleneck cost B(H, r) (see also [10, 52], where a
similar issue arises). To deal with this delicate issue, our hardness results
use a certain subnetwork structure to identify a good approximation to
BSubNBC.
Series-Parallel Networks. A directed s − t network is series-parallel if it
either consists of a single edge (s, t) or can be obtained from two series-
parallel graphs with terminals (s1, t1) and (s2, t2) composed either in series
or in parallel. In a series composition, t1 is identified with s2, s1 becomes
s, and t2 becomes t. In a parallel composition, s1 is identified with s2 and
becomes s, and t1 is identified with t2 and becomes t.

4.2 Paradox-Free Network Topologies and Paradox-
Free Nash Flows

We start by discussing two interesting cases where Braess’s paradox does
not occur. We first show that if we have a bottleneck routing game G de-

56 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

fined on an s − t series-parallel network, then ρ(G) = 1, and thus Braess’s
paradox does not occur. We recall that this was also pointed out in [31]
for the case of atomic unsplittable bottleneck routing games. Moreover, we
note that a directed s − t network is series-parallel iff it does not contain a
θ-graph with degree-2 terminals as a topological minor. Therefore, the ex-
ample in Fig. 5.1 demonstrates that series-parallel networks is the largest
class of network topologies for which Braess’s paradox does not occur (see
also [64] for a similar result for the case of additive routing games).

Proposition 2. Let G be bottleneck routing game on an s − t series-parallel
network. Then, ρ(G) = 1.

Proof. Let f be any Nash flow of G. We use induction on the series-parallel
structure of the network G, and show that f is an optimal flow w.r.t the
bottleneck cost, i.e., that B(f) = B∗(G). For the basis, we observe that the
claim holds if G consists of a single edge (s, t). For the inductive step, we
distinguish two cases, depending on whether G is obtained by the series
or the parallel composition of two series-parallel networks G1 and G2.
Series Composition. First, we consider the case where G is obtained
by the series composition of an s − t′ series-parallel network G1 and a
t′ − t series-parallel network G2. We let f1 and f2, both of rate r, be the
restrictions of f into G1 and G2, respectively.

We start with the case where B(f) = B(f1) = B(f2). Then, either f1 is a
Nash flow in G1, or f2 is a Nash flow in G2. Otherwise, there would be a
s − t′ path p1 in G1 with bottleneck cost bp1(f1) < B(f1), and an t′ − t path
p2 in G2, with bottleneck cost bp2(f2) < B(f2). Combining p1 and p2, we
obtain an s− t path p = p1∪p2 in G with bottleneck cost smaller than B(f),
which contradicts the hypothesis that f is a Nash flow of G. If f1 (or f2) is
a Nash flow in G1 (resp. G2), then by induction hypothesis f1 (resp. f2) is
an optimal flow in G1 (resp. in G2), and thus f is an optimal flow of G.

Otherwise, we assume, without loss of generality, that B(f) = B(f1) <
B(f2). Then, f1 is a Nash flow in G1. Otherwise, there would be an s − t′

path p1 in G1 with bottleneck cost bp1(f1) < B(f1), which could be combined
with any t′− t path p2 in G2, with bottleneck cost B(f2) < B(f1), into an s− t
path p = p1 ∪ p2 with bottleneck cost smaller than B(f). The existence of
such a path p contradicts the the hypothesis that f is a Nash flow of G.
Therefore, by induction hypothesis f1 is an optimal flow in G1, and thus f
is an optimal flow of G.
Parallel Composition. Next, we consider the case where G is obtained
by the parallel composition of an s − t series-parallel network G1 and an
s − t series-parallel network G2. We let f1 and f2 be the restriction of f into

4.3. RECOGNIZING PARADOX-RIDDEN INSTANCES IS HARD 57

G1 and G2, respectively, let r1 (resp. r2) be the rate of f1 (resp. f2), and
let G1 (resp. G2) be the corresponding routing instance. Then, since f is
a Nash flow of G, f1 and f2 are Nash flows of G1 and G2 respectively, and
B(f1) = B(f2) = B(f). Therefore, by the induction hypothesis, f1 and f2 are
optimal flows of G1 and G2, and f is an optimal flow of G. To see this, we
observe that any flow different from f must route more flow through either
G1 or G2. But if the flow through e.g. G1 is more than r1, the bottleneck
cost through G1 would be at least as large as B(f1).

Next, we show that any subpath-optimal Nash flow achieves a minimum
bottleneck cost, and thus Braess’s paradox does not occur if we restrict
ourselves to subpath-optimal Nash flows.

Proposition 3. Let G be bottleneck routing game, and let f be any subpath-
optimal Nash flow of G. Then, B(f) = B∗(G).

Proof. Let f be any subpath-optimal Nash flow of G, let S be the set of
vertices reachable from s via edges with bottleneck cost less than B(f), let
δ+(S) be the set of edges e = (u, v) with u ∈ S and v < S, and let δ−(S) be
the set of edges e = (u, v), with u < S and v ∈ S. Then, in [27, Lemma 4.5],
it is shown that (i) (S, V \ S) is an s − t cut, (ii) for all edges e ∈ δ+(S),
de(fe) ≥ B(f), (iii) for all edges e ∈ δ+(S) with fe > 0, de(fe) = B(f), and (iv)
for all edges e ∈ δ−(S), fe = 0.

By (i) and (iv), any optimal flow o routes at least as much traffic as
the subpath-optimal Nash flow f routes through the edges in δ+(S). Thus,
there is some edge e ∈ δ+(S) with oe ≥ fe, which implies that de(oe) ≥
de(fe) ≥ B(f), where the second inequality follows from (ii). Since B∗(G) =

B(o) ≥ de(oe), we obtain that B∗(G) = B(f).

4.3 Recognizing Paradox-Ridden Instances is Hard

In this section, we show that given a linear bottleneck routing game G,
it is NP-hard not only to decide whether G is paradox-ridden, but also to
approximate the best subnetwork within a factor less than 4/3. To this
end, we employ a reduction from the 2-Directed Disjoint Paths problem
(2-DDP), where we are given a directed network D and distinguished ver-
tices s1, s2, t1, t2, and ask whether D contains a pair of vertex-disjoint paths
connecting s1 to t1 and s2 to t2. 2-DDP was shown NP-complete in [37, The-
orem 3], even if the network D is known to contain two edge-disjoint paths
connecting s1 to t2 and s2 to t1. In the following, we say that a subnetwork
D′ of D is good if D′ contains (i) at least one path outgoing from each of s1

58 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

and s2 to either t1 or t2, (ii) at least one path incoming to each of t1 and
t2 from either s1 or s2, and (iii) either no s1 − t2 paths or no s2 − t1 paths.
We say that D′ is bad if any of these conditions is violated by D′. We note
that we can efficiently check whether a subnetwork D′ of D is good, and
that a good subnetwork D′ serves as a certificate that D is a yes-instance
of 2-DDP. Then, the following lemma directly implies the hardness result
of this section.

Lemma 4.1. Let I = (D, s1, s2, t1, t2) be any 2-DDP instance. Then, we can
construct, in polynomial time, an s−t network G(V, E) with a linear latency
function de(x) = aex, ae > 0, on each edge e, so that for any traffic rate
r > 0, the bottleneck routing game G = (G, c, r) has B∗(G) = r/4, and:

1. If I is a yes-instance of 2-DDP, there exists a subnetwork H of G with
B(H, r) = r/4.

2. If I is a no-instance of 2-DDP, for all subnetworks H ′ of G, B(H ′, r) ≥
r/3.

3. For all subnetworks H ′ of G, either H ′ contains a good subnetwork
of D, or B(H ′, r) ≥ r/3.

Proof. We construct a networkG(V, E) with the desired properties by adding
4 vertices, s, t, v, u, to D and 9 ‘‘external’’ edges e1 = (s, u), e2 = (u, v),
e3 = (v, t), e4 = (s, v), e5 = (v, s1), e6 = (s, s2), e7 = (t1, u), e8 = (u, t),
e9 = (t2, t) (see also Fig. 4.1.a). The external edges e1 and e3 have latency
de1(x) = de3(x) = x/2. The external edges e4, . . . , e9 have latency dei = x.
The external edge e2 and each edge e of D have latency de2(x) = de(x) = εx,
for some ε ∈ (0,1/4).

We first show that B∗(G) = r/4. As for the lower bound, since the
edges e1, e4, and e6 form an s − t cut in G, every G-feasible flow has a
bottleneck cost of at least r/4. As for the upper bound, we may assume
that D contains an s1 − t2 path p and an s2 − t1 path q, which are edge-
disjoint (see also [37, Theorem 3]). Then, we route a flow of r/4 through
each of the paths (e4, e5, p, e9) and (e6, q, e7, e8), and a flow of r/2 through
the path (e1, e2, e3), which gives a bottleneck cost of r/4.

Next, we show (1), namely that if I is a yes-instance of 2-DDP, then
there exists a subnetwork H of G with B(H, r) = r/4. By hypothesis, there
is a pair of vertex-disjoint paths in D, p and q, connecting s1 to t1, and s2

to t2. Let H be the subnetwork of G that includes all external edges and
only the edges of p and q from D (see also Fig. 4.1.b). We let H = (H, c, r)
be the corresponding subinstance of G. The flow routing r/4 units through

4.3. RECOGNIZING PARADOX-RIDDEN INSTANCES IS HARD 59

Figure 4.1: (a) The network G constructed in the proof of Lemma 4.1. (b) The
best subnetwork of G, with PoA = 1, for the case where D contains a pair of
vertex-disjoint paths connecting s1 to t1 and s2 to t2.

each of the paths (e4, e5, p, e7, e8) and (e6, q, e9), and r/2 units through the
path (e1, e2, e3), is an H-feasible Nash flow with a bottleneck cost of r/4.

We proceed to show that any Nash flow ofH achieves a bottleneck cost
of r/4. For sake of contradiction, let f be a Nash flow ofH with B(f) > r/4.
Since f is a Nash flow, the edges e with de(fe) ≥ B(f) form an s − t cut in
H. Since the bottleneck cost of e2 and of any edge in p and q is at most
r/4, this cut includes either e6 or e9 (or both), either e1 or e3 (or both),
and either e4 or e8 (or e5 or e6, in certain combinations with other edges).
Let us consider the case where this cut includes e1, e4, and e6. Since the
bottleneck cost of these edges is greater than r/4, we have more than r/2
units of flow through e1 and more than r/4 units of flow through each
of e4 and e6. Hence, we obtain that more than r units of flow leave s, a
contradiction. All other cases are similar.

To conclude the proof, we have also to show (3), namely that for any
subnetwork H ′ of G, if H ′ does not contain a good subnetwork of D, then
B(H ′, r) ≥ r/3. We observe that (3) implies (2), because if I is a no-instance,
any two paths, p and q, connecting s1 to t1 and s2 to t2, have some vertex in
common, and thus, D includes no good subnetworks. To show (3), we let
H ′ be any subnetwork of G, and let H ′ be the corresponding subinstance
of G. We first show that either H ′ contains (i) all external edges, (ii) at least
one path outgoing from each of s1 and s2 to either t1 or t2, and (iii) at least
one path incoming to each of t1 and t2 from either s1 or s2, or H ′ includes
a ‘‘small’’ s − t cut, and thus any H ′-feasible flow f has B(f) ≥ r/3.

To prove (i), we observe that if some of the edges e1, e4, and e6 is
missing from H ′, r units of flow are routed through the remaining ones,

60 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

which results in a bottleneck cost of at least r/3. The same argument
applies to the edges e3, e8, and e9. Similarly, if e2 is not present in H ′, the
edges e4, e6, and e8 form an s − t cut, and routing r units of flow through
them causes a bottleneck cost of at least r/3. Therefore, we can assume,
without loss of generality, that all these external edges are present in H ′.

Now, let us focus on the external edges e5 and e7. If e5 is not present
in H ′ and there is a path p outgoing from s2 to either t1 or t2, routing 2r/3
units of flow through the path (e1, e2, e3) and r/3 units through the path
(e6, p, e9) (or through the path (e6, p, e7, e8)) is a Nash flow with a bottleneck
cost of r/3 (see also Fig. 4.2.a). If s2 is connected to neither t1 nor t2 (no
matter whether e5 is present in H ′ or not), the edges e1 and e4 form an
s − t cut, and thus, any H ′-feasible flow has a bottleneck cost of at least
r/3. Similarly, we can show that if either e7 is not present in H ′, or neither
s1 nor s2 is connected to t2, any H ′-feasible flow has a bottleneck cost of
at least r/3. Therefore, we can assume, without loss of generality, that all
external edges are present in H ′, and that H ′ includes at least one path
outgoing from s2 to either t1 or t2, and at least one path incoming to t2 from
either s1 or s2.

Similarly, we can assume, without loss of generality, that H ′ includes
at least one path outgoing from s1 to either t1 or t2, and at least one path
incoming to t1 from either s1 or s2. E.g., if s1 is connected to neither t1
nor t2, routing 2r/3 units of flow through the path (e1, e2, e3) and r/3 units
through s2 and either t1 or t2 (or both) is a Nash flow with a bottleneck cost
of r/3. A similar argument applies to the case where neither s1 nor s2 is
connected to t1.

Figure 4.2: Possible subnetworks of G when there is no pair of vertex-disjoint
paths connecting s1 to t1 and s2 to t2. The subnetwork (a) contains an s2− t2 path
and does not include e5. In the subnetwork (b), we essentially have all edges of G.
In (c), we depict a Nash flow that consists of three paths, each carrying r/3 units
of flow, and has a bottleneck cost of r/3.

Let us now consider a subnetwork H ′ of G that does not contain a good

4.3. RECOGNIZING PARADOX-RIDDEN INSTANCES IS HARD 61

subnetwork of D, but it contains (i) all external edges, (ii) at least one path
outgoing from each of s1 and s2 to either t1 or t2, and (iii) at least one
path incoming to each of t1 and t2 from either s1 or s2. By (ii) and (iii),
and the hypothesis that the subnetwork of D included in H ′ is bad, H ′

contains an s1 − t2 path p and an s2 − t1 path q (see also Fig. 4.2.b). At the
intuitive level, this corresponds to the case where no edges are removed
from G. Then, routing r/3 units of flow on each of the s−t paths (e1, e2, e3),
(e1, e2, e5, p, e9), and (e6, q, e7, e2, e3) has a bottleneck cost of r/3 and is a
Nash flow, because the set of edges with bottleneck cost r/3 comprises an
s − t cut (see also Fig. 4.2.c). Therefore, we have shown part (3) of the
lemma, which in turn, immediately implies part (2).

We note that the bottleneck routing game G in the proof of Lemma 4.1
has ρ(G) = 4/3, and is paradox-ridden, if I is a yes instance of 2-DDP, and
paradox-free, otherwise. Thus, we obtain that:

Theorem 4.2. Deciding whether a bottleneck routing game with strictly
increasing linear latencies is paradox-ridden is NP-hard.

Moreover, Lemma 4.1 implies that it is NP-hard to approximate BSubNBC
within a factor less than 4/3. The subtle point here is that given a subnet-
work H, we do not know how to efficiently compute the worst equilibrium
bottleneck cost B(H, r). However, we can use the notion of a good subnet-
work of D and deal with this issue. Specifically, let A be any approximation
algorithm for BSubNBC with approximation ratio less than 4/3. Then, if D
is a yes-instance of 2-DDP, A applied to the network G, constructed in the
proof of Lemma 4.1, returns a subnetwork H with B(H, r) < r/3. Thus, by
Lemma 4.1, H contains a good subnetwork of D, which can be checked in
polynomial time. If D is a no-instance, D contains no good subnetworks.
Hence, the outcome of A would allow us to distinguish between yes and no
instances of 2-DDP.

Remark 4.3. If we let the edges to have more general latency functions,
such as polynomials of greater degree or exponential functions, then we
can get greater inapproximability factors for BSubNBC.

For example, if we use the cost functions xd instead of x and xd/2d

instead of x/2 in network G in the proof of Lemma 4.1 (fig. 4.1), then we
will get an inapproximability ratio of (4/3)d.

Using ax instead of x and ax/2 instead of x/2 in the proof of Lemma 4.1
(fig. 4.1), we get an inapproximability ratio of ar/12 = B∗(G)1/3 (depending
on a and r).

62 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

4.4 Approximating the Best Subnetwork is Hard

Next, we apply essentially the same construction as in the proof of Lemma 4.1,
but in a recursive way, and show that it is NP-hard to approximate BSubNBC
for linear bottleneck routing games within a factor of O(n.121−ε), for any
constant ε > 0. Throughout this section, we let I = (D, s1, s2, t1, t2) be
a 2-DDP instance, and let G be an s − t network, which includes (possi-
bly many copies of) D and can be constructed from I in polynomial time.
We assume that G has a linear latency function de(x) = aex, ae > 0, on
each edge e, and for any traffic rate r > 0, the bottleneck routing game
G = (G, c, r) has B∗(G) = r/γ1, for some γ1 > 0. Moreover,

1. If I is a yes-instance of 2-DDP, there exists a subnetwork H of G with
B(H, r) = r/γ1.

2. If I is a no-instance of 2-DDP, for all subnetworks H ′ of G, B(H ′, r) ≥
r/γ2, for a γ2 ∈ (0, γ1).

3. For all subnetworks H ′ of G, either H ′ contains at least one copy of a
good subnetwork of D, or B(H ′, r) ≥ r/γ2.

The existence of such a network shows that it is NP-hard to approximate
BSubNBC within a factor less than γ = γ1/γ2. Thus, we usually refer to G
as a γ-gap instance (with linear latencies). For example, for the network
G in the proof of Lemma 4.1, γ1 = 4 and γ2 = 3, and thus G is a 4/3-
gap instance. We next show that given I and a γ1/γ2-gap instance G,
we can construct a (4γ1)/(3γ2)-gap instance G′, i.e., we can amplify the
inapproximability gap by a factor of 4/3.

Lemma 4.4. Let I = (D, s1, s2, t1, t2) be a 2-DDP instance, and let G be
a γ1/γ2-gap instance with linear latencies, based on I. Then, we can
construct, in time polynomial in the size of I and G, an s − t network G′

with a linear latency function de(x) = aex, ae > 0, on each edge e, so that
for any traffic rate r > 0, the bottleneck routing game G′ = (G′, c, r) has
B∗(G) = r/(4γ1), and:

1. If I is a yes-instance of 2-DDP, there exists a subnetwork H of G′

with B(H, r) = r/(4γ1).

2. If I is a no-instance of 2-DDP, for every subnetworkH ′ ofG′, B(H ′, r) ≥
r/(3γ2).

3. For all subnetworks H ′ of G′, either H ′ contains at least one copy of
a good subnetwork of D, or B(H ′, r) ≥ r/(3γ2).

4.4. APPROXIMATING THE BEST SUBNETWORK IS HARD 63

Proof. Starting fromD, we obtainG′ by applying the construction of Lemma 4.1,
but with all external edges, except for e2, replaced by a copy of the gap-
instance G. For convenience, we refer to the copy of the gap-instance
replacing the external edge ei, i ∈ {1,3, . . . ,9}, as the edgework Gi. For-
mally, to obtain G′, we start from D and add four new vertices, s, t, v, u. We
connect s to u, with the s − u edgework G1, and v to t, with the s − u edge-
work G3, where in both G1 and G3, we replace the latency function de(x) of
each edge e in the gap instance with de(x)/2 (this is because in Lemma 4.1,
the external edges e1 and e3 have latencies x/2). Moreover, instead of the
external edge ei, i ∈ {4, . . . ,9}, we connect (s, v), (v, s1), (s, s2), (t1, u), (u, t),
and (t2, t) with the edgework Gi. The latencies in these edgeworks are as in
the gap instance. Furthermore, we add the external edge e2 = (u, v) with
latency de2(x) = εx, for some ε ∈ (0, 1

4γ1
) (see also Fig. 4.3.a). Also, each

edge e of D has latency de(x) = εx. We next consider the corresponding
routing instance G′ with an arbitrary traffic rate r > 0. Throughout the
proof, when we define a routing instance, we omit, for simplicity, the co-
ordinate c, referring to the latency functions, with the understanding that
they are defined as above.

Figure 4.3: (a) The network G′ constructed in the proof of Lemma 4.4. The
structure of G′ is similar to the structure of the network G in Fig. 4.1, with each
external edge ei , except for e2, replaced by the edgework Gi . (b) The structure of a
best subnetwork H of G′, with PoA = 1, when D contains a pair of vertex-disjoint
paths, p and q, connecting s1 to t1 and s2 to t2. To complete H, we use an optimal
subnetwork (or simply, subedgework) of each edgework Gi .

Intuitively, each Gi, i ∈ {4, . . . ,9}, behaves as an external edge (hence
the term edge(net)work), which at optimality has a bottleneck cost of r/γ1,
for any traffic rate r entering Gi. Moreover, if I is a yes-instance of 2-DDP,
the edgework Gi has a subedgework Hi for which B(Hi , r) = r/γ1, for any r,
while if Hi does not contain any copies of a good subnetwork of D (or, if I
is a no-instance), for all subedgeworks H ′i of Gi, B(H ′i , r) ≥ r/γ2, for any r.

64 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

The same holds for G1 and G3, but with a worst equilibrium bottleneck cost
of r/(2γ1) in the former case, and of r/(2γ2) in the latter case, because the
latency functions of G1 and G3 are scaled by 1/2 (see also Proposition 1).

The proofs of the following propositions are conceptually similar to the
proofs of the corresponding claims in the proof Lemma 4.1.

Proposition 4. The optimal bottleneck cost of G′ is B∗(G′) = r/(4γ1).

Proof. We have to show that B∗(G′) = r/(4γ1). For the upper bound, as
in the proof of Lemma 4.1, we assume that D contains an s1 − t2 path
p and an s2 − t1 path q, which are edge-disjoint. We route (i) r/4 units
of flow through the edgeworks G4, G5, next through the path p, and next
through the edgework G9, (ii) r/4 units through the edgeworks G6, next
through the path q, and next through the edgeworks G7 and G8, and (ii)
r/2 units through the edgework G1, next through the external edge e2, and
next through the edgework G3. These routes are edge(work)-disjoint, and
if we route the flow optimally through each edgework, the bottleneck cost
is r/(4γ1). As for the lower bound, we observe that the edgeworks H1, H4,
and H6 essentially form an s − t cut in G′, and thus every feasible flow has
a bottleneck cost of at least r/(4γ1).

Proposition 5. If I is a yes-instance, there is a subnetwork H of G′ with
B(H, r) = r/(4γ1).

Proof. If I is a yes-instance of 2-DDP, then (i) there are two vertex-disjoint
paths in D, p and q, connecting s1 to t1 and s2 to t2, and (ii) there is
an optimal subnetwork (or simply, subedgework) Hi of each edgework Gi
so that for any traffic rate r routed through Hi, the worst equilibrium
bottleneck cost B(Hi , r) is r/γ1, if i ∈ {4, . . . ,9}, and r/(2γ1), if i ∈ {1,3}. Let
H be the subnetwork of G′ that consists of only the edges of the paths p
and q from D, of the external edge e2, and of the optimal subedgeworks
Hi, i ∈ {1,3, . . . ,9} (see also Fig. 4.3.b). We observe that we can route: (i)
r/4 units of flow through the subedgeworks H4, H5, next through the path
p, and next through the subedgeworks H7 and H8, (ii) r/4 units of flow
through the subedgework H6, next through the path q, and next through
the subedgework H9, and (iii) r/2 units of flow through the subedgework
H1, next through the external edge e2, and next through the subedgework
H3. These routes are edge(work)-disjoint, and if we use any Nash flow
through each of the routing instances (Hi , r/4), i ∈ {4, . . . ,9}, (H1, r/2), and
(H3, r/2), we obtain a Nash flow of the instance (H, r) with a bottleneck cost
of r/(4γ1).

We next show that any Nash flow of (H, r) has a bottleneck cost of at
most r/(4γ1). To reach a contradiction, let us assume that some feasible

4.4. APPROXIMATING THE BEST SUBNETWORK IS HARD 65

Nash flow f has bottleneck cost B(f) > r/(4γ1). We recall that f is a Nash
flow iff the edges of G′ with bottleneck cost B(f) > r/(4γ1) form an s− t cut.
This cut does not include the edges of the paths p and q and the external
edge e2, due to the choice of their latencies. Hence, this cut includes a
similar cut either in H6 or in H9 (or in both), either in H1 or H3 (or in both),
and either in H4 or in H8 (or in H5 or in H6, in certain combinations with
other subedgeworks, see also Fig. 4.3.b). Let us consider the case where
the edges with bottleneck cost B(f) > r/(4γ1) form a cut in H1, H4, and
H6. Namely, the edges of H1, H4, and H6, with bottleneck cost equal to
B(f) > r/(4γ1) form an s − u, an s − v, and an s − s2 cut, respectively, and
thus the restriction of f to each of H1, H4, and H6, is an equilibrium flow of
bottleneck cost greater than r/(4γ1) for the corresponding routing instance.
Since I is a yes-instance, this can happen only if the flow through H1 is
more than r/2, and the flow through each of H4 and H6 is more than r/4
(see also property (ii) of optimal subedgeworks above). Hence, we obtain
that more than r units of flow leave s, a contradiction. All other cases are
similar.

The most technical part of the proof is to show (3), namely that for any
subnetworkH ′ ofG′, ifH ′ does not contain any copies of a good subnetwork
of D, then B(H ′, r) ≥ r/(3γ2). This immediately implies (2), since if I is a
no-instance of 2-DDP, D includes no good subnetworks. To prove (3), we
consider any subnetwork H ′ of G′, and let H ′i be the subedgework of each
Gi present in H ′. We assume that the subedgeworks H ′i do not contain any
copies of a good subnetwork of D, and show that if the subnetwork of D
connecting s1 and s2 to t1 and t2 in H ′ is also bad, then B(H ′, r) ≥ r/(3γ2).

At the technical level, we repeatedly use the idea of a flow fi through
a subedgework H ′i that ‘‘saturates’’ H ′i , in the sense that fi is a Nash flow
with bottleneck cost at least ri/(3γ2) for the subinstance (H ′i , ri). Formally,
we say that a flow rate ri saturates a subedgework H ′i if B(H ′i , ri) ≥ ri/(3γ2).
We refer to the flow rate rsi for which B(H ′i , r

s
i) = rsi /(3γ2) as the saturation

rate of H ′i . We note that the saturation rate rsi is well-defined, because
the latency functions of Gis are linear and strictly increasing. Moreover,
by property (3) of gap instances, the saturation rate of each subedgework
H ′i is rsi ≤ r/3, if i ∈ {4, . . . ,9}, and rsi ≤ 2r/3, if i ∈ {1,3}. Thus, at
the intuitive level, the subedgeworks H ′i behave as the external edges of
the network constructed in the proof of Lemma 4.1. Hence, to show that
B(H ′, r) ≥ r/(3γ2), we need to construct a flow of rate (at most) r that
saturates a collection of subedgeworks comprising an s − t cut in H ′.

Our first step in this direction is to simplify the possible structure of
H ′.

66 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

Proposition 6. Let H ′ be any subnetwork of G′ whose subedgeworks H ′i
do not contain any copies of a good subnetwork of D. Then, either the
subnetworkH ′ contains (i) the external edge e2, (ii) at least one path outgoing
from each of s1 and s2 to either t1 or t2, and (iii) at least one path incoming
to each of t1 and t2 from either s1 or s2, or B(H ′, r) ≥ r/(3γ2).

Proof. For convenience, in the proofs of Proposition 6 and Proposition 7, we
slightly abuse the terminology, and say that a collection of subedgeworks
ofH ′ form an s−t cut, if the union of any cuts in them comprises an s−t cut
in H ′. Moreover, whenever we write that ri units of flow are routed through
a subedgework Hi, we assume that the routing through Hi corresponds to
the worst Nash flow of (Hi , ri). Also, we recall that since subedgeworks H ′i
do not contain any copies of a good subnetwork of D, by property (3) of gap
instances, the saturation rate of each H ′i is rsi ≤ r/3, if i ∈ {4, . . . ,9}, and
rsi ≤ 2r/3, if i ∈ {1,3}.

We start by showing that either the external edge e2 is present in H ′,
or B(H ′, r) ≥ r/(3γ2). Indeed, if e2 is not present in H ′, the subedgeworks
H ′4, H ′6, and H ′8 form an s− t cut in H ′. Therefore, we can construct a Nash
flow f that routes at least r/3 units of flow through H ′4, H ′6, and H ′8, and
has B(f) ≥ r/(3γ2). Therefore, we can assume, without loss of generality,
that e2 is present in H ′.

Similarly, we show that either H ′ includes at least one path outgoing
from s2 to either t1 or t2, and at least one path incoming to t2 from either
s1 or s2, or B(H ′, r) ≥ r/(3γ2). In particular, if s2 is connected to neither
t1 nor t2, the subedgeworks H ′1 and H ′4 form an s − t cut in H ′. Thus, we
can construct a Nash flow f that saturates the subedgework H ′1 (or the
subedgeworks H ′3 and H ′8, if rs1 > rs3 + rs8) and the subedgework H ′4 (or the
subedgeworks H ′3 and either H ′5, or H ′9 and at least one of the H ′7 and H ′8,
depending on rs4 and the saturation rates of the rest). We note that this
is always possible with r units of flow, because rs1 ≤ 2r/3 and rs4 ≤ r/3.
Therefore, the bottleneck cost of f is B(f) ≥ r/(3γ2). In case where there
is no path incoming to t2 from either s1 or s2, the subedgeworks H ′3 and
H ′8 form an s − t cut in H ′. As before, we can construct a Nash flow f
that saturates the subedgeworks H ′3 and H ′8 (or, as before, an appropriate
combination of other subedgeworks carrying flow to H ′3 and H ′8), and has
B(f) ≥ r/(3γ2). Therefore, we can assume, without loss of generality, that
H ′ includes at least one path outgoing from s2 to either t1 or t2, and at least
one path incoming to t2 from either s1 or s2.

Next, we show that either H ′ includes at least one path outgoing from
s1 to either t1 or t2, and at least one path incoming to t1 from either s1 or
s2, or B(H ′, r) ≥ r/(3γ2). In particular, let us consider the case where s1

4.4. APPROXIMATING THE BEST SUBNETWORK IS HARD 67

is connected to neither t1 nor t2 (see also Fig. 4.4.a, the case where there
is no path incoming to t1 from either s1 or s2 can be handled similarly).
In the following, we assume that s2 is connected to t2 (because, by the
analysis above, we can assume that there is a path incoming to t2, and
s1 is not connected to T2), and construct a Nash flow f of bottleneck cost
B(f) ≥ r/(3γ2).

We first route min{rs6, r
s
9} ≤ r/3 units of flow through the subedgework

H ′6, next through an s2 − t2 path, and finally through the subedgework
H ′9, and saturate either H ′6 or H ′9 (or both). If there is an s2 − t1 path and
H ′6 is not saturated, we keep routing flow through H ′6, next through an
s2 − t1 path, and next through the subedgeworks H ′7 and H ′8, until either
the subedgework H ′6 or at least one of the subedgeworks H ′7 and H ′8 become
saturated. Thus, we saturate at least one edgework on every s− t path that
includes s2.

Next, we show how to saturate at least one edgework on every s− t path
that includes either v or u. If rs1 ≤ rs3 ≤ 2r/3, we route rs1 units of flow
through H ′1, e2, and H ′3, and route min{rs3 − r

s
1, r

s
4} units of flow through H ′4

and H ′3, and saturate either H ′1 and H ′3 or H ′1 and H ′4. If rs3 < rs1 ≤ 2r/3,
we route rs3 units of flow through H ′1, e2, and H ′3, and route min{rs3 − r

s
1, r

s
8}

units of flow through H ′1 and H ′8, and saturate either H ′1 and H ′3 or H ′3 and
H ′8.

The remaining flow (if any) can be routed through these routes, in pro-
portional rates. In all cases, we obtain an s − t cut consisting of saturated
subedgeworks. Thus, the resulting flow f is a Nash flow with a bottleneck
cost of at least r/(3γ2).

Now, let us focus on a subnetwork H ′ of G′ that contains (i) the external
edge e2, (ii) at least one path outgoing from each of s1 and s2 to either t1 or
t2, and (iii) at least one path incoming to each of t1 and t2 from either s1 or
s2. If the copy of the subnetwork of D connecting s1 and s2 to t1 and t2 in
H ′ is also bad, properties (ii) and (iii) imply that H ′ contains an s1 − t2 path
p and an s2 − t1 path q. In this case, the entire subnetwork H ′ essentially
behaves as if it included all edges of G′. Then, a routing similar to that in
Fig. 4.2.c gives a Nash flow with a bottleneck cost of r/(3γ2). This intuition
is formalized by the following proposition.

Proposition 7. Let H ′ be any subnetwork of G′ that satisfies (i), (ii), and (iii)
above, and does not contain any copies of a good subnetwork of D. Then
B(H ′, r) ≥ r/(3γ2).

68 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

Figure 4.4: The structure of possible subnetworks of G′ when there is no pair of
vertex-disjoint paths connecting s1 to t1 and s2 to t2. The subnetwork (a) contains
a path outgoing from s2 to either t1 or t2, and no path outgoing from s1 to either
t1 or t2. Hence, no flow can be routed through the edgework G5, and thus we can
regard G5 as being absent from H ′. The subnetwork (b) essentially corresponds
to the case where all edges of G′ are present in H ′.

Proof. In the following, we consider a subnetwork H ′ of G′ which does not
include any copies of a good subnetwork of D, and contains (i) the external
edge e2, (ii) at least one path outgoing from each of s1 and s2 to either t1 or
t2, and (iii) at least one path incoming to each of t1 and t2 from either s1 or
s2. Since the copy of the subnetwork of D connecting s1 and s2 to t1 and t2
in H ′ is bad, properties (ii) and (iii) imply that H ′ contains an s1 − t2 path p
and an s2 − t1 path q. Moreover, since the subedgeworks H ′i do not include
any copies of a good subnetwork of D, by property (3) of gap instances, the
saturation rate of each H ′i is rsi ≤ r/3, if i ∈ {4, . . . ,9}, and rsi ≤ 2r/3, if
i ∈ {1,3}.

We next show that for such a subnetwork H ′, we can construct a Nash
flow f of bottleneck cost B(f) ≥ r/(3γ2). At the conceptual level, as in the
last case in the proof of Lemma 4.1, we seek to construct a Nash flow by
routing r/3 units of flow through each of the following three routes: (i) H ′1,
e2, andH ′3, (ii)H ′1, e2, H ′5, p, andH ′9, and (iii)H ′6, q, H ′7, e2, andH ′3. However,
for simplicity of the analysis, we regard the corresponding (edge) flow as
being routed through just two routes: a rate of 2r/3 is routed through H ′1,
e2, and H ′3, and a rate of r/3 is routed through the (possibly non-simple)
route H ′6, q, H ′7, e2, H ′5, p, and H ′9. We do so because the latter routing
allows us to consider fewer cases in the analysis. We conclude the proof
by showing that if the latter route is not simple, we can always decompose
the flow into the three simple routes above.

In the following, we assume that with a flow rate of at most 2r/3, routed
through H ′1, e2, and H ′3 (and possibly through H ′4 and H ′8), we can saturate

4.4. APPROXIMATING THE BEST SUBNETWORK IS HARD 69

both subedgeworks H ′1 and H ′3. Otherwise, as in the last case in the proof
of Proposition 6, we can show how with a total flow rate of at most 2r/3,
part of which is routed through either H ′4 or H ′8, we can saturate either H ′1
and H ′4, or H ′3 and H ′8. Then, the remaining r/3 units of flow can saturate
either H ′6, in the former case, or H ′9, in the latter case. Thus, we obtain a
Nash flow with a bottleneck cost of at least r/(3γ2).

Having saturated both subedgeworks H ′1 and H ′3, using at most 2r/3
units of flow, we have at least r/3 units of flow to saturate the subedge-
works H ′5, H ′6, H ′7, and H ′9, or an appropriate subset of them, so that
together with H ′1 and H ′3, they form an s − t cut in H ′. We first route
τ ≡ min{rs5, r

s
6, r

s
7, r

s
9} ≤ r/3 units of flow through H ′6, q, H ′7, e2, H ′5, p, and H ′9,

until t, and consider different cases, depending on which of the subedge-
works H ′5, H ′6, H ′7, and H ′9 has the minimum saturation rate.

• If τ = rs9, H ′9 is saturated. We first assume that H ′ contains an s1 − t1
path, and route (some of) the remaining flow (i) through H ′4, H ′5, an
s1 − t1 path, H ′7, and H ′8, and (ii) through H ′6, q, H ′7, and H ′8. We
do so until either at least one of the subedgeworks H ′7 and H ′8 or
the subedgework H ′6 and at least one of the subedgeworks H ′4 and
H ′5 become saturated. Since min{rs7, r

s
8} ≤ r/3, this requires at most

r/3 − τ additional units of flow. If H ′ does not contain an s1 − t1
path, we route the remaining flow only through route (ii), until either
at least one of the subedgeworks H ′7 and H ′8 or the subedgework H ′6
become saturated. In both cases, the newly saturated subedgeworks,
together with the saturated subedgeworks H ′1, H ′3, and H ′9, form an
s − t cut of saturated subedgeworks, and thus the worst equilibrium
bottleneck cost is at least r/(3γ2).

• If τ = rs6, H ′6 is saturated. As before, we first assume that H ′ contains
an s1−t1 path, and route the remaining flow (i) through H ′4, H ′5, p, and
H ′9, and (ii) through H ′4, H ′5, an s1 − t1 path, H ′9 and H ′8, until either at
least one of the subedgeworks H ′4 and H ′5, or the subedgework H ′9 and
at least one of the subedgeworks H ′7 and H ′8 become saturated. Since
min{rs4, r

s
5} ≤ r/3, this requires at most r/3− τ additional units of flow.

If H ′ does not contain an s1−t1 path, we route the remaining flow only
through route (i), until either at least one of the subedgeworks H ′4 and
H ′5 or the subedgeworkH ′9 become saturated. In both cases, the newly
saturated subedgeworks, together with the saturated subedgeworks
H ′1, H ′3, and H ′6, form an s − t cut of saturated subedgeworks, and
thus the worst equilibrium bottleneck cost is at least r/(3γ2).

• If τ = rs7, H ′7 is saturated. Then, we first assume that H ′ contains

70 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

an s2 − t2 path, and route the remaining flow (i) through H ′4, H ′5, p,
and H ′9, and (ii) through H ′6, an s2 − t2 path, and H ′9, until either
the subedgework H ′9, or the subedgework H ′6 and at least one of the
subedgeworks H ′4 and H ′5 become saturated. Since rs9 ≤ r/3, this
requires at most r/3 − τ additional units of flow. If H ′ does not
contain an s2 − t2 path, we route the remaining flow only through
route (i), until either at least one of the subedgeworks H ′4 and H ′5
or the subedgework H ′9 become saturated. In both cases, the newly
saturated subedgeworks, together with the saturated subedgeworks
H ′1, H ′3, and H ′7, form an s − t cut of saturated subedgeworks, and
thus the worst equilibrium bottleneck cost is at least r/(3γ2).

• If τ = rs5, H ′5 is saturated. As before, we first assume that H ′ contains
an s2 − t2 path, and route the remaining flow (i) through H ′6, q, H ′7,
and H ′8, and (ii) through H ′6, an s2 − t2 path, and H ′9, until either
the subedgework H ′6, or the subedgework H ′9 and at least one of the
subedgeworks H ′7 and H ′8 become saturated. Since rs6 ≤ r/3, this
requires at most r/3 − τ additional units of flow. If H ′ does not
contain an s2 − t2 path, we route the remaining flow only through
route (i), until either at least one of the subedgeworks H ′7 and H ′8
or the subedgework H ′6 become saturated. In both cases, the newly
saturated subedgeworks, together with the saturated subedgeworks
H ′1, H ′3, and H ′5, form an s − t cut of saturated subedgeworks, and
thus the worst equilibrium bottleneck cost is at least r/(3γ2).

Thus, in all cases, we obtain an equilibrium flow with a bottleneck
cost of at least r/(3γ2). However, in the construction above, the route
H ′6, q, H ′7, e2, H ′5, p, H ′9 may not be simple, since p and q may not be
vertex-disjoint. If this is the case, this route is technically not allowed
by our model, where the flow is only routed through simple s − t paths.
Nevertheless, the corresponding edge flow can be decomposed into the
following three simple routes: (i) H ′1, e2, and H ′3, (ii) H ′1, e2, H ′5, p, and
H ′9, and (iii) H ′6, q, H ′7, e2, and H ′3, unless min{rs1, r

s
3} ≤ r/3. Moreover, if

min{rs1, r
s
3} ≤ r/3, we can work as above, and saturate both H ′1 and H ′3 with

at most r/3 units of flow. The remaining 2r/3 units of flow can be routed
(i) through H ′6, q, H ′7, and H ′8, and (ii) through H ′4, H ′5, p, and H ′9, and
possibly either through H ′6, an s2 − t2 path1, and H ′9, or through H ′4, H ′5,
an s1 − t1 path, H ′7, and H ′8, until either H ′4 (or H ′5) and H ′6, or H ′7 (or H ′8)
and H ′9 are saturated. This routing only uses simple routes. In addition,

1We note that if the paths p and q are not vertex-disjoint, we also have an s1 − t1 path
and an s2 − t2 path in H ′.

4.4. APPROXIMATING THE BEST SUBNETWORK IS HARD 71

these saturated subedgeworks, together with the saturated subedgeworks
H ′1 and H ′3, form an s−t cut of saturated subedgeworks, and thus the worst
equilibrium bottleneck cost is at least r/(3γ2).

Propositions 6 and 7 immediately imply part (3) of the lemma, which,
in turn, implies part (2).

Each time we apply Lemma 4.4 to a γ-gap instance G, we obtain a 4γ/3-
gap instance G′ with a number of vertices of at most 8 times the vertices of
G plus the number of vertices of D. Therefore, if we start with an instance
I = (D, s1, s2, t1, t2) of 2-DDP, where D has k vertices, and apply Lemma 4.1
once, and subsequently apply Lemma 4.4 for blog4/3 kc times, we obtain a
k-gap instance G′, where the network G′ has n = O(k8.23) vertices. Suppose
now that there is a polynomial-time algorithm A that approximates the best
subnetwork of G′ within a factor of O(k1−ε) = O(n0.121−ε), for some small
ε > 0. Then, if I is a yes-instance of 2-DDP, algorithm A, applied to
G′, should return a best subnetwork H with at least one copy of a good
subnetwork of D. Since H contains a polynomial number of copies of
subnetworks of D, and we can check whether a subnetwork of D is good
in polynomial time, we can efficiently recognize I as a yes-instance of
2-DDP. On the other hand, if I is a no-instance of 2-DDP, D includes no
good subnetworks. Again, we can efficiently check that in the subnetwork
returned by algorithm A, there are not any copies of a good subnetwork of
D, and hence recognize I as a no-instance of 2-DDP. Thus, we obtain that:

Theorem 4.5. For bottleneck routing games with strictly increasing lin-
ear latencies, it is NP-hard to approximate BSubNBC within a factor of
O(n0.121−ε), for any constant ε > 0.

Remark 4.6. If in the network G in the proof of Lemma 4.1 (fig. 4.1)
we replace the cost functions x and x/2 with xd and xd/2d respectively,
we will get an instance with γ1 = 4d and γ2 = 3d, and thus G would be
a (4/3)d-gap instance. Moreover, if we apply the same techniques as in
lemma 4.4, we can amplify the inaproximability gap. As in Lemma 4.4
we inductively create a new network using as a base the base network of
figure 4.1 with cost functions xd instead of x and xd/2d instead of x/2. In
the new network the edges e4, . . . , e9 are replaced with a copy of the old
network with the known gap (4/3)d. Edges e1, e3 are replaced with a copy
of the old network but with all the cost functions divided by 2d. This will
result to a graph that gives an inapproximability gap of (4/3)2d. Doing
this t = log(4/3)d n times, we result to a network with O(nlog(4/3)d 8+1) vertices
and an inapproximability gap of n. So, in a similar way like before, we get

72 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

that (unless P=NP), we cannot polynomially approximate BSubNBC within
a factor of O(n1/(log(4/3)d 8+1) − ε)

Using ax instead of x and ax/2 instead of x/2 and applying the same
technique for say t times we get a network with gap B∗(G)(4/3)t−1

4.5 Networks with Quasipolynomially Many Paths

In this section, we approximate, in quasipolynomial-time, the best subnet-
work and its worst equilibrium bottleneck cost for instances G = (G, c, r)
where the network G has quasipolynomially many s − t paths, the latency
functions are continuous and satisfy a Lipschitz condition, and the worst
Nash flow in the best subnetwork routes a non-negligible amount of flow
on all used edges.

We highlight that the restriction to networks with quasipolynomially
many s − t paths is somehow necessary, in the sense that Theorem 4.5
shows that if the network has exponentially many s−t paths, as it happens
for the hard instances of 2-DDP, and thus for the networks G and G′

constructed in the proofs of Lemma 4.1 and Lemma 4.4, it is NP-hard to
approximate BSubNBC within any reasonable factor. Also, we can always
assume, without loss of generality, that the worst Nash flow of the best
subnetwork H∗ assigns positive flow to all edges of H∗. Otherwise, we
can remove any unused edges, without increasing the worst equilibrium
bottleneck cost of H∗. In addition, we assume here that there is a constant
δ > 0, such that the worst Nash flow in H∗ routes more than δ units of
flow on all edges of the best subnetwork H∗.

In the following, we normalize the traffic rate r to 1. This is for con-
venience and can be made without loss of generality2. Our algorithm is
based on [42, Lemma 2], which applies Althöfer’s ‘‘Sparsification’’ Lemma
[5] (similar technique in [60], independently), and shows that any flow can
be approximated by a ‘‘sparse’’ flow using logarithmically many paths.

Lemma 4.7. Let G = (G(V, E), c,1) be a routing instance, and let f be any
G-feasible flow. Then, for any ε > 0, there exists a G-feasible flow f̃ using at
most k(ε) = blog(2m)/(2ε2)c+ 1 paths, such that for all edges e, |f̃e − fe | ≤ ε,
if fe > 0, and f̃e = 0, otherwise.

By Lemma 4.7, there exists a sparse flow f̃ that approximates the worst
Nash flow f on the best subnetwork H∗ of G. Moreover, the proof of [42,

2Given a bottleneck routing game G with traffic rate r > 0, we can replace each latency
function de(x) with de(rx), and obtain a bottleneck routing game G′ with traffic rate 1,
and the same Nash flows, PoA, and solutions to BSubNBC.

4.5. NETWORKS WITH QUASIPOLYNOMIALLY MANY PATHS 73

Lemma 2] shows that the flow f̃ is determined by a multiset P of at most
k(ε) paths, selected among the paths used by f . Then, for every path p ∈ P,
f̃p = |P(p)|/|P |, where |P(p)| is number of times the path p is included in the
multiset P, and |P | is the cardinality of P. Therefore, if the total number
|P| of s− t paths in G is quasipolynomial, we can find, in quasipolynomial-
time, by exhaustive search, a flow-subnetwork pair that approximates the
optimal solution of BSubNBC. Based on this intuition, we next obtain an
approximation algorithm for BSubNBC on networks with quasipolynomially
many paths, under the assumption that there is a constant δ > 0, such
that the worst Nash flow in the best subnetwork H∗ routes more than δ
units of flow on all edges of H∗. This assumption is necessary so that the
exhaustive search on the family of sparse flows of Lemma 4.7 can generate
the best subnetwork H∗, which is crucial for the analysis.

Theorem 4.8. Let G = (G(V, E), c,1) be a bottleneck routing game with
continuous latency functions that satisfy the Lipschitz condition with a
constant ξ > 0, let H∗ be the best subnetwork of G, and let f ∗ be the worst
Nash flow in H∗. If for all edges e of H∗, f ∗e > δ, for some constant δ > 0,
then for any constant ε > 0, we can compute in time |P|O(log(2m)/min{δ2,ε2/ξ2})

a flow f and a subnetwork H such that: (i) f is an ε/2-Nash flow in the
subnetwork H, (ii) B(f) ≤ B(H∗,1) + ε, (iii) B(H,1) ≤ B(f) + ε/4, and (iv)
B(f) ≤ B(H,1) + ε/2.

Proof. Let ε > 0 be a constant, and let ϸ1 = min{δ, ε/(4ξ)}, and ϸ2 = ε/2. We
show that a flow-subnetwork pair (H, f) with the desired properties can be
computed in time |P|O(k(ϸ1)), where k(ε1) = blog(2m)/min{2δ2, ε2/(8ξ 2)}c+ 1,
For convenience, we say that a flow g is a candidate flow if there is a
multiset P of paths from P, with |P | ≤ k(ϸ1), such that gp = |P(p)|/|P |,
for each p ∈ P. Namely, a candidate flow belongs to the family of sparse
flows, which by Lemma 4.7, can approximate any other flow. Similarly,
a subnetwork H is a candidate subnetwork if there is a candidate flow g
such that H consists of the edges used by g (and only of them), and a
subnetwork-flow pair (H, g) is a candidate solution, if g is a candidate flow,
H is a candidate subnetwork that includes all the edges used by g (and
possibly some other edges), and g is an ϸ2-Nash flow in H.

By exhaustive search, in time |P|O(k(ϸ1)), we generate all candidate flows,
all candidate subnetworks, and compute the bottleneck cost B(g) of any
candidate flow g. Then, for each pair (H, g), where g is a candidate flow and
H is a candidate subnetwork, we check, in polynomial time, whether g is an
ϸ2-Nash flow in H, and thus whether (H, g) is a candidate solution. Thus,
in time |P|O(k(ϸ1)), we determine all candidate solutions. For each candidate
subnetwork H that participates in at least one candidate solution, we let

74 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

B̃(H) be the maximum bottleneck cost B(g) of a candidate flow g for which
(H, g) is a candidate solution. The algorithm returns the subnetwork H
that minimizes B̃(H), and a flow f for which (H, f) is a candidate solution
and B̃(H) = B(f).

The exhaustive search above can be implemented in |P|O(k(ϸ1)) time. As
for the properties of the solution (H, f), the definition of candidate solutions
immediately implies (i), i.e., that f is an ε/2-Nash flow in H.

In the following we use Lemma 4.7, and show (ii), (iii), and (iv).
We first show (ii), i.e., that B(f) ≤ B(H∗,1)+ε. We recall that H∗ denotes

the best subnetwork of G and f ∗ denotes the worst Nash flow in H∗. Also,
by hypothesis, f ∗e > δ > 0, for all edges e of H∗.

By Lemma 4.7, there is a candidate flow f̃ such that for all edges e of
H∗, |f̃e − f ∗e | ≤ ϸ1. Thus, since ϸ1 ≤ δ, H∗ is a candidate network, because
f̃e > 0 for all edges e of H∗. Moreover, by the Lipschitz condition and the
choice of ϸ1, for all edges e of H∗, |de(f̃e)−de(f ∗e)| ≤ ε/4. Therefore, since f ∗ is
a Nash flow in H∗, f̃ is an ϸ2-Nash flow in H∗, and thus (H, f̃) is a candidate
solution. Furthermore, |B(f̃) − B(f ∗)| ≤ ε/4, i.e., the bottleneck cost of f̃ is
within an additive term of ε/4 from the worst equilibrium bottleneck cost
of H∗. In particular, B(f̃) ≤ B(H∗,1) + ε/4.

We also need to show that for any other candidate flow g for which
(H∗, g) is a candidate solution, B(g) ≤ B(f̃) + 3ε/4, and thus B̃(H∗) ≤
B(f̃) + 3ε/4 ≤ B(H∗,1) + ε. To reach a contradiction, let us assume that
there is a candidate flow g that is an ϸ2-Nash flow in H∗ and has B(g) >
B(f̃) + 3ε/4. But then, we should expect that there is a Nash flow g′ in H∗

that closely approximates g and has a bottleneck cost of B(g′) ≈ B(g) >
B(f ∗), a contradiction. Formally, since g is an ϸ2-Nash flow in H∗, the set
of edges with de(ge) ≥ B(g) − ε/2 comprises an s − t cut in H∗. Then, by
the continuity of the latency functions, we can fix a part of the flow routed
essentially as in g, so that there is an s − t cut consisting of used edges
with latency B(g) − ε/2, and possibly unused edges with latency at least
B(g) − ε/2, and reroute the remaining flow on top of it, so that we obtain a
Nash flow g′ in H∗. But then,

B(g′) ≥ B(g) − ε/2 > B(f̃) + ε/4 ≥ B(f ∗) ,

which contradicts the hypothesis that f ∗ is the worst Nash flow in H∗.
Therefore, B̃(H∗) ≤ B(H∗,1) + ε. Since the algorithm returns the can-

didate solution (H, f), and not a candidate solution including H∗, B̃(H) ≤
B(H∗). Thus, we obtain (ii), namely that B̃(H) = B(f) ≤ B(H∗,1) + ε.

We proceed to show (iii), namely that B(H,1) ≤ B(f) + ε/4. To this end,
we let g be the worst Nash flow in H. By Lemma 4.7, there is a candidate

4.5. NETWORKS WITH QUASIPOLYNOMIALLY MANY PATHS 75

flow g̃ such that for all edges e of H, |g̃e − ge | ≤ ϸ1, if ge > 0, and g̃e = 0,
otherwise. Therefore, by the Lipschitz condition and the choice of ϸ1, for
all edges e of H, |de(g̃e) − de(ge)| ≤ ε/4, if ge > 0, and de(g̃e) = de(ge) = 0,
otherwise. This implies that |B(g̃) − B(g)| ≤ ε/4, i.e., that bottleneck cost
of g̃ is within an additive term of ε/4 from the bottleneck cost of g. In
particular, B(g) ≤ B(g̃) + ε/4.

We also need to show that (H, g̃) is a candidate solution. Since H is
a candidate subnetwork and g̃ is a candidate flow, we only need to show
that g̃ is an ϸ2-Nash flow in H. Since g is a Nash flow in H, the set of
edges C = {e : de(ge) ≥ B(g)} comprises an s − t cut in H. In fact, for
all edges e ∈ C, de(ge) = B(g), if ge > 0, and de(ge) ≥ B(g), otherwise.
Let us now consider the latency in g̃ of each edge e ∈ C. If ge = 0, then
de(g̃e) = de(ge) ≥ B(g) ≥ B(g̃) − ε/4. If ge > 0, then

B(g̃) ≥ de(g̃e) ≥ de(ge) − ε/4 = B(g) − ε/4 ≥ B(g̃) − ε/2 .

Therefore, for the flow g̃, we have an s − t cut in H consisting of edges
e either with g̃e > 0 and B(g̃) − ε/2 ≤ de(g̃e) ≤ B(g̃), or with g̃e = 0 and
de(g̃e) ≥ B(g̃)− ε/4. By the standard properties of ε-Nash flows (see also in
Section 4.1), we obtain that g̃ is a ϸ2-Nash flow in H.

Hence, we have shown that (H, g̃) is a candidate solution, and that
B(g) ≤ B(g̃) + ε/4. Therefore, the algorithm considers both candidate solu-
tions (H, f) and (H, g̃), and returns (H, f), which implies that B(g̃) ≤ B(f).
Thus, we obtain (iii), namely that B(H,1) = B(g) ≤ B(f) + ε/4.

To conclude the proof, we next show (iv), namely that B(f) ≤ B(H,1) +

ε/2. For the proof, we use the same notation as in (iii). The argument is
essentially identical to that used in the second part of the proof of (ii). More
specifically, to reach a contradiction, we assume that the candidate flow f ,
which is an ϸ2-Nash flow in H, has B(f) > B(H,1)+ε/2. Then, as before, we
should expect that there is a Nash flow f ′ in H that approximates f and has
a bottleneck cost of B(f ′) ≈ B(f) > B(H,1), a contradiction. Formally, since
f is an ϸ2-Nash flow in H, the set of edges with de(fe) ≥ B(f)−ε/2 comprises
an s − t cut in H. Then, by the continuity of the latency functions, we can
fix a part of the flow routed essentially as in f , so that there is an s − t cut
consisting of used edges with latency B(f)−ε/2, and possibly unused edges
with latency at least B(f)− ε/2, and reroute the remaining flow on top of it,
so that we obtain a Nash flow f ′ inH. But then, B(f ′) ≥ B(f)−ε/2 > B(H,1),
which contradicts the definition of the worst equilibrium bottleneck cost
B(H,1) of H. Thus, we obtain (iv), namely that B(f) ≤ B(H,1) + ε/2.

Therefore, the algorithm of Theorem 5.1 returns a flow-subnetwork pair
(H, f) such that f is an ε/2-Nash flow in H, the worst equilibrium bottle-

76 ON THE HARDNESS OF NETWORK DESIGN FOR BOTTLENECK ROUTING GAMES

neck cost of the subnetwork H approximates the worst equilibrium bottle-
neck cost of H∗, since B(H∗,1) ≤ B(H,1) ≤ B(H∗,1) + 5ε/4, by (ii) and (iii),
and the bottleneck cost of f approximates the worst equilibrium bottleneck
cost of H, since B(H,1) − ε/4 ≤ B(f) ≤ B(H,1) + ε/2, by (iii) and (iv).

Chapter 5

Resolving Braess’s Paradox in Random
Networks

In this chapter, we study the approximability of the best subnetwork prob-
lem for the class of random Erdös-Rényi Gn,p instances proven prone to
Braess’s paradox by (Roughgarden and Valiant, RSA 2010) and (Chung
and Young, WINE 2010). Our main contribution is a polynomial-time
approximation-preserving reduction of the best subnetwork problem for
such instances to the corresponding problem in a simplified network where
all neighbors of s and t are directly connected by 0 latency edges. Building
on this, we obtain an approximation scheme that for any constant ε > 0
and with high probability, computes a subnetwork and an ε-Nash flow with
maximum latency at most (1 + ε)L∗ + ε, where L∗ is the equilibrium latency
of the best subnetwork. Our approximation scheme runs in polynomial
time if the random network has average degree O(poly(lnn)) and the traffic
rate is O(poly(ln lnn)), and in quasipolynomial time for average degrees up
to o(n) and traffic rates of O(poly(lnn)).

5.1 Problem-Specific Definitions

We deal with a typical instance (G(V, E), (de)e∈E, r) of a non atomic CG
(selfish routing game). In such instances, as noted earlier, all used paths
under a Nash flow have a unique minimum latency which we denote as
L(G, d, r) or L(G, r), for brevity, assuming that the latency function are
given within G.

The paradox seems not an artifact of optimization theory [56, 77], and
our motivation is whether in some practically interesting settings, where
the paradox occurs, we can efficiently compute a set of edges whose re-

77

78 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

Figure 5.1:
(a) The optimal optimal total latency social cost is 3/2, achieved by routing half of
the flow on each of the paths (s, v, t) and (s,w, t). In the Nash flow, all traffic goes
through the path (s, v,w, t) and has selfish cost 2, thus inducing the worst PoA =

4/3 for linear latencies. (b) If we remove the edge (v,w), the Nash flow coincides
with the optimal social flow. Hence the network (b) is the best subnetwork of
network (a) and achieves the best possible PoA = 1, with no sacrificed players
through slower paths.

moval significantly improves the equilibrium latency.
We only consider linear latencies de(x) = aex + be, with ae, be ≥ 0.

We restrict our attention to instances where the coefficients ae and be are
randomly selected from a pair of random variables A and B. Following
[24, 84], we say that A and B are reasonable if:

• A has bounded range [Amin, Amax] and B has bounded range [0, Bmax],
where Amin > 0 and Amax, Bmax are constants, i.e., they do not depend
on r and |V |.

• There is a closed interval IA of positive length, such that for every
non-trivial subinterval I ′ ⊆ IA, Pr[A ∈ I ′] > 0.

• There is a closed interval IB, 0 ∈ IB, of positive length, such that
for every non-trivial subinterval I ′ ⊆ IB, Pr[B ∈ I ′] > 0. Moreover,
for any constant η > 0, there exists a constant δη > 0, such that
Pr[B ≤ η] ≥ δη.

Flows and Nash Flows. Two flows f and g are different if there is an edge
e with fe , ge.

Given a flow f , let the latency of f be L(f) = maxp:fp>0 dp(f). We some-
times write LG(f) when the network G is not clear from the context.

For an instance (G(V, E), r) and a flow f , we let Ef = {e ∈ E : fe > 0}
be the set of edges used by f , and Gf (V, Ef) be the corresponding subnet-
work of G. In a Nash flow f , all players incur a common latency on their

5.1. PROBLEM-SPECIFIC DEFINITIONS 79

paths, which, according to the previous definitions, is L(f) = minp dp(f) =

maxp:fp>0 dp(f). A Nash flow f on a network G(V, E) is a Nash flow on any
subnetwork G′(V ′, E′) of G with Ef ⊆ E′.

Every instance (G, r) admits at least one Nash flow, and the players’
latency is the same for all Nash flows (see e.g., [77]). For linear latency
functions, a Nash flow can be computed efficiently, in strongly polynomial
time, while for strictly increasing latencies, the Nash flow is essentially
unique (see e.g., [77]).
Best Subnetwork. Recall, the best subnetwork H∗ of (G, r) is a subnetwork
of G with the minimum equilibrium latency, i.e., H∗ has L(H∗, r) ≤ L(H, r)
for any subnetwork H of G. We study the approximability of the Best Sub-
network Equilibrium Latency problem, or BestSubEL in short. In BestSubEL,
we are given an instance (G, r), and seek for the best subnetworkH∗ of (G, r)
and its equilibrium latency L(H∗, r).
Good Networks. We restrict our attention to undirected s − t networks
G(V, E). We let n ≡ |V | and m ≡ |E|. For any vertex v, we let Γ(v) = {u ∈ V :
{u, v} ∈ E} denote the set of v’s neighbors in G. Similarly, for any non-empty
S ⊆ V , we let Γ(S) =

⋃
v∈S Γ(v) denote the set of neighbors of the vertices in

S, and let G[S] denote the subnetwork of G induced by S. For convenience,
we let Vs ≡ Γ(s), Es ≡ {{s, u} : u ∈ Vs}, Vt ≡ Γ(t), Et ≡ {{v, t} : v ∈ Vt}, and
Vm ≡ V \ ({s, t} ∪ Vs ∪ Vt). We also let ns = |Vs|, nt = |Vt |, n+ = max{ns, nt},
n− = min{ns, nt}, and nm = |Vm |. We sometimes write V (G), n(G), Vs(G),
ns(G), . . ., if G is not clear from the context.

It is convenient to think that the network G has a layered structure
consisting of s, the set of s’s neighbors Vs, an ‘‘intermediate’’ subnetwork
connecting the neighbors of s to the neighbors of t, the set of t ’s neighbors
Vt, and t. Then, any s − t path starts at s, visits some u ∈ Vs, proceeds
either directly or through some vertices of Vm to some v ∈ Vt, and finally
reaches t. Thus, we refer to Gm ≡ G[Vs ∪ Vm ∪ Vt] as the intermediate
subnetwork of G. Depending on the structure of Gm, we say that:

• G is a random Gn,p network if (i) ns and nt follow the binomial dis-
tribution with parameters n and p, and (ii) if any edge {u, v}, with
u ∈ Vm ∪ Vs and v ∈ Vm ∪ Vt, exists independently with probability
p. Namely, the intermediate network Gm is an Erdös-Rényi random
graph with n − 2 vertices and edge probability p, except for the fact
that there are no edges in G[Vs] and in G[Vt].

• G is internally bipartite if the intermediate network Gm is a bipartite
graph with independent sets Vs and Vt. G is internally complete bi-
partite if every neighbor of s is directly connected by an edge to every

80 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

neighbor of t.

• G is 0-latency simplified if it is internally complete bipartite and every
edge e connecting a neighbor of s to a neighbor of t has latency
function de(x) = 0.

The 0-latency simplification G0 of a given network G is a 0-latency
simplified network obtained from G by replacing G[Vm] with a set of 0-
latency edges directly connecting every neighbor of s to every neighbor of
t. Moreover, we say that a 0-latency simplified network G is balanced, if
|ns − nt | ≤ 2n− .

We say that a network G(V, E) is (n, p, k)-good, for some integer n ≤ |V |,
some probability p ∈ (0,1), with pn = o(n), and some constant k ≥ 1, if G
satisfies that:

1. The maximum degree of G is at most 3np/2, i.e., for any v ∈ V ,
|Γ(v)| ≤ 3np/2.

2. G is an expander graph, namely, for any set S ⊆ V , |Γ(S)| ≥ min{np|S|, n}/2.

3. The edges of G have random reasonable latency functions distributed
according to A × B, and for any constant η > 0, Pr[B ≤ η/ lnn]np =

ω(1).

4. If k > 1 and we randomly partition Vm into k sets V 1
m , . . . , V

k
m, each of

cardinality |Vm |/k, all the induced subnetworks G[{s, t}∪Vs∪V i
m ∪Vt]

are (n/k, p,1)-good, with a possible violation of the maximum degree
bound by s and t.

If G is a randomGn,p network, with n sufficiently large and p ≥ ck lnn/n,
for some large enough constant c > 1, then G is a (n, p, k)-good network
with high probability (see e.g., [15]), provided that the latency functions
satisfy condition (3) above. Similarly, the random instances considered in
[24] are good with high probability. Also note that the 0-latency simplifi-
cation of a good network is balanced, due to (1) and (2).

5.2 The Approximation Scheme and Outline of the Anal-
ysis

In this section, we describe the main steps of the approximation scheme
(see also Algorithm 1), and give an outline of its analysis. We let ε > 0 be

5.2. THE APPROXIMATION SCHEME AND OUTLINE OF THE ANALYSIS 81

Algorithm 1: Approximation Scheme for BestSubEL in Good Networks
Input: Good network G(V, E), rate r > 0, approximation guarantee

ε > 0
Output: Subnetwork H of G and ε-Nash flow g in H with

L(g) ≤ (1 + ε)L(H∗, r) + ε
1 if L(G, r) < ε, return G and a Nash flow of (G, r) ;
2 create the 0-latency simplification G0 of G ;
3 if r ≥ (Bmaxn+)/(εAmin), then let H0 = G0 and let f be a Nash flow of

(G0, r) ;
4 else, let H0 be the subnetwork and f the ε/6-Nash flow of Thm. 5.7

applied with error ε/6 ;
5 let H be the subnetwork and let g be the ε-Nash flow of Lemma 5.9

starting from H0 and f ;
6 return the subnetwork H and the ε-Nash flow g ;

the approximation guarantee, and assume that L(G, r) ≥ ε. Otherwise, any
Nash flow of (G, r) suffices.

Algorithm 1 is based on an approximation-preserving reduction of BestSubEL
for a good network G to BestSubEL for the 0-latency simplification G0 of G.
The first step of our approximation-preserving reduction is to show that
the equilibrium latency of the best subnetwork does not increase when
we consider the 0-latency simplification G0 of a network G instead of G
itself. Since decreasing the edge latencies (e.g., decreasing d(v,w)(x) = 1 to
d(v,w)(x) = 0 in Fig. 5.1.a) may trigger Braess’s paradox, we need Lemma 5.2
and its careful proof to make sure that zeroing out the latency of the inter-
mediate subnetwork does not cause an abrupt increase in the equilibrium
latency.

Next, we focus on the 0-latency simplification G0 of G (step 2 in Alg.
1). We show that if the traffic rate is large enough, i.e., if r = Ω(n+/ε), the
paradox has a marginal influence on the equilibrium latency. Thus, any
Nash flow of (G0, r) is an (1 + ε)-approximation of BestSubEL (Lemma 5.3,
step 4). If r = O(n+/ε), we use an approximate version of Caratheodory’s
theorem (Theorem 5.6) to prove that by an efficient exhaustive search we
can obtain an ε/6-approximation of BestSubEL for (G0, r) (Theorem 5.7,
step 4), which in fact we obtain!

We now have a subnetwork H0 and an ε/6-Nash flow f that comprise a
good approximate solution to BestSubEL for the simplified instance (G0, r).
The next step of our approximation-preserving reduction is to extend f to
an approximate solution to BestSubEL for the original instance (G, r). The

82 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

intuition is that due to the expansion and the reasonable latencies of G,
any collection of 0-latency edges of H0 used by f to route flow from Vs to
Vt can be ‘‘simulated’’ by an appropriate collection of low-latency paths
of the intermediate subnetwork Gm of G. We first prove this claim for a
small part of H0 consisting only of neighbors of s and neighbors of t with
approximately the same latency under f (Lemma 5.8, the proof draws ideas
from [24, Lemma 5]). Then, using a careful latency-based grouping of the
neighbors of s and of the neighbors of t in H0, we extend this claim to
the entire H0 (Lemma 5.9). Thus, we obtain a subnetwork H of G and an
ε-Nash flow g in H such that L(g) ≤ (1 + ε)L(H∗, r) + ε (step 5).

We summarize our main result. The proof follows by combining Lemma 5.2,
Theorem 5.7, and Lemma 5.9 in the way indicated by Algorithm 1 and the
discussion above.

Theorem 5.1. Let G(V, E) be (n, p, k)-good network, where k ≥ 1 is a large
enough constant, let r > 0 be any traffic rate, and let H∗ be the best
subnetwork of (G, r). Then, for any ε > 0, Algorithm 1 computes in time
nO(r2A2

max/ε
2)

+ poly(|V |), a flow g and a subnetwork H of G such that with high
probability, wrt. the random choice of the latency functions, g is an ε-Nash
flow of (H, r) and has L(g) ≤ (1 + ε)L(H∗) + ε.

By the definition of reasonable latencies, Amax is a constant. Also, by
Lemma 5.3, r affects the running time only if r = O(n+/ε). In fact, pre-
vious work on selfish network design assumes that r = O(1), see e.g.,
[77]. Thus, if r = O(1) (or more generally, if r = O(poly(ln lnn))) and
pn = O(poly(lnn)), in which case n+ = O(poly(lnn)), Theorem 5.1 gives
a randomized polynomial-time approximation scheme for BestSubEL in
good networks. Moreover, the running time is quasipolynomial for traf-
fic rates up to O(poly(lnn)) and average degrees up to o(n), i.e., for the
entire range of p in [24, 84]. The next sections are devoted to the proofs of
Lemmas 5.2 and 5.9, and of Theorem 5.7.

5.3 Network Simplification

We first show that the equilibrium latency of the best subnetwork does not
increase when we consider the 0-latency simplification G0 of a network G
instead of G itself.

Lemma 5.2. Let G be any network, let r > 0 be any traffic rate, and
let H be the best subnetwork of (G, r). Then, there is a subnetwork H ′

of the 0-latency simplification of H (and thus, a subnetwork of G0) with
L(H ′, r) ≤ L(H, r).

5.3. NETWORK SIMPLIFICATION 83

Proof. Throughout the proof, we assume wlog. that all the edges of H
are used by the equilibrium flow f of (H, r) (otherwise, we can remove all
unused edges from H). The proof is constructive, and at the conceptual
level, proceeds in two steps.

For the first step, given the equilibrium flow f of the best subnetwork H
of G, we construct a simplification H1 of H that is internally bipartite and
has constant latency edges connecting Γ(s) to Γ(t). H1 also admits f as an
equilibrium flow, and thus L(H1, r) = L(H, r). We also show how to further
simplify H1 so that its intermediate bipartite subnetwork becomes acyclic.

To construct the simplification H1 of H, we let f be the equilibrium
flow of H, and let L ≡ L(H, r). For each ui ∈ Γ(s) and vj ∈ Γ(t), we let
fij =

∑
p=(s,ui ,...,vj ,t) fp be the flow routed by f from ui to vj. The network H1

is obtained from H by replacing the intermediate subnetwork of H with a
bipartite subnetwork connecting Γ(s) and Γ(t) with constant latency edges.
More specifically, instead of the intermediate subnetwork of H, for each
ui ∈ Γ(s) and vj ∈ Γ(t) with fij > 0, we have an edge {ui , vj} of constant
latency bij = L − (a{s,ui }f{s,ui } + b{s,ui }) − (a{vj ,t}f{vj ,t} + b{vj ,t}) (the corresponding
aij is set to 0). If fij = 0, ui and vj are not connected in H1. We note that by
construction, H1 admits f as an equilibrium flow, and thus L(H1, r) = L.

Furthermore, we modify H1 by deleting some edges from its interme-
diate subnetwork so that the induced bipartite subgraph H1[Γ(s) ∪ Γ(t)]
becomes acyclic. Therefore, in the resulting network, for each ui ∈ Γ(s)
and each vj ∈ Γ(t), there is at most one (s, ui , vj, t) path in H1. Hence, the
resulting network admits a unique equilibrium flow with a unique path
decomposition.

To this end, let us assume that there is a cycle C = (u1, v2, u2, . . . , vk, uk, v1, u1)
in the intermediate subnetwork H1[Γ(s) ∪ Γ(t)]. We let ek1 = {uk, v1} be the
edge of C with the minimum amount of flow in f , and let fk1 be the flow
through ek1 (see also Fig. 5.2). Then, removing ek1, and updating the
flows along the remaining edges of C so that f ′ii = fii + fk1, 1 ≤ i ≤ k, and
f ′i(i+1) = fi(i+1) − fk1, 1 ≤ i ≤ k − 1, we ‘‘break’’ the cycle C, by eliminating the
flow in ek1, and obtain a new equilibrium flow f ′ of the same rate r and with
the same latency L as that of f . Applying this procedure repeatedly to all
cycles, we end up with an internally bipartite network H1 with an acyclic
intermediate subnetwork that includes constant latency edges only. More-
over, H1 admits an equilibrium flow f of latency L. This concludes the first
part of the proof.

The second part of the proof is to show that we can either remove
some of the intermediate edges of H1 or zero their latencies, and obtain a
subnetwork H ′ of the 0-latency simplification of H with L(H ′, r) ≤ L(H, r).
To this end, we describe a procedure where in each step, we either remove

84 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

Figure 5.2: In (a), we have a cycle C = (u1, v2, u2, . . . , vk , uk , v1, u1) in the interme-
diate subnetwork H1[Γ(s)∪Γ(t)]. We assume that fk1 is the minimum amount flow
through an edge of C in the equilibrium flow f . In (b), we have removed the edge
ek1, and show the corresponding change in the amount of flow on the remaining
edges of C. Since the latency functions of the edges in C are constant, the change
in the flow does not affect equilibrium.

some intermediate edge of H1 or zero its latency, without increasing the
latency of the equilibrium flow.

Let us focus on an edge ekl = {uk, vl} with bkl > 0, and attempt to set
its latency function to b′kl = 0. We have also to change the equilibrium
flow f to a new flow f ′ that is an equilibrium flow of latency at most L in
the modified network with b′kl = 0. We let rp be the amount of flow moving
from an s − t path p = (s, ui , vj, t) to the path pkl = (s, uk, vl, t) during this
change. We note that rp may be negative, in which case, |rp| units of flow
actually move from pkl to p. Thus, rp’s define a rerouting of f to a new flow
f ′, with f ′p = fp − rp, for any s − t path p other than pkl, and f ′kl = fkl +

∑
p rp.

Next, we show how to compute rp’s so that f ′ is an equilibrium flow
of cost at most L in the modified network (where we want to set b′kl = 0).
We let P = PH1 \ {pkl} denote the set of all s − t paths in H1 other than
pkl. We let ~F be the |P| × |P| matrix, indexed by the paths p ∈ P, where
~F [p1, p2] =

∑
e∈p1∩p2 ae −

∑
e∈p1∩pkl ae, and let ~r be the vector of rp’s. Then,

the p-th component of ~F~r is equal to dp(f) − dp(f ′). In the following, we
consider two cases depending on whether ~F is singular or not.

If ~F is non-singular, the linear system ~F~r = ε ~1 has a unique solution
~rε, for any ε > 0. Moreover, due to linearity, for any α ≥ 0, the unique
solution of the system ~F~r = α ε ~1 is α~rε. Therefore, for an appropriately
small ε > 0, the linear system Qε = {~F~r = ε ~1, fp − rp ≥ 0 ∀p ∈ P, fkl +

∑
p rp ≥

0, dpkl (f ′) ≤ L + bkl − ε} admits a unique solution ~r. We keep increasing ε
until one of the inequalities of Qε becomes tight. If it first becomes rp = fp
for some path p = (s, ui , vj, t) ∈ P, we remove the edge {ui , vj} from H1 and
adjust the constant latency of ekl so that dpkl (f ′) = L − ε. Then, the flow f ′

5.3. NETWORK SIMPLIFICATION 85

is an equilibrium flow of cost L−ε for the resulting network, which has one
edge less than the original network H1. If

∑
p rp < 0 and it first becomes∑

p rp = −fkl, we remove the edge ekl from H1. Then, f ′ is an equilibrium
flow of cost L − ε for the resulting network, which again has one edge less
than H1. If

∑
p rp > 0 and it first becomes dpkl (f ′) = L + bkl − ε, we set the

constant latency of the edge ekl to b′kl = 0. In this case, f ′ is an equilibrium
flow of cost L − ε for the resulting network that has one edge of 0 latency
more than the initial network H1.

If ~F is singular, proceeding similarly, we compute rp’s so that f ′ is an
equilibrium flow of cost L in a modified network that includes one edge
less than the original network H1. When ~F if singular, the homogeneous
linear system ~F~r = ~0 admits a nontrivial solution ~r , ~0. Moreover, due to
linearity, for any α ∈ IR, α~r is also a solution to ~F~r = ~0. Therefore, the
linear system Q0 = {~F~r = ~0, fp − rp ≥ 0 ∀p ∈ P, fkl +

∑
p rp ≥ 0} admits a

solution ~r , ~0 that makes at least one of the inequalities tight. We recall
that the p-th component of ~F~r is equal to dp(f) − dp(f ′). Therefore, for the
flow f ′ obtained from the particular solution~r of Q0, the latency of any path
p ∈ P is equal to L. If~r is such that rp = fp for some path p = (s, ui , vj, t) ∈ P,
we remove the edge {ui , vj} from H1 and adjust the constant latency of ekl
so that dpkl (f ′) = L. Then, the flow f ′ is an equilibrium flow of cost L for
the resulting network, which has one edge less than the original network
H1. If ~r is such that

∑
p rp = −fkl, we remove the edge ekl from H1. Then, f ′

is an equilibrium flow of cost L for the resulting network, which again has
one edge less than H1.

Each time we apply the procedure above either we decrease the number
of edges of the intermediate network by one or we increase the number of
0-latency edges of the intermediate network by one, without increasing the
latency of the equilibrium flow. Moreover, if pkl is disjoint to the paths
p ∈ P, ~F is non-singular (next paragraph) and the procedure above leads
to a decrease in the equilibrium latency, and eventually to setting b′kl = 0.
So by repeatedly applying these steps, we end up with a subnetwork H ′ of
the 0-latency simplification of H with L(H ′, r) ≤ L(H, r).

To show that if pkl is disjoint to the paths p ∈ P, ~F is non-singular
we show that the matrix ~F is positive definite (which implies that ~F is
non-singular). We first note that if pkl is disjoint to all p ∈ P, then for
all p1, p2 ∈ P, ~F [p1, p2] =

∑
e∈p1∩p2 ae. Hence, for all ~x ∈ IR|P|, ~xT~F~x =∑

e∈E(P) aex
2
e ≥ 0, where E(P) denotes the set of edges included in the paths

of P and xe =
∑
p:e∈p xp. Since the intermediate network of H1 is acyclic

and any flow in H1 has a unique path decomposition, if ~x has one or more
non-zero components, there is at least one edge e adjacent to either s or t
such that xe > 0, and thus ~xT~F~x > 0. Otherwise, the difference of the flow

86 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

defined by ~x with the trivial flow defined by ~0 would indicate the existence
of a cycle in the intermediate subnetwork of H1. This is a contradiction,
since by the first part of the proof, the intermediate part of H1 is acyclic.

5.4 Approximating the Best Subnetwork of Simplified
Networks

We proceed to show how to approximate the BestSubEL problem in a bal-
anced 0-latency simplified network G0 with reasonable latencies. We may
always regard G0 as the 0-latency simplification of a good network G. We
first prove two useful lemmas (lemmas 5.3 and 5.4) about the maximum
traffic rate r up to which BestSubEL remains interesting, and about the
maximum amount of flow routed on any edge / path in the best subnet-
work.

Lemma 5.3. Let G0 be any 0-latency simplified network, let r > 0, and
let H∗0 be the best subnetwork of (G0, r). For any ε > 0, if r > Bmaxn+

Aminε
, then

L(G0, r) ≤ (1 + ε)L(H∗0, r).

Proof. We first show that for 0-latency simplified instances (G0, r), we can
assume, essentially wlog., that the traffic rate r = O(n+/ε). Otherwise, a
Nash flow f of (G0, r) is an (1 + ε)-approximation of the BestSubEL problem
in (G0, r).

To go on with the proof, we assume that r > Bmaxn+

Aminε
, let f be a Nash

flow of (G0, r), and consider how f allocates r units of flow to the edges
of Es ≡ Es(G0) and to the edges Et ≡ Et(G0). For simplicity, we let L ≡
L(G0, r) denote the equilibrium latency of G0, and let As =

∑
e∈Es 1/ae and

At =
∑
e∈Et 1/ae.

Since G0 is a 0-latency simplified network and f is a Nash flow of (G0, r),
there are L1, L2 > 0, with L1 + L2 = L, such that all used edges incident
to s (resp. to t) have latency L1 (resp. L2) in the Nash flow f . Since
r > Bmaxn+

Amin
, L1, L2 > Bmax and all edges in Es ∪ Et are used by f . Moreover,

by an averaging argument, we have that there is an edge e ∈ Es with
aefe ≤ r/As, and that there is an edge e ∈ Et with aefe ≤ r/At. Therefore,
L1 ≤ (r/As) + Bmax and L2 ≤ (r/At) + Bmax, and thus, L ≤ r

As
+ r

At
+ 2Bmax.

On the other hand, if we ignore the additive terms be of the latency
functions, the optimal average latency of the players is r/As + r/At, which
implies that L(H∗0, r) ≥ r/As + r/At. Therefore, L ≤ L(H∗0, r) + 2Bmax. More-

5.4. APPROXIMATING THE BEST SUBNETWORK OF SIMPLIFIED NETWORKS 87

over, since r > Bmaxn+

Aminε
, As ≤ ns/Amin, and At ≤ nt/Amin, we have that:

L(H∗0, r) ≥
r

As
+
r

At

≥
Bmaxns
Aminε

Amin

ns
+
Bmaxnt
Aminε

Amin

nt
≥ 2Bmax/ε

Therefore, 2Bmax ≤ εL(H∗0, r), and L ≤ (1 + ε)L(H∗0, r).

Lemma 5.4. Let G0 be a balanced 0-latency simplified network with rea-
sonable latencies, let r > 0, and let f be a Nash flow of the best subnetwork
of (G0, r). For any ε > 0, if Pr[B ≤ ε/4] ≥ δ, for some constant δ > 0, there
exists a constant ρ = 24AmaxBmax

δεA2
min

such that with probability at least 1−e−δn−/8,
fe ≤ ρ, for all edges e.

Proof. We proceed to show that in a 0-latency simplified instance (G0, r),
the best subnetwork Nash flow routes O(r/n+) units of flow on any edge and
on any s−t path with high probability (where the probability is with respect
to the random choice of the latency function coefficients). Intuitively, we
show that in the best subnetwork Nash flow, with high probability, all used
edges and all used s− t paths route a volume of flow not significantly larger
than their fair share. We first prove the following technical lemma:

Lemma 5.5. Let G0 be a balanced 0-latency simplified network with rea-
sonable latencies, let r > 0 be any traffic rate, and let f be any Nash
flow of the best subnetwork of (G0, r). For any ε > 0, if L(G, r) ≥ ε and
Pr[B ≤ ε/4] ≥ δ, for some constant δ > 0, there exists a constant γ = 24Amax

δAmin

such that with probability at least 1 − e−δn−/8, for all edges e, fe ≤ γr/n+.

Proof. We let L ≡ L(G0, r) denote the equilibrium latency and g denote a
Nash flow of the original instance (G0, r). Since G0 is a 0-latency simplified
network and g is a Nash flow of (G0, r), there are L1, L2 > 0, with L1 +L2 = L,
such that: (i) for any edge e incident to s, if be < L1, ge > 0 and aege + be =

L1, while ge = 0, otherwise, and (ii) for any edge e incident to t, if be < L2,
ge > 0 and aege + be = L2, while ge = 0, otherwise. Namely, all used edges
incident to s (resp. to t) have latency L1 (resp. L2) in the Nash flow g. Wlog.,
we assume that L1 ≥ L2, and thus, L1 ≥ L/2 ≥ ε/2.

We next show that (i) if L ≥ ε and Pr[B ≤ ε/4] ≥ δ, then with probability
at least 1−e−δn−/8, L ≤ 24Amaxr

δn+
, and (ii) that for any e, fe ≤ L/Amin. The lemma

follows by combining (i) and (ii).

88 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

We start with the proof of (i). Let e be any edge incident to s with
be ≤ ε/4. By the discussion above, in the Nash flow g of (G0, r), ge > 0 and
aege + be = L1. Using that L1 ≥ L/2 ≥ ε/2, we obtain that:

L1 = aege + be ≤ aege + ε/4⇒ ge ≥
L1 − ε/4
ae

≥
L1

2ae
≥

L

4Amax
(5.1)

Moreover, since Pr[B ≤ ε/4] ≥ δ, we use Chernoff bounds (e.g., [48, (7)]),
and obtain that:

Pr[|{e ∈ Es(G0) with be ≤ ε/4}| ≥ δns/2] ≥ 1 − e−δns/8 (5.2)

Combining (5.2) and (5.1), we obtain that if L ≥ ε and Pr[B ≤ ε/4] ≥ δ, with
probability at least 1−e−δn−/8, the flow rate r is at least Lδns

8Amax
, or equivalently,

that:
L ≤

8Amaxr

δns
≤

24Amaxr

δn+

(5.3)

The last inequality holds because G0 is balanced, and |ns − nt | ≤ 2n−. This
concludes the proof of (i).

To prove (ii), we observe that in the best subnetwork equilibrium flow
f , no used edge e has latency greater than L. Therefore, for any used edge
e incident to either s or t, we have that:

aefe + be ≤ L ⇒ fe ≤
L

ae
≤

L

Amin
(5.4)

Moreover, any edge e in the intermediate subnetwork of G has fe ≤ L/Amin

due to the flow conservation constraints. This concludes the proof of (ii).

We recall that we always assume that L(G, r) ≥ ε, since otherwise the
problem of approximating BestSubEL is trivial. Moreover, by the definition
of reasonable latency functions, we have that for any constant ε > 0,
there is a constant δ > 0, such that Pr[B ≤ ε/4] ≥ δ. Combining these
assumptions with Lemma 5.3 and Lemma 5.5, we obtain Lemma 5.4. So
from now on, we can assume, with high probability and wlog., that the
Nash flow in the best subnetwork of any simplified instance (G0, r) routes
O(1) units of flow on any used edge and on any used path.

Approximating the Best Subnetwork of Simplified Networks. First we
state an approximate version of Caratheodory’s theorem, proved in [12],
that is needed for proving the correctness and efficiency of our approxima-
tion scheme.

5.4. APPROXIMATING THE BEST SUBNETWORK OF SIMPLIFIED NETWORKS 89

Theorem 5.6 ([12], Theorem 3). Let X be a set of vectors X = {x1, . . . , xn} ⊂
Rd and ε > 0. For every µ ∈ conv(X) and 2 ≤ p ≤ ∞ there exist an O(pγ

2

ε2)
uniform vector µ′ ∈ conv(X) such that ||µ − µ′||p ≤ ε, where γ = maxx∈X ||x ||p
and a k uniform vector is a vector that can be written as an average of k
vectors of X with replacements allowed.

We proceed to derive an approximation scheme for the best subnetwork
of any simplified instance (G0, r).

Theorem 5.7. Let G0 be a balanced 0-latency simplified network with rea-
sonable latencies, let r > 0, and let H∗0 be the best subnetwork of (G0, r).
Then, for any ε > 0, we can compute, in time nO(A2

maxr
2/ε2)

+ , a flow f and a
subnetwork H0 consisting of the edges used by f , such that (i) f is an ε-
Nash flow of (H0, r), (ii) L(f) ≤ L(H∗0, r)+ε/2, and (iii) there exists a constant
ρ > 0, such that fe ≤ ρ + ε, for all e.

Proof. We will use theorem 5.6 to prove the existence of a flow with the
properties (i), (ii) and (iii). Then by exhaustive search we will find one such.

For every path pij = (s, ui , vj, t) let xpij be a vector indexed by the edges of
E(G0), i.e. xpij ∈ R|E(G0)|, that contains everywhere 0, except from the slots
that correspond to edges (s, ui), (ui , vj) and (vj, t) where it contains number
r. Clearly, every feasible flow of G0 can be written as a convex combination
of xpij . Let k = n+ · n− be the number of different paths in G0 and for ease of
notation let X = {x1, . . . , xk} denote the set containing all xpij ’s, according
to an arbitrary ordering.

Let µ be the Nash flow of the best subnetwork H∗0. Using theorem 5.6
with set X as defined above, the Nash flow µ ∈ conv(X), the || · ||2 norm, i.e.
p=2, and with γ being γ = r

√
3 we get that there is an O(A

2
maxr

2

ε2) uniform
vector f such that ||µ − f ||2 ≤ ε

4Amax
, which directly implies |µe − fe | ≤ ε

4Amax

and implies property (iii) for f , due to Lemma 5.4.
The cost of a path pij = (s, ui , vj, t) in H∗0 under f is dpij(f) = aif(s,ui) + bi +

ajf(vj ,t) + bj. Because of |µe − fe | ≤ ε
4Amax

we have

aiµ(s,ui) + bi −
ε

4
+ ajµ(vj ,t) + bj −

ε

4
≤ dpij(f) ≤ aiµ(s,ui) + bi +

ε

4
+ ajµ(vj ,t) + bj +

ε

4
,

which gives dpij(µ) − ε
2 ≤ dpij(f) ≤ dpij(µ) + ε

2 . As µ is the Nash flow of the
best subnetwork H∗0 we get

L(H∗0, r) −
ε

2
≤ dp(f) ≤ L(H∗0, r) +

ε

2
, (5.5)

for any path p in H∗0.

90 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

Let H0 be the subnetwork induced by the paths used by f . By 5.5, f in
H0 satisfies (i) and (ii) of the theorem.

One can find such an f in time kO(A
2
maxr

2

ε2
) by exhaustively searching for

this f in all possible O(A
2
maxr

2

ε2) combinations of the k = n+ · n− paths of
G0. By checking all possible O(A

2
maxr

2

ε2) uniform vectors for each of these
combinations and keeping, among all acceptable flows that satisfy (i) and
(ii), the acceptable flow f that minimizes the maximum amount flow routed
on any edge, we get fe ≤ ρ + ε, for all edges e, i.e. we get property (iii). The
latter is because we know that any Nash flow g of (H∗0, r) routes ge ≤ ρ
units of flow on any edge e (Lemma 5.4), and that in the exhaustive search
step, one of the acceptable flows f has |ge − fe | ≤ ε, for all edges e which
implies that there is an acceptable flow f with fe ≤ ρ+ ε, for all edges e.

5.5 Extending the Solution to the Good Network

Given a good instance (G, r), we create the 0-latency simplification G0 of
G, and using Theorem 5.7, we compute a subnetwork H0 and an ε/6-Nash
flow f that comprise an approximate solution to BestSubEL for (G0, r). Next,
we show how to extend f to an approximate solution to BestSubEL for the
original instance (G, r). The intuition is that the 0-latency edges of H0 used
by f to route flow from Vs to Vt can be ‘‘simulated’’ by low-latency paths of
Gm. We first formalize this intuition for the subnetwork of G induced by
the neighbors of s with (almost) the same latency Bs and the neighbors of
t with (almost) the same latency Bt, for some Bs, Bt with Bs +Bt ≈ L(f). We
may think of the networks G and H0 in the lemma below as some small
parts of the original network G and of the actual subnetwork H0 of G0.
Thus, we obtain the following lemma, which serves as a building block in
the proof of Lemma 5.9.

Lemma 5.8. We assume that G(V, E) is a (n, p,1)-good network, with a
possible violation of the maximum degree bound by s and t, but with
|Vs|, |Vt | ≤ 3knp/2, for some constant k > 0. Also the latencies of the edges
in Es ∪ Et are not random, but there exist constants Bs, Bt ≥ 0, such that
for all e ∈ Es, de(x) = Bs, and for all e ∈ Et, de(x) = Bt. We let r > 0 be
any traffic rate, let H0 be any subnetwork of the 0-latency simplification
G0 of G, and let f be any flow of (H0, r). We assume that there exists
a constant ρ′ > 0, such that for all e ∈ E(H0), 0 < fe ≤ ρ′. Then, for
any ϸ1 > 0, with high probability, wrt. the random choice of the latency
functions of G, we can compute in poly(|V |) time a subnetwork G′ of G,
with Es(G′) = Es(H0) and Et(G′) = Et(H0), and a flow g of (G′, r) such that

5.5. EXTENDING THE SOLUTION TO THE GOOD NETWORK 91

(i) ge = fe for all e ∈ Es(G′) ∪ Et(G′), (ii) g is a 7ϸ1-Nash flow in G′, and
(iii) LG′(g) ≤ Bs + Bt + 7ϸ1.

Proof. For convenience and wlog., we assume that Es(G) = Es(H0) and that
Et(G) = Et(H0), so that we simply write Vs, Vt, Es, and Et from now on. For
each e ∈ Es ∪ Et, we let ge = fe. So, the flow g satisfies (i), by construction.

We compute the extension of g through Gm as an ‘‘almost’’ Nash flow in
a modified version of G, where each edge e ∈ Es ∪ Et has a capacity ge = fe
and a constant latency de(x) = Bs, if e ∈ Es, and de(x) = Bt, if e ∈ Et.
All other edges e of G have an infinite capacity and a (randomly chosen)
reasonable latency function de(x).

We let g be the flow of rate r that respects the capacities of the edges
in Es ∪ Et, and minimizes Pot(g) =

∑
e∈E

∫ ge

0 de(x)dx. Such a flow g can be
computed in strongly polynomial time (see e.g., [85]). The subnetwork G′

of G is simply Gg, namely, the subnetwork that includes only the edges
used by g. It could have been that g is not a Nash flow of (G, r), due to
the capacity constraints on the edges of Es ∪ Et. However, since g is a
minimizer Pot(g), for any u ∈ Vs and v ∈ Vt, and any pair of s − t paths p,
p′ going through u and v, if gp > 0, then dp(g) ≤ dp′(g).

We next adjust the proof of [24, Lemma 5], and show that for any s − t
path p used by g, dp(g) ≤ Bs+Bt+7ϸ1. To prove this, we let p = (s, u, . . . , v, t)
be the s− t path used by g that maximizes dp(g). We show the existence of
a path p′ = (s, u, . . . , v, t) in G of latency dp′(g) ≤ Bs + Bt + 7ϸ1. Therefore,
since g is a minimizer of Pot(g), the latency of the maximum latency g-
used path p, and thus the latency of any other g-used s − t path, is at
most Bs +Bt + 7ϸ1, i.e., g satisfies (iii). Moreover, since for any s− t path p,
dp(g) ≥ Bs + Bt, g is an 7ϸ1-Nash flow in G′.

Let p = (s, u, . . . , v, t) be the s − t path used by g that maximizes dp(g).
To show the existence of a path p′ = (s, u, . . . , v, t) in G of latency dp′(g) ≤
Bs + Bt + 7ϸ1, we start from S0 = {u} and grow a sequence of vertex sets
S0 ⊆ S1 ⊆ · · · ⊆ Si∗, stopping when |Γ(Si∗)| ≥ 3n/5 for the first time. We
use the expansion properties of G, and condition (3), on the distribution
of B, in the definition of good networks, and show that these sets grow
exponentially fast, and thus, i∗ ≤ lnn, with high probability. Moreover, we
show1 that there are edges of latency ϸ1 + o(1) from S0 = {u} to each vertex
of S1, and edges of latency ϸ1/ lnn+o(1/ lnn) from Si to each vertex of Si+1,
for all i = 1, . . . , i∗ − 1. Thus, there is a path of latency at most 2ϸ1 + o(1)
from u to each vertex of Si∗. Similarly, we start from T0 = {v} and grow a

1The intuition is that if among the edges e incident to Vs ∪ Vt , we keep only those with
be ≤ ϸ1, and among all the remaining edges e, we keep only those with be ≤ ϸ1/ lnn, then
due to condition (3) on the distribution of B, a good network G remains an expander.

92 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

sequence of vertex sets T0 ⊆ T1 ⊆ · · · ⊆ Tj∗, stopping when |Γ(Tj∗)| ≥ 3n/5 for
the first time. By exactly the same reasoning, we establish the existence
of a path of latency at most 2ϸ1 + o(1) from each vertex of Tj∗ to v. Finally,
since |Γ(Si∗)| ≥ 3n/5 and |Γ(Tj∗)| ≥ 3n/5, the neighborhoods of Si∗ and Tj∗
contain at least n/10 vertices in common. With high probability, most of
these vertices can be reached from Si∗ and from Tj∗ using edges of latency
ϸ1 + o(1). Putting everything together, we find a u − v path (in fact, many
of them) of length O(lnn) and latency at most 6ϸ1 + o(1) ≤ 7ϸ1.

For completeness, we next give a detailed proof, by adjusting the argu-
ments in the proof of [24, Lemma 5]. For convenience, for each vertex x,
we let ds(x) (resp. dt(x)) be the latency wrt g of the shortest latency path
from s to x (resp. from x to t). Also, for any δ > 0, we let Pb(δ) ≡ Pr[B ≤ δ]
denote the probability that the additive term of a reasonable latency is at
most δ. Recall also that by hypothesis, there exists a constant ρ′ > 0, such
that for all e ∈ E(H0), fe ≤ ρ′. Hence, the total flow through G (and through
H0) is r ≤ ρ′n+.

At the conceptual level, the proof proceeds as explained above. We
start with S0 = {u}. By hypothesis, the flow entering u is at most ρ′. By the
expansion property of good networks and by Chernoff bounds2, with high
probability, there are at least Pb(ϸ1)np/4 edges e adjacent to u with be ≤
ϸ1. At most half of these edges have flow greater than 8ρ′

Pb(ϸ1)np , thus there
are at least Pb(ϸ1)np/8 edges adjacent to u with latency, wrt g, less than
8Amaxρ′

Pb(ϸ1)np + ϸ1. We now let d1 = Bs +
8Amaxρ′

Pb(ϸ1)np + ϸ1 and S1 = {x ∈ V : ds(x) ≤ d1}.
By the discussion above, |S1| ≥ Pb(ϸ1)np/8.

We now inductively define a sequence of vertex sets Si and upper
bounds di on the latency of the vertices in Si from s, such that Si ⊆ Si+1

and di < di+1. This sequence stops the first time that |Γ(Si)| ≥ 3n/5. We
inductively assume that the vertex set Si and the upper bound di on the
latency of the vertices in Si are defined, and that |Γ(Si)| < 3n/5. By the
expansion property of good networks |Γ(Si) \ Si | ≥ np|Si |/3, for sufficiently
large n. Thus, with probability at least 1 − ePb(ϸ1/ lnn)np|Si |/24, there are at
least Pb(ϸ1

lnn)np|Si |/6 vertices outside Si that are connected to a vertex in Si
by an edge e with be ≤ ϸ1/ lnn. Let S′i be the set of such vertices, and let
Ei be the set of edges that for each vertex v ∈ S′i , includes a unique edge
e ∈ Ei with be ≤ ϸ1/ lnn connecting v to a vertex in Si. Since the flow g may
be assumed to be acyclic, a volume r ≤ ρ′n+ of flow is routed through the
cut (Si , V \ Si). Then, at most half of the edges in Ei have flow greater than

2We repeatedly use the following form of the Chernoff bound (see e.g., [48]): Let
X1, . . . , Xk be random variables independently distributed in {0,1}, and let X =

∑k
i=1 Xi .

Then, for all ϸ ∈ (0,1), Pr[X < (1 − ϸ)E[X]] ≤ e−ϸ
2 E[X]/2, where e is the basis of natural

logarithms.

5.5. EXTENDING THE SOLUTION TO THE GOOD NETWORK 93

2ρ′n+/|S′i |. Consequently, at least half of the vertices v ∈ S′i have latency
from s:

ds(x) ≤ di +
ϸ1

lnn
+ Amax

2ρ′n+

|S′i |

≤ di +
ϸ1

lnn
+

12Amaxρ′n+

Pb(ϸ1
lnn)np|Si |

Thus, we define the next latency upper bound di+1 in the sequence as:

di+1 = di +
ϸ1

lnn
+

12Amaxρ′n+

Pb(ϸ1
lnn)np|Si |

,

and we let Si+1 = {x ∈ V (G)|ds(x) ≤ di+1}. By the discussion above, and
using the inductive definition of Si ’s, we obtain that:

|Si+1| ≥
(

1
12Pb(ϸ1/ lnn)np + 1

)
|Si |

≥
(

1
12Pb(ϸ1/ lnn)np + 1

)i
|S1|

We recall that i∗ is the first index i such that |Γ(Si)| ≥ 3n/5. Then, the
inequality above implies that:

i∗ ≤
ln (3n/(5|S1|))

ln
(

1
12Pb(ϸ1/ lnn)np + 1

) ≤ ln (24n/(5Pb(ϸ1)np))

ln
(

1
12Pb(ϸ1/ lnn)np + 1

)
Using that pn ≥ lnn and that Pb(ϸ1/ lnn)np = ω(1), the inequality above
implies that i∗ ≤ lnn, for sufficiently large n.

Therefore, we obtain an upper bound on the latency from s of any vertex
in Si∗ :

di∗ ≤ d0 + i∗
ϸ1

lnn
+

i∗∑
i=1

12Amaxρ′n+

Pb(ϸ1
lnn)np|Si |

≤ d1 +
ϸ1

lnn
lnn +

lnn∑
i=1

12Amaxρ′n+

Pb(ϸ1
lnn)np

(
1
12Pb(

ϸ1
lnn)np + 1

)i
|S1|

= d1 + ϸ1 +
12Amaxρ′n+

Pb(ϸ1
lnn)np|S1|

lnn∑
i=1

(
1
12Pb(

ϸ1
lnn)np + 1

)−i
≤

(
Bs +

8Amaxρ′

Pb(ϸ1)np
+ ϸ1

)
+ ϸ1 +

96Amaxρ′n+

Pb(ϸ1
lnn)Pb(ϸ1)(np)2

∞∑
i=1

2−i

≤ Bs + 2ϸ1 +
8Amaxρ′

Pb(ϸ1)np
+

144Amaxρ′k

Pb(ϸ1
lnn)Pb(ϸ1)np

94 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

For the penultimate inequality, we use that Pb(ϸ1/ lnn)np = ω(1), which
implies that 1 + Pb(ϸ1/ lnn)np/12 ≥ 2, for n sufficiently large. For the
last inequality, we use that n+ ≤ 3knp/2, for some constant k > 0, by
hypothesis.

Moreover, we observe that probability that the above construction fails
is at most:

i∗∑
i=1

e−Pb(ϸ1/ lnn)np|Si |/24 ≤

i∗∑
i=1

e−(
1
12Pb(ϸ1/ lnn)np+1)i |S1 |/24

≤ lnn e−(
1
12Pb(ϸ1/ lnn)np+1)Pb(ϸ1)np/192

Therefore, the construction above succeeds with high probability.
Similarly, we start from T0 = {v}, and inductively define a sequence

of vertex sets T0 ⊆ T1 ⊆ · · · ⊆ Tj∗, and a sequence of upper bounds d′0 <
d′1 < · · · < d′j∗ on the latency from t of the vertices in each Tj. We let
Tj = {x ∈ V (G)|dt(x) ≤ d′j }. The sequence stops as soon as |Γ(Tj)| ≥ 3n/5
for the first time. Namely, j∗ is the first index with |Γ(Tj∗)| ≥ 3n/5. Using
exactly the same arguments, we can show that with high probability, we
have that j∗ ≤ lnn, and that:

d′j∗ ≤ Bt + 2ϸ1 +
8Amaxρ′

Pb(ϸ1)np
+

144Amaxρ′k

Pb(ϸ1
lnn)Pb(ϸ1)np

Wlog., we assume that Si∗ ∩ Tj∗ = ∅. Since |Γ(Si∗)| + |Γ(Tj∗)| ≥ 6n/5,
there are at least n/10 edge disjoint paths of length at most 2 between
Si∗ and Tj∗. Furthermore, by Chernoff bounds, with high probability, there
are at least Pb(ϸ1)2n/12 such paths with both edges e on the path having
be ≤ ϸ1. At most half of these paths have flow more than 2 12ρ′n+

Pb(ϸ1)2n and thus
there is a path from a vertex of Si∗ to a vertex of Tj∗ that costs at most
2ϸ1 + 2Amax

24ρ′n+

Pb(ϸ1)2n .
Putting everything together, we have that there is a path p′ that starts

from s, moves to u, goes through vertices of the sequence S1, . . . , Si∗, pro-
ceeds to a vertex of Γ(Si∗)∩Γ(Tj∗), and from there, continues through vertices
of the sequence Tj∗ , . . . , T1, until finally reaches v, and then t. The latency
of this path is:

dp′(g) ≤ Bs + Bt + 6ϸ1 + 2
(8Amaxρ′

Pb(ϸ1)np
+

48Amaxρ′k

Pb(ϸ1
lnn)Pb(ϸ1)np

)
+

48Amaxρ′n+

Pb(ϸ1)2n

We recall that since the flow g is a the minimizer of Pot(g), for any
g-used path p = (s, u, . . . , v, t), dp(g) ≤ dp′(g). Thus we obtain that any

5.5. EXTENDING THE SOLUTION TO THE GOOD NETWORK 95

g-used path p = (s, u, . . . , v, t) has latency

dp(g) ≤ Bs + Bt + 6ϸ1 + 2
(8Amaxρ′

Pb(ϸ1)np
+

48Amaxρ′k

Pb(ϸ1
lnn)Pb(ϸ1)np

)
+

48Amaxρ′n+

Pb(ϸ1)2n

Using the hypothesis that n+ ≤ 3knp/2, for constant k > 0, and that
Pb(ϸ1/ lnn)np = ω(1), which is condition (3), in the definition of good net-
works, we obtain that for any constant ϸ1 > 0, dp(g) ≤ Bs + Bt + 7ϸ1, for
sufficiently large n.

Grouping the Neighbors of s and t. Let us now consider the entire net-
work G and the entire subnetwork H0 of G0. Lemma 5.8 can be applied
only to subsets of edges in Es(H0) and in Et(H0) that have (almost) the same
latency under f . Hence, we partition the neighbors of s and the neighbors
of t into classes V i

s and V j
t according to their latency. For convenience, we

let ϸ2 = ε/6, i.e., f is an ϸ2-Nash flow, and L ≡ LH0(f). By Theorem 5.7,
applied with error ϸ2 = ε/6, there exists a ρ such that for all e ∈ E(H0),
0 < fe ≤ ρ + ϸ2. Hence, L ≤ 2Amax(ρ + ϸ2) + 2Bmax is bounded by a constant.

We partition the interval [0, L] into κ = dL/ϸ2e subintervals, where the
i-th subinterval is I i = (iϸ2, (i + 1)ϸ2], i = 0, . . . , κ − 1. We partition the
vertices of Vs (resp. of Vt) that receive positive flow by f into κ classes
V i
s (resp. V i

t), i = 0, . . . , κ − 1. Precisely, a vertex x ∈ Vs (resp. x ∈ Vt),
connected to s (resp. to t) by the edge ex = {s, x} (resp. ex = {x, t}), is in the
class V i

s (resp. in the class V i
t), if dex (fex) ∈ Ii. If a vertex x ∈ Vs (resp. x ∈ Vt)

does not receive any flow from f , x is removed from G and does not belong
to any class. Hence, from now on, we assume that all neighbors of s and
t receive positive flow from f , and that V 0

s , . . . V
κ−1
s (resp. V 0

t , . . . , V
κ−1
t) is a

partitioning of Vs (resp. Vt). In exactly the same way, we partition the edges
of Es (resp. of Et) used by f into k classes Eis (resp. Eit), i = 0, . . . , κ − 1.

To find out which parts of the subnetwork H0 will be connected through
the intermediate subnetwork of G, using the construction of Lemma 5.8,
we further classify the vertices of V i

s and V j
t based on the neighbors of t

and on the neighbors of s, respectively, to which they are connected by
f -used edges in the subnetwork H0. In particular, a vertex u ∈ V i

s belongs
to the classes V (i,j)

s , for all j ∈ {0, . . . , κ−1} such that there is a vertex v ∈ V j
t

with f{u,v} > 0. Similarly, a vertex v ∈ V j
t belongs to the classes V (i,j)

t , for all
i ∈ {0, . . . , κ − 1} such that there is a vertex u ∈ V i

s with f{u,v} > 0. We note
that a vertex u ∈ V i

s (resp. v ∈ V j
t) may belong to many different classes

V (i,j)
s (resp. to V (i,j)

t), and that the class V (i,j)
s is non-empty iff the class V (i,j)

t

is non-empty, i.e., non-empty classes V (i,j)
s and V (i,j)

t appear in pairs. We let
k ≤ κ2 be the number of pairs (i, j) for which V (i,j)

s and V (i,j)
t are non-empty.

We note that k is a constant, i.e., does not depend on |V | and r. We let E(i,j)
s

96 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

be the set of edges connecting s to the vertices in V (i,j)
s and E(i,j)

t be the set
of edges connecting t to the vertices in V (i,j)

t .
Building the Intermediate Subnetworks of G. The last step is to replace
the 0-latency simplified parts connecting the vertices of each pair of classes
V (i,j)
s and V (i,j)

t in H0 with a subnetwork of Gm. To this end, we randomly
partition the set Vm of intermediate vertices of G into k subsets, each
of cardinality (roughly) |Vm |/k, and associate a different such subset V (i,j)

m

with any pair of non-empty classes V (i,j)
s and V (i,j)

t . For each pair (i, j) for
which the classes V (i,j)

s and V (i,j)
t are non-empty, we consider the induced

subnetwork G(i,j) ≡ G[{s, t} ∪ V (i,j)
s ∪ V (i,j)

m ∪ V (i,j)
t], which is a (n/k, p,1)-good

network, by condition (4) in the definition of good networks, and because
G is a (n, p, k)-good network. Therefore, we can apply Lemma 5.8 to G(i,j),
with H (i,j)

0 ≡ H0[{s, t} ∪ V (i,j)
s ∪ V (i,j)

t] in the role of H0, the restriction f (i,j)

of f to H (i,j)
0 in the role of the flow f , and ρ′ = ρ + ϸ2. Moreover, we let

B(i,j)
s = maxe∈E(i,j)

s
de(fe) and B(i,j)

t = maxe∈E(i,j)
t
de(fe) correspond to Bs and Bt,

and introduce constant latencies d′e(x) = B(i,j)
s for all e ∈ E(i,j)

s and d′e(x) =

B(i,j)
t for all e ∈ E(i,j)

t , as required by Lemma 5.8. Thus, we obtain, with
high probability, a subnetwork H (i,j) of G(i,j) and a flow g(i,j) that routes as
much flow as f (i,j) on all edges of E(i,j)

s ∪ E(i,j)
t , and satisfies the conclusion

of Lemma 5.8, if we keep in H (i,j) the constant latencies d′e(x) for all e ∈
E(i,j)
s ∪ E

(i,j)
t .

The final outcome is the union of the subnetworks H (i,j), denoted H (H
has the latency functions of the original instance G), and the union of the
flows g(i,j), denoted g, where the union is taken over all k pairs (i, j) for which
the classes V (i,j)

s and V (i,j)
t are non-empty. By construction, all edges ofH are

used by g. We obtain lemma 5.9 by showing that if ϸ1 = ε/42 and ϸ2 = ε/6,
the flow g is an ε-Nash flow of (H, r), and satisfies LH(g) ≤ LH0(f) + ε/2.

Lemma 5.9. Let any ε > 0, let k = d12(Amax(ρ + ε) + Bmax)/εe2, let G(V, E)
be an (n, p, k)-good network, let r > 0, let H0 be any subnetwork of the
0-latency simplification of G, and let f be an (ε/6)-Nash flow of (H0, r)
for which there exists a constant ρ′ > 0, such that for all e ∈ E(H0),
0 < fe ≤ ρ′. Then, with high probability, wrt. the random choice of the
latency functions of G, we can compute in poly(|V |) time a subnetwork H
of G and an ε-Nash flow g of (H, r) with LH(g) ≤ LH0(f) + ε/2.

Proof. We consider the subnetworkH (with the original latency functions of
G), computed as the union of subnetworks H (i,j), and the flow g, computed
as the union of the flows g(i,j), where the union is taken over all k pairs
(i, j) for which the classes V (i,j)

s and V (i,j)
t are non-empty. We recall that by

construction, all edges of H are used by g. We show that if ϸ1 = ε/42

5.5. EXTENDING THE SOLUTION TO THE GOOD NETWORK 97

and ϸ2 = ε/6, the flow g is an ε-Nash flow of (H, r), and satisfies LH(g) ≤
LH0(f)+ε/2. We stress that the edge and path latencies here are calculated
with respect to the original latency functions of G and under the edge
congestion induced by the flow g (or the flow f).

For convenience, we let B(i,j) = B(i,j)
s + B(i,j)

t for any pair of non-empty
classes V (i,j)

s and V (i,j)
t . Since the difference in the latency of any edges

in the same group is at most ϸ2, we obtain that for any edge e ∈ E(i,j)
s ,

B(i,j)
s − ϸ2 ≤ de(fe) ≤ B

(i,j)
s , and similarly, that for any edge e ∈ E(i,j)

t , B(i,j)
t − ϸ2 ≤

de(fe) ≤ B
(i,j)
t . Therefore, since H0 is a 0-latency simplified network, and

since by hypothesis, all the edges of H0 are used by f , for any pair of non-
empty classes V (i,j)

s and V (i,j)
t , and for any s− t path p going through a vertex

of V (i,j)
s and a vertex of V (i,j)

t ,

B(i,j) − 2ϸ2 ≤ dp(f) ≤ B(i,j)

Moreover, since f is an ϸ2-Nash flow of (H0, r), for any s − t path p ∈ PH0,

LH0(f) − ϸ2 ≤ dp(f) ≤ LH0(f)

Combining the two inequalities above, we obtain that for any pair of non-
empty classes V (i,j)

s and V (i,j)
t ,

B(i,j) − 2ϸ2 ≤ LH0(f) ≤ B(i,j) + ϸ2 (5.6)

As for the flow g, by construction, we have that ge = fe for all edges
e ∈ Es ∪ Et. Therefore, for any edge e ∈ E(i,j)

s , B(i,j)
s − ϸ2 ≤ de(ge) ≤ B(i,j)

s ,
and similarly, for any edge e ∈ E(i,j)

t , B(i,j)
t − ϸ2 ≤ de(ge) ≤ B

(i,j)
t . Thus, by

Lemma 5.8, and since all the edges of any subnetwork H (i,j) are used by g,
for any s − t path p in the subnetwork H (i,j), B(i,j) − 2ϸ2 ≤ dp(g) ≤ B(i,j) + 7ϸ1.
Using that (5.6), we obtain that for any subnetwork H (i,j) and any s− t path
p of H (i,j),

LH0(f) − 3ϸ2 ≤ dp(g) ≤ LH0(f) + 2ϸ2 + 7ϸ1 (5.7)

Furthermore, we recall that the subnetworks H (i,j) only have in common
the vertices s and t, and possibly some vertices of Vs ∪ Vt and some edges
of Es ∪ Et. They have neither any other vertices in common, nor any edges
connecting vertices in the intermediate parts of different subnetworks H (i,j)

and H (i′,j′). Hence, any s−t path p of H passes through a single subnetwork
H (i,j). Therefore, and since by construction, all the edges and the paths of
H are used by g, (5.7) holds for any s − t path p of H.

Thus, we have shown that g is a (5ϸ2 +7ϸ1)-Nash flow of (H, r), and that
LH(g) ≤ LH0(f) + 2ϸ2 + 7ϸ1. Using ϸ2 = ε/6 and ϸ1 = ε/42, we obtain the
performance guarantees of g as stated in Lemma 5.9.

98 RESOLVING BRAESS’S PARADOX IN RANDOM NETWORKS

Chapter 6

Congestion Games with Risk Averse
Players

Congestion games ignore the stochastic nature of resource delays and the
risk-averse attitude of the players to uncertainty. To take these aspects
into account, we introduce two variants of atomic congestion games, one
with stochastic players, where each player assigns load to her strategy in-
dependently with a given probability, and another with stochastic edges,
where the latency functions are random. In both variants, the players are
risk-averse, and their individual cost is a player-specific quantile of their
delay distribution. We focus on parallel-link networks and investigate how
the main properties of stochastic congestion games depend on the risk
attitude and the participation probabilities of the players. In a nutshell,
we prove that stochastic congestion games on parallel-links admit an ef-
ficiently computable pure Nash equilibrium if the players have either the
same risk attitude or the same participation probabilities, and also admit a
potential function if the players have the same risk attitude. On the nega-
tive side, we present examples of stochastic games with players of different
risk attitudes that do not admit a potential function. As for the inefficiency
of equilibria, for parallel-link networks with linear delays, we prove that
the Price of Anarchy is Θ(n), where n is the number of stochastic players,
and may be unbounded, in case of stochastic edges.

6.1 Introducing the Models

In this chapter we generalize atomic congestion games. Recall that a (stan-
dard) atomic CG is the tuple G(N, E, (Si)i∈N , (de)e∈E). On the corresponding
sections we will get more specific on the generalization we do, by explicitly

99

100 CONGESTION GAMES WITH RISK AVERSE PLAYERS

defining the generalizing models.
In the technical part, we restrict our attention to symmetric conges-

tion games on parallel-link networks, where strategies are singletons and
there is a strategy for every resource. Since we mostly consider networks,
we use the terms ‘‘resource’’ and ‘‘edge’’ and ‘‘strategy’’ and ‘‘path’’ inter-
changeably.

6.2 Congestion Games with Stochastic Players

6.2.1 The Model

In Congestion Games with Stochastic Players, each player i is described by
a tuple (pi , δi), where pi ∈ [0,1] is the probability that player i participates
in the game, by assigning a unit of load to her strategy, and δi ∈

[1
2 ,1

]
is the

confidence level (or risk-aversion) of player i. Essentially, each player i is
associated with a Bernoulli random variable Xi that is 1 with probability pi,
and 0 with probability 1−pi. Then, the load of each edge e in a configuration
s is the random variable Ne(s) =

∑
i:e∈si Xi , and the cost of a strategy q in s

is the random variable Dq(s) =
∑
e∈q de(Ne(s)).

Given that player i participates in the game, the delay of player i in s is
given by the random variable:

Di(s) =
∑
e∈si

de

1 +
∑

j,i: e∈sj

Xj

 .
Note that when Xi = 1, Di(s) = Dsi (s).

The (risk-averse) individual cost ci(s) perceived by player i in s is the
δi-quantile (or value-at-risk) of Di(s). Formally, ci(s) = min{t : Pr[Di(s) ≤
t] ≥ δi}. We note that for parallel-link networks, the (risk-averse) individual
cost of the players can be computed efficiently. PNE are defined as before,
but with respect to the risk-averse individual cost of the players.

Depending on whether players have the same participation probabili-
ties pi and/or the same confidence levels δi, we distinguish between four
classes of congestion games with stochastic players:

• homogeneous, where all players have the same participation proba-
bility p and confidence level δ.

• p-homogeneous, where all players have the same participation prob-
ability p, but may have different confidence levels.

6.2. CONGESTION GAMES WITH STOCHASTIC PLAYERS 101

• δ-homogeneous, where all players have the same confidence level δ,
but may have different participation probabilities.

• heterogeneous, where both the participation probabilities and the
confidence levels may be different.

6.2.2 Stochastic Players on Parallel Links: Existence and Computa-
tion of PNE

In the following, we restrict ourselves to Congestion Games with Stochastic
Players on parallel-link networks, and investigate the existence and the
efficient computation of PNE for the four cases considered above.
Homogeneous Stochastic Players. If the players are homogeneous, stochas-
tic congestion games on parallel-links are equivalent to standard conges-
tion games on parallel-links (but with possibly different latencies), because
the (risk-averse) individual cost of each player in a configuration s depends
only on the link e and its congestion se.

Theorem 6.1. Congestion Games with Homogeneous Stochastic Players
on parallel-link networks admit an exact potential function. Moreover, a
pure Nash equilibrium can be computed in polynomial time.

Proof. The existence of a potential function implies the existence of equi-
librium. Rosenthal’s potential function ([73]) suites this case as players,
under any configuration, perceive exactly the same cost on any edge e, a
cost that depends only on the number of players on e.

Formally, let p and δ denote the common pi ’s and δi ’s of the players,
and for each edge e, define a function fe : IN→ IR with

fe(r) =

 0, if r = 0

min
{
t : Pr

[
de

(
1 +

∑r−1
i=1 Yi

)
≤ t

]
≥ δ

}
, if r > 0.

where for all i ∈ [r], Yi is a Bernoulli random variable (independent of
others) with probability of success p. Observe that for any configuration s
and any player i with si = e, we have ci(s) = fe(se).

Defining

Φ(s) =
∑
e

se∑
i=1

fe(i),

it is easy to verify that it is an exact potential function as for any player i
and any two configurations s, s′ such that s−i = s′−i, si = e and s′i = e′

Φ(s) − Φ(s′) = fe(se) − fe′(se′ + 1) = ci(s) − ci(s′).

102 CONGESTION GAMES WITH RISK AVERSE PLAYERS

In order to polynomially compute a PNE, we can simply use a Greedy
Best Response algorithm. We insert the players in the game, one by one,
and the player just inserted does a best response move. Each such move
can be computed in time O(m + i2), where i is the number of players in
the game so far, as for each edge e, the cumulative distribution function of
De(s) can be computed via dynamic programming. One can easily verify,
by induction, that on any round of this procedure, the players are in a
PNE. Consequently, we get a PNE when the procedure terminates. Using
memoization to avoid recalculations, the total time needed is O(n · m +

n2).

p-Homogeneous Stochastic Players. In this case, a stochastic game is
equivalent to a congestion game on parallel links with player-specific pay-
offs [63], as the (risk-averse) individual cost of each player in a configura-
tion s depends only on the link e, its congestion se, and i ’s confidence level
δi. Thus, we obtain:

Corollary 6.2. Congestion Games with p-Homogeneous Stochastic Players
on parallel-link networks admit a PNE. Moreover, a PNE can be computed
in polynomial time.

Milchtaich [63] proved that a parallel-link congestion game with gen-
eral player-specific payoffs may not admit a potential function. In our
case however, the players’ individual costs are correlated with each other,
as for any edge, there is a common distribution on which they depend.
Nevertheless, we next show that parallel-link games with p-homogeneous
stochastic players and linear latencies may not admit a potential function.

Theorem 6.3. There are Congestion Games with p-Homogeneous Stochas-
tic Players on parallel-link networks with linear delays that do not admit a
potential function.

Proof. It suffices to show that there is an infinite improvement cycle, i.e.
an infinite sequence of deviations for which each deviating player perceives
less cost. We will modify Milchtaich’s counter-example ([63]) to fit our case.
Since players have the same probability of participation p, the load on each
edge e that player i considers is a binomial distribution:

∑
j,i: e∈sj Xj.

Fix p = 0.75, and consider three edges, e1, e2 and e3, and three players
that will deviate, with δ1 = 0.75, δ2 = 0.58 and δ3 = 0.6. Also, assume
that there are n1 = 25 extra players on e1, n2 = 20 extra players on e2

and n3 = 9 extra players on e3. The latency functions of the edges are:
f1(k) = 3k + 71, f2(k) = 6k + 33 and f3(k) = 15k + 1.

6.2. CONGESTION GAMES WITH STOCHASTIC PLAYERS 103

In the following, an infinite better response cycle is described, consist-
ing of six different configurations that interchangeably follow one another:

e1 e2 e3

i {1,2} {3}
ii {1,2} {3}
iii {2} {1,3}
iv {2} {1,3}
v {2,3} {1}
vi {1} {2,3}
{1,2} {3}

We will only write down (as a 3-dimensional vector, corresponding to
players 1, 2 and 3) what load do the three players perceive on the edge they
use in each step (exluding themselves):

i. (21, 20, 16)

ii. (21, 20, 7)

iii. (8, 19, 8)

iv. (8, 15, 8)

v. (8, 16, 16)

vi. (20, 16, 16)

The existence of the above infinite improvement cycle forbids the existence
of any potential function.

δ-Homogeneous Stochastic Players. In this case, players have the same
confidence level δ, but the participation probability pi of each player i may
be different. We next show how to efficiently compute a PNE in parallel-
link networks. Specifically, we describe the p-Decreasing Greedy Best
Response algorithm, or pDGBR in short, and show that it always results
in a PNE:

• Sort players in non-increasing order of their pi ’s.

• Insert one player at a time, according to the previous order, to the
edge that corresponds to her best response move.

• Repeat until all players are inserted.

104 CONGESTION GAMES WITH RISK AVERSE PLAYERS

Theorem 6.4. The pDGBR procedure computes a PNE for Congestion
Games with Stochastic δ-Homogeneous Players on parallel-link networks
with general latecy functions in time O(n ·m + n2).

Proof. The proof comes by induction on the number of players. The induc-
tion hypothesis is that before the next insertion we are at a PNE.

Assume that we are in the middle of the procedure, in a PNE, and player
i has just chosen edge e. Players on other edges do not deviate because
the only edge changed is e and it got an extra player. What remains to
prove is that players on e do not deviate.

Let k be a player on e, inserted in a previous step (pk ≥ pi). In order to
show that k doesn’t deviate, it suffices to show that after step i, say under
configuration s (with si = sk = e), we have that ck(s) ≤ ci(s) , as edge e is
a best response strategy for player i and the cost that i and k perceive on
any other edge is the same.

Consider ck(s) and ci(s). We have:

ck(s) = min
{
t : Pr

[
de

(
1 + Xi +

∑
j,i,k:sj=e

Xj
)
≤ t

]
≥ δ

}
,

ci(s) = min
{
t : Pr

[
de

(
1 + Xk +

∑
j,i,k:sj=e

Xj
)
≤ t

]
≥ δ

}
.

Since pk ≥ pi, for any r ∈ IN:

Pr
[
Xk +

∑
j,i,k: sj=e

Xj ≤ r
]

= Pr
[∑
j,i,k: sj=e

Xj ≤ r
]
− Pr

[∑
j,i,k: sj=e

Xj = r
]
· pk

≤ Pr
[∑
j,i,k: sj=e

Xj ≤ r
]
− Pr

[∑
j,i,k: sj=e

Xj = r
]
· pi

= Pr
[
Xi +

∑
j,i,k: sj=e

Xj ≤ r
]
.

Thus, since de ’s are non decreasing,

Pr
[
de

(
1 + Xk +

∑
j,i,k: sj=e

Xj
)
≤ de(r + 1)

]
≤ Pr

[
de

(
1 + Xi +

∑
j,i,k: sj=e

Xj
)
≤ de(r + 1)

]
and so ck(s) ≤ ci(s), as needed.

The total time needed for the procedure is O(n ·m +n2), as at each step
i, the computations for the newly inserted player take O(m + i2) time and
we can use memoization to avoid recalculations.

We can also show that games in this class admit a potential function,
which can be thought of as a generalized lexicographic potential function
in two dimensions.

6.2. CONGESTION GAMES WITH STOCHASTIC PLAYERS 105

Theorem 6.5. Congestion Games with Stochastic δ-Homogeneous Players
on parallel-link networks are potential games.

Proof. We will define a two dimensional lexicographic potential function.
For that, we define, for each edge e and configuration s, a two dimensional
vector ve,s and a total order on these vectors. Right after, for s, we define
a vector ws that as components has exactly the vectors {ve,s}e∈E ordered
increasingly (with the usual vector ordering). Any improvement step that
turned the configuration from s to s′ is such thatws < ws′. Any strictly de-
creasing function on vectors ws works as (generalized) potential. Technical
details follow.

Let ce(s) = min
{
t : Pr

[
de(1 + Ne(s)) ≤ t

]
≥ δ

}
be the outside δ-cost of

edge e under s, i.e. the cost that any player not in e computes for e when
she considers moving to e. We have

ce(s) = ci(s−i , e), ∀i : si , e (6.1)

ce(s) ≥ ci(s), ∀i : si = e. (6.2)

Let ve,s =
(
ce(s), se

)
and consider the standard ordering on these pairs:

• (x1, y1) < (x2, y2) iff x1 < x2 or (x1 = x2 and y1 < y2).

• (x1, y1) = (x2, y2) iff x1 = x2 and y1 = y2.

• (x1, y1) > (x2, y2) otherwise.

For a configuration s, let ws be the vector that consists of the pairs {ve,s}e∈E
in increasing order. We are going to show that after an improving step, the
new configuration s′ is such that ws < ws′.

Assume that player i did an improvement step by moving from e to
e′ and let s be the configuration with si = e and s′ the configuration with
s′i = e′. Player i deviated because ci(s) > ci(s′). It is ci(s′) = ci(s−i , e′) = ce′(s)
and, by (6.2), ce(s) ≥ ci(s). So, we get ce(s) > ce′(s), which implies that

ve′,s < ve,s.

Thus, if we consider the coordinates of ws, we know that ve,s is after ve′,s
and so in order to show ws < ws′, it suffices to show that ve′,s < ve′,s′
(inequality 6.3) and ve′,s < ve,s′ (inequality 6.4).

By the improving step, the only pairs that changed are ve,s and ve′,s. In
fact, it is se > s′e and se′ < s′e′ and it might be ce(s) > ce(s′) or ce′(s) < ce′(s′).
Whichever is the case, we have:

ve′,s < ve′,s′ (6.3)

106 CONGESTION GAMES WITH RISK AVERSE PLAYERS

Because i did an improving step to e′ and by si , e′ and (6.1) we get
ci(s) > ci(s−i , e′) = ce′(s). Also, by s′i , e and (6.1) we get ci(s) = ci(s′−i , e) =

ce(s′). Thus, ce′(s) < ce(s′) and

ve′,s < ve,s′ (6.4)

Let Φ be any strictly decreasing function on ws. Clearly, for any con-
figuration s, any edges e, e′ and any player i it is

ci(s−i , e) − ci(s−i , e′) > 0⇒ Φ(s−i , e) − Φ(s−i , e′) > 0

and thus Φ is a generalized potential.

6.2.3 Price of Anarchy for Games with Affine Latencies

In Stochastic Congestion Games with Stochastic Players, the social cost
of a configuration s is defined as C(s) = E

[∑
i∈NXiDi(s)

]
, as this seems to

be the most natural generalization of the definition of the Social Cost in
standard atomic CGs.

Letting o denote an optimal configuration, i.e. c(o) = mins{C(s)}, the

Price of Anarchy is formally defined as PoA = max
{
C(s)
C(o) : s is a PNE

}
.

In the following we convert C(s) to a more convenient form and right
after we give upper and lower bounds on the PoA for games with affine la-
tency functions as the expected values related to the random distributions
de(Ne(s)) for general latency functions are hard to handle.

As already noted, Di(s) = Dsi (s) with Xi = 1, and so Xi ·Di(s) = Xi ·Dsi (s).
Thus,

C(s) = E
[∑

i∈NXi · Dsi (s)
]

=
∑
e E

[
Ne(s) · de(Ne(s))

]
.

For affine latency functions of the form de(k) = aek + be, it is

C(s) =
∑
e

E
[
Ne(s)·

(
aeNe(s)+be

)]
=

∑
e

[
ae

(
E[Ne(s)]2+Var[Ne(s)]

)
+beE[Ne(s)]

]
.

Theorem 6.6. Congestion Games with Stochastic Players and affine la-
tency functions on parallel-link networks have PoA = O(n).

Proof. Let de(k) = aek + be denote the latency of an edge e. Two things
should be pointed out for the proof.

i) The costs that players perceive on each edge is almost at least as large
as it would be if they were considering as load the expectation of other
players on each edge plus themselves, i.e. ci(s) ≥ aeE[

∑
j: e=sj Xj] − ae + be,

for any s and i : si = e.

6.2. CONGESTION GAMES WITH STOCHASTIC PLAYERS 107

This is the case as, if we assume that edges have affine delay functions,
de(k) = aek + be, then the cost that player i perceives for edge e under a
configuration s with si = e is

ci(s) = min
{
t |Pr

[
de

(
1 +

∑
j,i: e=sj

Xj
)
≤ t

]
≥ δi

}
= min

{
t |Pr

[
ae

(
1 +

∑
j,i: e=sj

Xj
)

+ be ≤ t
]
≥ δi

}
= ae

(
1 + min

{
t |Pr

[∑
j,i: e=sj

Xj ≤ t
]
≥ δi

})
+ be.

For the median and the mean of the random variable
∑
j,i: e=sj Xj it is (see

e.g [80]) ∣∣∣∣∣E[
∑

j,i: e=sj

Xj] −min
{
t |Pr

[∑
j,i: e=sj

Xj ≤ t
]
≥ 1/2

}∣∣∣∣∣ ≤ 1.

Thus, for player i : si = e,

ci(s) ≥ ae
(
1 + min

{
t |Pr

[∑
j,i: e=sj

Xj ≤ t
]
≥ 1/2

})
+ be

≥ aeE[
∑

j,i: e=sj

Xj] + be ≥ aeE[
∑
j: e=sj

Xj] − ae + be

ii) At equilibrium, all players on the used edges perceive a cost not
greater than n(a + b), where a + b = mine{ae + be}.

This is the case, or else a player that perceives a greater cost would
have an incentive to deviate to the edge e with de(k) = ak + b.

To prove the theorem, let f be a Nash equilibrium and o be an optimal
configuration. We wish to bound the cost of f , C(f), by a factor of the form
n · C(o).

Denote Fe ≡ Ne(f) and Oe ≡ Ne(o). We have

C(f) =
∑
e

(
ae

(
E[Fe]2 + Var[Fe]

)
+ beE[Fe]

)
=

∑
e

E[Fe]
(
aeE[Fe] + be + ae

Var[Fe]
E[Fe]

)
≤

∑
e

E[Fe]
(
cmax + ae + ae

Var[Fe]
E[Fe]

)
≤ 3

∑
e

E[Fe]cmax .

where cmax is the greatest cost that a player perceives under f . The in-
equalities follow from point (i) above, cmax ≥ ae for all e under use and
Var[Fe]
E[Fe] ≤ 1.

108 CONGESTION GAMES WITH RISK AVERSE PLAYERS

From point (ii) above, with a + b = mine{ae + be}, we get that

C(f) ≤ 3cmax
∑
e

E[Fe] ≤ 3n(a + b)
∑
e

E[Fe] = 3n(a + b)
∑
i∈N

pi

= 3n(a + b)
∑
e

E[Oe] ≤ 3n
∑
e

E[Oe](ae + be)

≤ 3n
∑
e

E[Oe]
(
ae

E[Oe]2 + Var[Oe]
E[Oe]

+ be
)

= 3nC(o).

The last inequality follows by E[Oe]2+Var[Oe]
E[Oe] =

E[O2
e]

E[Oe] ≥ 1.

Next, we give a class of fully symmetric games with stochastic players,
on singleton strategies and linear latency functions, that has PoA = Ω(n).

Theorem 6.7. There are Congestion Games with Homogeneous Players
that have PoA = Ω(n).

Proof. Let k ∈ N. Consider the parallel links game with n players and
k + 1 edges. The first edge, e1, has delay function d1(x) = x and the
others, e2, . . . , ek+1, have dj(x) = (n − k)x, j = 2, ..., k + 1. Players play with
(common) probability p and are fearful, i.e. all of them have δ = 1, and so
they consider that all players on their edge use it.

Let f be the configuration where n − k players are on e1 and the other
k players are one on each of the k remaining edges. This is a PNE, since
each player perceives a cost of n − k.

All edges {ei}i=1...k+1 have bei = 0. So, the social cost of f is

C(f) =
∑
e

[
ae(E[Ne(f)]2 + Var[Ne(s)])

]
For e1 it is: ae1(E[Ne1(f)]2 + Var[Ne1(s)]) = (n − k)2p2 + (n − k)p(1 − p)
For all e ∈ {ei}i=2...k+1 it is: ae(E[Ne(f)]2 + Var[Ne(s)]) = p(n − k).
So

C(f) = (n − k)2p2 + (n − k)p(1 − p) + kp(n − k).

Now let configuration o be the one in which every player plays e1. It is

C(o) = n2p2 + np(1 − p)

So, for k = n
2 and p = 1

n

PoA ≥
C(f)
C(o)

=
(n − k)2p2 + (n − k)p(1 − p) + kp(n − k)

n2p2 + np(1 − p)
=

1
2

+
n − 1
8 − 4

n

= Ω(n),

as needed.

6.3. CONGESTION GAMES WITH STOCHASTIC EDGES 109

6.3 Congestion Games with Stochastic Edges

6.3.1 The Model

In Congestion Games with Stochastic Edges, players are deterministic,
i.e. they always participate in the game and are represented only by their
confidence levels δi. On the other hand, edges have a stochastic behavior.
For an edge e, its latency function is an independent random variable:

de(k) =

{
fe(k), with probability 1 − pe
ge(k), with probability pe.

The cost of an edge e with load k is: Xe(k) = (1−pe) · fe(k)+pe ·ge(k) and the
cost of a player i with strategy si, is the random variable: Di(s) =

∑
e∈si Xe(se)

The cost that player i perceives is: ci(s) = min
{
t | Pr

[
Di(s) ≤ t

]
≥ δi

}
and the social cost of a configuration s is defined as: C(s) = E

[∑
i∈N Di(s)

]
,

i.e. similar to the stochastic players case.
Classes of congestion games. Here we only define two classes of conges-
tion games with stochastic edges:

• homogeneous, where all players have the same δi ’s.

• heterogeneous, where players may have different δi ’s.

The class of congestion games with stochastic edges and homogeneous
players boils down to the class of potential games, while the class of con-
gestion games with stochastic edges and heterogeneous players boils down
to the class of congestion games with player specific cost functions ([63]).

6.3.2 Stochastic Edges on Parallel Links: Existence and Computa-
tion of PNE

In the following, we restrict ourselves to Congestion Games with Stochastic
Edges on parallel-link networks, and investigate the existence and the
efficient computation of PNE for the two cases considered above.
Homogeneous Stochastic Players. If the players are homogeneous, stochas-
tic congestion games on parallel-links are equivalent to standard conges-
tion games on parallel-links (but with possibly different latencies), because
the (risk-averse) individual cost of each player in a configuration s depends
only on the link e and its congestion se.

110 CONGESTION GAMES WITH RISK AVERSE PLAYERS

Theorem 6.8. Stochastic Congestion Games with Stochastic Edges and
Homogeneous Players on parallel-link networks are potential games. More-
over, a PNE can be computed in time O(n ·m).

Proof. Recall that Di(s) =
∑
e∈si Xe(se) and the cost that players perceive is

ci(s) = min
{
t | Pr

[
Di(s) ≤ t

]
≥ δi

}
and observe that since players have the

same δ, the cost that any player i perceives on edge e when there are se
players in total on edge e is the same for all i, and equal to:

ce(se) =

{
fe(se), if 1 − pe ≥ δ
ge(se), otherwise

We now define the standard potential function:

Φ(s) =
∑
e

se∑
j=1

ce(s)

It is easy now to verify that the above function is indeed an exact po-
tential function. Observe that there is no restriction for pe, fe(n) and ge(n).

Regarding the computation of a PNE, we can again use a standard
Greedy Best Response algorithm. We insert the players in the game, one
by one, and the player just inserted does a best response move. Since all
players perceive the same costs, it is clear that at each step we have a PNE,
and so, when the procedure terminates, we are still in a PNE. As for the
time needed, at each step the calculation of the best response move takes
time O(m), and so the total time needed is O(n ·m).

Heterogeneous Stochastic Players. In this case, a stochastic game is
equivalent to a congestion game on parallel links with player-specific pay-
offs [63], as the (risk-averse) individual cost of each player in a configura-
tion s depends only on the link e, its congestion se, and i ’s confidence level
δi. Thus, we obtain:

Corollary 6.9. Congestion Games with Heterogenous Stochastic Players
and Stochastic Edges on parallel-link networks admit a PNE. Moreover, a
PNE can be computed in polynomial time.

In ([63]) it is proved that congestion games with player specific payoff
functions always possess a PNE. We now prove that the class of Congestion
Games with Stochastic Edges does not admit any kind of potential, even if
we restrict ourselves to affine latency functions.

Theorem 6.10. There is no potential function for the class of Congestion
Games with Stochastic Edges and deterministic risk-averse players.

6.3. CONGESTION GAMES WITH STOCHASTIC EDGES 111

Proof. We consider 3 players and 3 links, with the same ‘‘failure" probabil-
ities. The latency functions are:

f1(k) =

{
3k + 21, with probability 0.8
5k + 22, with probability 0.2

f2(k) =

{
6k + 16, with probability 0.8
22k + 5, with probability 0.2

f3(k) =

{
k + 24, with probability 0.8
25k + 1, with probability 0.2

Players 1 and 2 have confidence level δ1 = δ2 = 0.7 and player 3 has
confidence level δ3 = 0.9. We now construct the following cycle:

e1 e2 e3

{1,2} {3}
{1,2} {3}
{2} {1,3}

{2} {1,3}
{2,3} {1}

{1} {2,3}
{1,2} {3}

One can verify that this is a better response cycle and thus no potential
function exists.

6.3.3 Price of Anarchy

The risk aversion of the players combined with their selfish behavior may
give unlimited degradation to the network.

Theorem 6.11. There are Stochastic Congestion Games with Stochastic
Edges that have unbounded PoA.

Proof. We will use a simple network with two parallel edges and two play-
ers:

f1(k) =

{
ak + 1, with probability 0.50 + ϸ
Ak + 1, with probability 0.50 − ϸ,

f2(k) = 2ak + 1 + ϸ,with probability 1.

(Assume that ϸ < 1/2.)
Both players have confidence level δ1 = δ2 = δ = 0.5. We assume that

A > 2a. As a result, both players ‘‘see" the good part of edge e1, and so

112 CONGESTION GAMES WITH RISK AVERSE PLAYERS

they both prefer it. Let s = (e1, e1) be the configuration vector of the PNE.
The social cost of s is C(s) = 2[(2a + 1)(0.5 + ϸ) + (2A + 1)(0.5 − ϸ)], while
an optimal configuration is o = (e2, e2) with social cost C(o) = 2(4a + 1 + ϸ).
We have:

PoA =
C(s)
C(o)

=
2[(2a + 1)(0.5 + ϸ) + (2A + 1)(0.5 − ϸ)]

2(4a + 1 + ϸ)

=
(2a + 1)(0.5 + ϸ)

4a + 1 + ϸ
+

(2A + 1)(0.5 − ϸ)
4a + 1 + ϸ

≥
(0.5 − ϸ)(2A + 1)

4a + 1 + ϸ

≥
(0.5 − ϸ)2A
4a + 1 + ϸ

≥
(0.5 − ϸ)A

2a + 1

Thus, PoA → ∞, if (0.5−ϸ)A
2a+1 → ∞ (e.g. ϸ < 0.4 and A

2a+1 → ∞).

Chapter 7

Improving Selfish Routing through Risk
Aversion

In this chapter, we investigate how and to which extent one can exploit
risk-aversion and modify the perceived latencies of the players so that the
Price of Anarchy (PoA) wrt. the total latency of the players is improved.
The starting point is to introduce some small (and carefully selected) ran-
dom perturbations to the edge latencies so that the expected latency does
not change, but the perceived cost of the players increases, due to risk-
aversion. To provide a simple and general theoretical model of this behav-
ior, we introduce γ-modifiable routing games where the latency function
of each edge e can increase from `e(x) to (1 + γe)`e(x), for some selected
γe ∈ [0, γ]. For γ-modifiable games in parallel-links and in series-parallel
networks, we fully characterize the values of γ for which γ-bounded latency
modifications can decrease the PoA to 1. Moreover, we show how to (effi-
ciently) compute a set of γ-bounded latency modifications so that the PoA
of the resulting game improves significantly as γ increases. E.g., for linear
latencies, the resulting PoA is at most max{1, (1 − (1 − γ)2/4)−1}. We prove
that our PoA analysis is tight, even for two parallel links, and also dis-
cuss the difficulty of extending our characterization and our construction
to general networks.

7.1 Introducing γ-modifiable CGs

In order to introduce γ-modifiable CGs, we first discuss how (typically
small) random perturbations in the edge latencies can be performed so
that the expected latency does not change, but the latency perceived by
the players increases, due to risk aversion. E.g., let us consider an edge e

113

114 IMPROVING SELFISH ROUTING THROUGH RISK AVERSION

with latency function de(x) where we can increase the latency temporarily
up to (1 + α1)de(x) and decrease it temporarily (and for relatively short
time intervals) up to (1− α2)de(x). If we implement the former change with
probability p1 and the latter with probability p2 < 1 − p1 (the probabilities
here essentially correspond to proportions of time in which e operates in
each state), the latency function of e in a given time step is a random
variable `e(x) with expectation:

E[`e(x)] = [p1(1 + α1) + p2(1 − α2) + (1 − p1 − p2)]de(x)

Adjusting p1 and p2 (and possibly α1 and α2) so that p1α1 = p2α2, we have
E[`e(x)] = de(x), i.e., for any given flow, the expected delay through e does
not change. On the other hand, if the players are risk-averse and their
individual cost is given by an (1 − p1 + ε)-quantile of the delay distribution
(e.g., as in [68, 6]), for some ε > 0, the latency perceived by the players
on e is (1 + α1)de(x). Similarly, if the individual cost of the risk-averse
players are given by the expectation plus the standard deviation of the
delay distribution (e.g., as in [67]), the latency perceived by the players
on e is (1 +

√
p1α2

1 + p2α2
2)de(x). In both cases, we can have a significant

increase in the latency perceived by the risk-averse players on e, while the
expected latency remains unchanged. A similar result could be achieved
with any latency distribution on e (possibly more sophisticated and with
larger support), as long as its expectation is de(x).

In most practical situations, the increase and, especially, the decrease
in the latency functions that can be implemented are bounded (and rel-
atively small). The same is particularly true for the proportion of time
in which an edge can operate in an ‘‘abnormal’’ state of increased or de-
creased latency. Combined with the formula providing the individual cost
of the risk-averse players, these factors determine an upper bound γe on
the multiplicative increase of the latency perceived by the players on each
edge e. Thus, motivated by such considerations, we introduce the so-called
γ-modifiable selfish routing games as a simple and general abstraction of
how one can exploit risk-aversion towards improving the PoA of selfish
routing.
γ-Modifiable Routing Games. A selfish routing game G = (G, d, r) is γ-
modifiable if for each edge e ∈ G, we can choose a γe ∈ [0, γ] and change the
edge latency functions perceived by the players from de(x) to (1+γe)de(x) by
small random perturbations, as discussed above. Any vector Γ = (γe)e∈E,
where γe ∈ [0, γ] for each edge e, is called a γ-modification of G. Given
a γ-modification Γ, we let GΓ denote the γ-modified routing game GΓ =

(G, (1+Γ)d, r), with a latency function (1+γe)de(x) on each edge e, obtained
from G. To simplify notation, we sometimes write GΓ, instead of GΓ.

7.1. INTRODUCING γ-MODIFIABLE CGS 115

Given a flow f , the latency perceived by the players on a path p in GΓ

is calculated wrt the modified latencies and is equal to dΓ
p (f) =

∑
e∈p(1 +

γe)de(fe) 1. A flow f is a Nash flow for the modified game, if it routes all
traffic on minimum perceived latency paths, i.e., if for every path p with
fp > 0, and every path p′, dΓ

p (f) ≤ dΓ
p′(f). Again, to simplify notation, we

usually write dp(f), instead of dΓ
p (f), as long as it is clear from the context

that the path latencies are wrt. the modified game GΓ.
Given a routing game G, we say that a flow f is γ-enforceable, or simply

enforceable, if there exists a γ-modification Γ of G such that f is a Nash
flow of GΓ.

We always assume that γ-modifications keep the expected latency func-
tions unchanged. Since for any flow f , the expected latency of any edge e
in GΓ is equal to the latency of e in G under f , the (expected) total latency
of f in both GΓ and G is equal to C(f) =

∑
e∈E fede(fe). Hence, the optimal

flow o of G is also an optimal flow of GΓ.
The Price of Anarchy PoA(GΓ) of the modified game GΓ is equal to

C(f)/C(o), where f is the Nash flow of GΓ. For a γ-modifiable game
G, the Price of Anarchy of G under γ-modifications, denoted PoAγ(G),
is the best PoA that we can achieve by some γ-modification. Formally,
PoAγ(G) = min{PoA(GΓ)|Γ is a γ-modification of G}. For routing games with
cost functions in a class D, PoAγ(D) denotes the maximum PoAγ(G) over
all γ-modifiable games G with latency functions in class D.
Connection to Marginal-Cost Tolls. A sufficient condition for the optimal
flow to be γ-enforceable can be obtained through optimal marginal-cost
tolls, that assign an additive toll of oed′e(oe) to any edge e (see e.g., [77]).

Proposition 8. Let o be the optimal flow of a γ-modifiable instance G. If for
all links e with oe > 0, oed′e(oe)

de(oe) ≤ γ, then o is γ-enforceable in G.

Proof. For each edge e with oe > 0 (and thus, with de(oe) > 0), we let
γe =

oed′e(oe)
de(oe) , while for each edge e with oe = 0, we let γe = 0. By hypothesis,

this defines a γ-modification Γ of G. Moreover, if we change the latency
functions of G from de(x) to de(x) + xd′e(x) = (1 + γe)de(x), for all edges e,
[77, Cor. 2.4.6] implies that the optimal flow o of G is a Nash flow of the
modified game GΓ.

1To simplify the model and make it easily applicable to general networks, we make
the convenient assumption that the latency modifications (and the resulting individual
costs of the players) are separable, although most common notions of individual cost for
risk-averse players result in non-separable costs (see e.g., [72, 68, 67, 6], but see also
[71], where the simplifying assumption of independence among randomized schedulers
of different edges also implies the separability of individual costs). The separable costs
assumption only affects the extension of our results to series-parallel networks.

116 IMPROVING SELFISH ROUTING THROUGH RISK AVERSION

Proposition 8 demonstrates that our approach is applicable to any rout-
ing game. Moreover, if G has polynomial latency functions of degree d,
then the optimal flow is γ-enforceable for any γ ≥ d. However, Proposi-
tion 8 only provides a necessary condition and does not fully characterize
the class of γ-modifiable routing games for which the optimal flow is en-
forceable (see also Section 7.2). Thus, we develop, in the next sections,
a complete characterization of γ-modifiable routing games in parallel-link
and in series-parallel networks with γ-enforceable optimal flows.

7.2 Modifying Routing Games in Parallel-Link Networks

We proceed to study γ-modifiable instances in parallel-link networks. We
first deal with the question of characterizing the γ-modifiable instances
where we can enforce the optimal flow. Then, we provide matching upper
and lower bounds on the PoAγ for γ-modifiable instances where the optimal
flow is not enforceable. We also show how to compute γ-modifications that
guarantee these PoAγ bounds.

We note that the converse of Proposition 8 is not necessarily true. E.g.,
let us consider a 1

2-modifiable instance G on 2 parallel links with d1(x) =

x, d2(x) = x + 2 and r = 3. The optimal flow is o = (2,1), and thus,
enforceable in G. On the other hand, the ratios of the marginal cost tolls
to the optimal latencies are 1 and 1/4, for links 1 and 2, respectively.
Hence, Proposition 8 only ensures that the optimal flow is enforceable if
G is 1-modifiable. Therefore, we proceed to develop a characterization of
γ-modifiable games for which the optimal flow is enforceable.

Theorem 7.1. Let G be a γ-modifiable game on parallel links and let o be
the optimal flow of G. The following are equivalent:

(i) o is γ-enforceable in G.
(ii) for all links e, e′ ∈ E with oe > 0, de(oe) ≤ (1 + γ)de′(oe′).

Proof. (i)→ (ii): Let Γ = (γe)e∈E be a γ-modification that makes o the Nash
flow of GΓ and consider a pair of edges e and e′. Assume w.l.o.g. that
de′(oe′) ≤ de(oe) and oe > 0. Flow o is a Nash flow in the modified network
and thus (1 + γe)de(oe) ≤ (1 + γe′)de′(oe′) which directly implies

de(oe) ≤ (1 + γe)de(oe) ≤ (1 + γe′)de′(oe′) ≤ (1 + γ)de′(oe′)

(ii) → (i): Assume that for any pair of edges e and e′, if oe > 0 then
de(oe) ≤ (1 + γ)de′(oe′). Let dmax = maxe{de(oe)|oe > 0} be the maximum
cost between all used edges under o. Assign for each edge e with oe > 0,

7.2. MODIFYING ROUTING GAMES IN PARALLEL-LINK NETWORKS 117

γe =
dmax−le(oe)
de(oe) . It is γe ≤ γ, for all e, as by hypothesis dmax ≤ (1 + γ)de(oe),

for all e. Assign for each edge e with oe = 0, γe = 0. Let Γ = (γe)e∈E. It is
∀e : oe > 0⇒ (1+γe)de(oe) = dmax . Moreover, ∀e′ : oe′ = 0⇒ de′(oe′) ≥ dmax
as by (e.g.) corollary 2.4.6 in [77], for an e′ : oe′ = 0 and an e : oe > 0 and
de(oe) = dmax , it is de′(oe′) ≥ de(oe) + oed′e(oe) ≥ dmax . Thus o is a Nash flow
in GΓ.

Next, in the following Lemma, for any γ-modifiable instance G with op-
timal solution o, we prove the existence of a pair (f ,Γ) with specific suitable
properties. This Lemma is the key both for proving the bound on the PoAγ
and guaranteing an efficient computation of a pair (f ,Γ) that falls in that
bound.

Lemma 7.2. Let G = (G, d, r) be a parallel-links γ-modifiable instance and
let o be the optimal flow of G. There is a feasible flow f and a γ-modification
Γ of G such that

i) f is a Nash flow in GΓ.
ii) for any edge e: if fe < oe then γe = 0 and if fe > oe then γe = γ.

Proof. Consider G = (G, d, r) and its optimal solution o. If o can be γ-
enforced, then by definition, there is a γ-modification Γ for which o is the
Nash flow of GΓ. Thus for f = o and the above Γ, the Lemma holds. For all
other cases we will use induction on the number of edges in G.

In the base case of a single edge, under any rate r, f and o coincide and
thus under any modification, the Lemma holds.

For the inductive step let em be a used edge with maximum cost under
o. Remove em from the network, remove the flow through em, i.e. oem , and
let the instance Gm = (Gm , d, r ′ = r − oe) denote the new instance. For Gm,
by induction hypothesis, the Lemma holds. Thus there is a flow f ′ and a
γ-modification Γ′ = (γ′e)e∈Em of Gm such that: i) f ′ is the Nash flow in GΓ′

m , ii)
for any edge e: if f ′e < o′e then γ′e = 0 and if f ′e > o′e then γ′e = γ, where o′ is
the optimal solution of Gm.

Now we will put back edge em and the removed flow. If there is a γem
so as (1 + γem)dem (oem) = L(Gm , (1 + Γ′)d, r ′) then we can add γem to Γ′ and
get Γ and the Lemma will hold for GΓ, with f being such that fem = oem and
fe = f ′e for all other edges. Else it should be dem (oem) > L(Gm , (1 + Γ′)d, r ′)
as for any used edge e under f ′, with f ′e < oe, it is de(f ′e) ≤ de(oe) ≤ dem (oem)
and for any used edge e′ with f ′e′ ≥ oe′ it is de(f ′e) = (1 + γ′e)de′(f

′
e′) ≥ de′(f

′
e′)

by properties i) and ii) of the induction hypothesis.
It remains to handle the case dem (oem) > L(Gm , (1 + Γ′)d, r ′). Intuitively

we will reroute flow from em to the rest of the edges so as the equilibrium
property in Gm is not destroyed. Our final goal is to make em cost equal

118 IMPROVING SELFISH ROUTING THROUGH RISK AVERSION

to the Nash flow cost of Gm. During this procedure though, we have to be
careful also not to destroy property ii). This could happen if we carelessly
push flow to edges of Gm with f ′e < oe. To take care of this, while rerouting,
if such an edge e gets flow equal to oe we stop rerouting through it but,
in order to keep the equilibrium property, we unlock its γe and change its
value2 until it becomes γ. It also may be that during this procedure em
gets empty of flow but this case is covered by the induction hypothesis for
the instance (Gm , r). Details follow.

Let 0 ≤ xm ≤ oem be the maximum value (amount of flow) such that:
(a) there exist a γ-modification Γ∗ of Gm such that under flow r ′ + x, the

Nash flow flow f ∗ of GΓ∗

m is such that for any edge e ∈ GΓ∗

m : if f ′e ≥ oe and
γ′e = γ then f ∗e ≥ f

′
e > oe and γ∗e = γ(= γ′e), if f ′e < oe then f ′e ≤ f

∗
e ≤ oe and

γ∗e = 0(= γe), if f ′e = oe and γ′e < γ then f ∗e = oe(= f ′e) and γ′e ≤ γ∗e ≤ γ.
(b) dem (oem − xm) ≥ L(Gm , (1 + Γ∗)d, r ′ + xm)
It is xm > 0. To see this, let Elock be the set of edges that have f ′e = oe

and γ′e < γ and Efree the rest of the used edges under f ′. For ϸ small
enough, because of continuity, we can reroute flow from em to edges in
Efree so as the equilibrium property in Efree is kept, the inequalities of (a)
hold and these edges remain in Efree, with the inequality of their new flow
with oe having the same direction. By continuity and for ϸ small enough,
we can also grow (until the value γ) the γe ’s of the edges in Elock so as the
equilibrium property holds in Elock. Combining these facts we can reroute
an amount of flow ϸ from em to edges in Efree and allowably change some of
the γe values of edges in Elock so as the equilibrium property in Gm is kept
with inequality (b) still holding (recall that (b) was not tight).

By the same reasoning, unless (b) is tight or xm = oem , it should be
that: (I) for xm and its corresponding Γ∗ and f ∗ there exists an e such that
[(f ′e < oe and f ∗e = oe and γ∗e = 0(= γe)) or (γ′e < γ and f ∗e = oe(= f ′e) and
γ∗e = γ)]. This means that either an edge in Efree under f ′ with f ′e < oe
will get in Elock under f ∗ by gaining flow or an edge in Elock under f ′ will
move to Efree under f ∗ by getting γ∗e = γ and having f ∗e = oe. Note that an
edge e ∈ Efree with f ′e ≥ oe and γ∗e = γ cannot get in Elock under any f ∗ that
satisfies (a).

If inequality (b) is tight then we first let γem = 0 and add it to Γ∗ to make
a γ-modification Γ. We then let fem = oem − xm and fe = f ∗e for all other
edges. The pair (f ,Γ) satisfies the Lemma. If inequality (b) is not tight but
xm = oem

3, then we first let γem = 0 and add it to Γ∗ to make a γ-modification

2this doesn’t destroy property ii), as the flow through e would be oe
3which implies dem (0) > L(Gm , (1 + Γ∗)d, r)

7.2. MODIFYING ROUTING GAMES IN PARALLEL-LINK NETWORKS 119

Γ and then we let fem = 0 and fe = f ∗e . The pair (f ,Γ) satisfies the Lemma.4

If inequality (b) is not tight and xm < oem then set f ′ = f ∗, oem = oem − xm,
r ′ = r ′ + xm and Γ′ = Γ∗ and repeat the procedure.

To complete the proof, it suffices to show that, the above steps are finite
and in the final step, inequality (b) holds with equality or em is empty of
flow. To see this, first observe that at any step (that ended without (b)
being tight and without em being empty of flow), because of (I), the number
of edges that have either f ′e < oe or (f ′e = oe and γ′e < γ) drops down by at
least one. In the worst case, this number will drop down to zero and thus
in the next step either (b) will get tight or xm = oem , as then the rerouting
may continue unrestricted.

Next we give an upper bound of the PoAγ of γ-modifiable instances
with latency functions in class D. The pair (f,Γ) of Lemma 7.2 is used
in an analysis similar to [29]. The notable difference comes to the factor
−γ(x − y)d(x) that arises in supd∈D,x≥y≥0

y(d(x)−d(y))−γ(x−y)d(x)
xd(x) because of the

ability to γ-modify the instances.

Theorem 7.3. For γ-modifiable parallel-links instances with cost functions
in class D, it is

PoAγ(D) ≤ ργ(D) = max
{
1,

1
1 − �γ(D)

}
,

where �γ(D) = supd∈D,x≥y≥0
y(d(x)−d(y))−γ(x−y)d(x)

xd(x)

Proof. Let G = (G, r) be a parallel links instance with cost functions in class
D and o be its optimal solution. For G, Lemma 7.2 holds. Let f and Γ be
the flow and the γ-modification given by Lemma 7.2. By definition, it is
PoAγ(G) ≤ PoA(GΓ). We will bound PoA(GΓ).

Let Efmax be the set of edges that have fe < oe, E
f
min be the set of edges

that have fe > oe and Efint be the set of used edges with fe = oe. Clearly
E = Efmax ∪ E

f
min ∪ E

f
int

It is PoA(GΓ) =
∑
e∈E fede(fe)∑
e∈E oede(oe) . Using variational inequality and the γe ’s of Γ

(for which we have a Nash flow) we get∑
e∈Efmax

fede(fe) +
∑
e∈Efmin

fe(1 + γ)de(fe) +
∑
e∈Efint

fe(1 + γe)de(fe)

≤
∑
e∈Efmax

oede(fe) +
∑
e∈Efmin

oe(1 + γ)de(fe) +
∑
e∈Efint

oe(1 + γe)de(fe)

4induction hypothesis for the instance (Gm , r) could also be applied

120 IMPROVING SELFISH ROUTING THROUGH RISK AVERSION

m∑
e∈E

fede(fe) ≤
∑
e∈E

oede(fe) −
∑
e∈Efmin

γ(fe − oe)de(fe) −
∑
e∈Efint

γe(fe − oe)de(fe)

≤
∑
e∈E

oe(de(fe) − de(oe)) +
∑
e∈E

oede(oe) −
∑
e∈Efmin

γ(fe − oe)de(fe)

≤
∑
e∈E

oede(oe) +
∑
e∈Efmin

(
oe(de(fe) − de(oe)) − γ(fe − oe)de(fe)

)
Setting �γ(D) = supd∈D,x≥y≥0

y(d(x)−d(y))−γ(x−y)d(x)
xd(x) we get

∑
e∈E

fede(fe) ≤
∑
e∈E

oede(oe) +
∑
e∈Efmin

(
oe(de(fe) − de(oe)) − γ(fe − oe)de(fe)

)
fede(fe)

fede(fe)

≤
∑
e∈E

oede(oe) + �γ(D)
∑
e∈Efmin

fede(fe)

⇓∑
e∈E fede(fe)∑
e∈E oede(oe)

≤
1

1 − �γ(D)
= ργ(D)

Putting everything together, we have

PoAγ(G) ≤ PoA(GΓ) =

∑
e∈E fede(fe)∑
e∈E oede(oe)

≤ ργ(D)

Thus, for the class of games with latency functions in class D it is

PoAγ(D) ≤ ργ(D)

Next we give upper bounds for specific classes of γ-modifiable instances.

Corollary 7.4. For γ-modifiable instances with degree d polynomial latency
functions

PoA = 1, if γ ≥ d and PoA ≤
1

1 − d
(
γ+1
d+1

) d+1
d

+ γ
, if γ < d

7.2. MODIFYING ROUTING GAMES IN PARALLEL-LINK NETWORKS 121

Proof. Let G be a γ-modifiable instance with degree d polynomial latency
functions and let o be the optimal solution of G.

By (e.g.) [77] o is the Nash flow of a game with the same underlying
network and traffic rate r but cost functions changed from de(x) to (xde(x))′.
Thus, for polynomials of degree d, o coincides with the Nash flow of a game
with the same underlying network and rate r but cost functions changed
from

∑d
i=0 aix

i to
∑d
i=0(i + 1)aix i.

If γ ≥ d, it is
∑d
i=0(i + 1)aix i ≤ (γ + 1)

∑d
i=0 aix

i and thus there exist γe ’s
so as for any edge e

∑d
i=0(i + 1)aioie ≤ (1 + γe)

∑d
i=0 aio

i
e, which implies that

o is d-enforceable.
For γ < d we bound �γ(D). It is y(d(x)−d(y))−γ(x−y)d(x)

xd(x) =
y
x

(
1 + γ − d(y)

d(x)

)
− γ.

For a polynomial of degree d, d(x) =
∑d
i=0 aix

i, and y ≤ x it is d(y)
d(x) ≥

yd

xd as

yd−i ≤ xd−i ⇒
∑
aiyixd ≥

∑
aix iyd. Thus y

x

(
1+γ − d(y)

d(x)

)
−γ ≤ y

x

(
1+γ − yd

xd

)
−γ.

This quantity is maximized for y satisfying (yd+1)′ = (1 + γ)xd which gives

y = d

√
γ+1
d+1x, �γ(D) = d

(
γ+1
d+1

) d+1
d
− γ and ργ(D) = 1

1−d
(
γ+1
d+1

) d+1
d

+γ

By setting d = 1 to Corollary 7.4 we bound the price of anarchy for
affine latencies.

Corollary 7.5. For γ-modifiable instances with affine latencies

PoA = 1, if γ ≥ 1and PoA ≤
1

1 − (1−γ)2

4

, if γ < 1

Remark 7.6. Relating ρ(D) (from [29]) with ργ(D) for the class D of affine
latencies we get that ργ(D) = 1

1+
γ(2−γ)

3
ρ(D) which drops down quickly as γ

grows from 0 to 1.

Next we show that these bounds are essentially tight.

Theorem 7.7. For any class of latency functions D, and any ϸ > 0 there
is an instance G with latency functions in D with PoAγ(G) ≥ ργ(D) − ϸ

Proof. Let ϸ > 0 and consider a γ-modifiable instance G of two parallel
links, e1 and e2, flow rate r and cost functions: an arbitrary cost function
d1(x) = dϸ(x) (to be fixed later) in class D for link e1 and the constant
function l2(x) = (1 + γ)dϸ(r) for link e2.

Under any γ-modification Γ = (γ1, γ2), at Nash flow f of GΓ, all the flow
goes through link e1 and thus SCf = rlϸ(r). At optimal flow o, let o1 be the
flow that goes through link e1. It is SCo = (r − o1)(γ + 1)dϸ(r) + o1dϸ(o1) and

PoA =
rdϸ(r)

(r − o1)(γ + 1)dϸ(r) + o1dϸ(o1)
=

1
1 − o1(dϸ (r)−dϸ (o1))−γ(r−o1)dϸ (r)

rdϸ (r)

122 IMPROVING SELFISH ROUTING THROUGH RISK AVERSION

Flow o is optimal and thus o1 ∈ [0, r] is exactly the value that minimizes
social cost and eventually maximizes rdϸ (r)

(r−o1)(γ+1)d(ϸr)+o1dϸ (o1) and so maximizes

o1(dϸ(r) − dϸ(o1)) − γ(r − o1)dϸ(r)
rdϸ(r)

(7.1)

Recall that �γ(D) = supd∈D,x≥y≥0
y(d(x)−d(y))−γ(x−y)d(x)

xd(x) and let dϸ(x) be a cost

function such that supx≥y≥0
y(dϸ (x)−dϸ (y))−γ(x−y)dϸ (x)

xdϸ (x) ≥ �γ(D) − ϸ(1−�γ (D))2

1−ϸ(1−�γ (D)) . Be-

cause o1 maximizes (7.1), it is o1(dϸ (r)−dϸ (o1))−γ(r−o1)dϸ (r)
rdϸ (r)

≥ �γ(D) − ϸ(1−�γ (D))2

1−ϸ(1−�γ (D))
and thus

PoA ≥
1

1 − �γ(D) +
ϸ(1−�γ (D))2

1−ϸ(1−�γ (D))

= ργ(D) − ϸ

Based on Lemma 7.2, we present an algorithmic approach that given a
γ-modifiable instance G computes a γ-modification Γ such that the Nash
flow f of GΓ is such that SCf

SCo ≤ ρ(D), with D being the class of latency
functions of G.

Lemma 7.8. Let o be the optimal flow of a parallel links instance G. A
flow f and a γ-modification Γ of G with the properties of Lemma 7.2 can
be computed in time |E|(|E|+1)

2 Time(AlgPar), where Time(AlgPar) denotes the
time complexity of an algorithm AlgPar that computes Nash flows in par-
allel links networks.

Proof. We first compute the optimal solution o of G and delete all unused
by o edges, so we assume that w.l.o.g. all edges of G are used by o. Then,
we search efficiently in the space of flows for an f that can be combined
with a γ-modification Γ of G such that f and Γ satisfy Lemma 7.2. The key
point we use from Lemma 7.2 (and prove later on) is that for the pair (f,Γ)
of the proposition, the edges that have fe < oe are the most costly used
edges under o while the edges that have fe > oe are the less costly edges
under o.

In detail, for a combination (k, l) : k + l ≤ |E| find sets Emax : |Emax | = k
and Emin : |Emin | = l such that Emax contains the k most costly edges of G
under o and Emin contains the l less costly edges of G under o5. Let G′

be the γ-modifiable instance that has only the edges Emax and Emin, traffic
rate r ′ =

∑
e∈Emax∪Emin (oe) and the latency functions of edges in Emin changed

from de(x) to (1 + γ)de(x).
5so as Emax ∩ Emin = ∅

7.3. CONNECTION TO ROUTING GAMES WITH RESTRICTED TOLLS 123

For all combinations of (k, l) : k + l ≤ |E|, we compute the Nash flow f ′

of G′. If f ′ is such that (1) ∀e ∈ Emax : f ′e ≤ oe, (2) ∀e ∈ Emin : f ′e ≥ oe and (3)
∀e ∈ E \ (Emax ∪ Emin) : 1

1+γL(G′) ≤ de(oe) ≤ L(G′) then we let for each edge
e ∈ E \ (Emax ∪ Emin), γe =

L(G′)
de(oe) − 1. Clearly for any such e it is 0 ≤ γe ≤ γ.

By setting γe = γ for all edges in Emin and γe = 0 for all edges in Emin we
get a γ-modification Γ such that the Nash flow f of GΓ satisfies Lemma 7.2
and thus Theorem 7.3 applies.

It remains to show that there is a pair (k, l) such that (1), (2) and (3)
hold. By Lemma 7.2, there is a feasible flow f and a γ-modification Γ of G
such that

i) f is the Nash flow in GΓ.
ii) for any edge e: if fe < oe then γe = 0 and if fe > oe then γe = γ.

Let Emax = {e ∈ E|fe < oe}, Emin = {e ∈ E|fe > oe} and Eint = {e ∈ E|fe = oe}.
Because f is a Nash flow in GΓ, for any emax ∈ Emax , emin ∈ Emin, eint ∈ Eint it
is demax (femax) ≥ (1 + γeint)deint (feint) ≥ (1 + γ)demin (femin). This, combined to [for
e ∈ Emax it is de(oe) ≥ de(fe), for e ∈ Eint it is de(oe) = de(fe) and for e ∈ Emin
it is de(oe) ≤ de(fe)] implies that Emax contains the most costly edges under
o and Emin contains the less costly edges under o. Thus for pair (|Emax |,
|Emin |), properties (1), (2) and (3) hold.

Clearly the above procedure needs at most |E|(|E|+1)
2 (possible pairs of

(k, l)) computations of the Nash flow of G′ under the different flow rates
that may arise. Thus the lemma follows.

7.3 Connection to Routing Games with Restricted Tolls

Bonifaci et al. in [17] studied routing games where along with each edge,
an upper bound on the allowable toll on that edge is given. They provide
a characterization for the flows that can be imposed by the restricted tolls
and compute the optimal tolls when the optimal flow is inducible. We have
drawn an iff condition (Theorem 7.1 for parallel links and a similar one
for series parallel networks) that better suites our multiplicative approach
and is also needed to follow the other results.

Also in [17], based on the previous characterization, they manage to
compute the tolls that induce the smallest cost at equilibrium for parallel
link networks. Their approach is essentially using a convex programming
solver that solves several convex programs. One of these convex programs
considers exactly the edges that is used by the best modification. This way
though, no information about the nature of the solution is given.

Our approach intuitively applies Karush Kuhn Tucker conditions to
the convex program that considers exactly the edges that is used by the

124 IMPROVING SELFISH ROUTING THROUGH RISK AVERSION

best modification and tries to follow them. It does so, by restricting the
(fe, γe) pairs on the edges in a way similar to the restrictions provided by
the Karush Kuhn Tucker conditions (Lemma 7.2).

This approach has two major benefits. The first of them is that it relates
the complexity of finding a good (wrt PoA bounds) γ-modification to the
complexity of finding Nash flows. The second one is that it allows to get a
simpler mathematical expression as a bound for the PoA. This expression
is both giving a better insight for the improvement that can be achieved via
γ-modifications6 and applies to cases with more general latency functions
(for which a tight example is given) than the polynomial latency functions
considered in [17]7.

As a last positive comment for our work8, we point out out that by
our approach, uncertainty is applied only to edges that intuitively have to
get some uncertainty while by the approach of [17] more or less all edges
get some uncertainty which is the minimum between their toll bound or
their marginal toll. Their derived bounds rely to the fact that in worst
case examples there are edges of constant cost that take no toll. Thus in
our approach the total amount of uncertainty is kept lower while for cases
‘‘away’’ from the worst case examples our modifications ought to give better
improvement results.

7.4 Modifying Routing Games in more General Settings

In this section we show a way for generalizing the results of the parallel
links case to the case of series parallel networks and to the case of paral-
lel links with heterogeneous players and more general restrictions on the
uncertainty added to each edge.

Series Parallel Networks

The main goal is to get a γ-modification similar to the one of Lemma 7.2
which restricts the pairs (fe, γe) to be such that if fe > oe then γe = γ and if
fe < oe then γe = 0. Once such a Lemma is proved, the analysis of the PoA
bound of Theorem 7.3 can be applied and a similar Theorem would hold.

6compare the PoA bound of γ-modifiable games with our approach, i.e. 1
1−�γ (D) , where

�γ(D) = supd∈D,x≥y≥0
y(d(x)−d(y))−γ(x−y)d(x)

xd(x) , to the PoA bound of standard CGs (without tolls),
i.e 1

1−�(D) , where �(D) = supd∈D,x≥y≥0
y(d(x)−d(y))

xd(x) .
7for general latency functions the approach of [17] is not guaranteed to give better

bounds than the ones without tolls.
8for series parallel networks.

7.4. MODIFYING ROUTING GAMES IN MORE GENERAL SETTINGS 125

To prove such a Lemma, we use induction on the decomposition of
the series parallel network. The complicated part of the induction is the
parallel composing one. Assuming that for each of the parallel composing
networks the induction hypothesis of the lemma holds we start rerouting
flow from one network to the other in a careful way so as the properties for
the (fe, γe) pairs do not break. The way the rerouting occurs is similar to
the rerouting in the parallel links case, i.e. all the γe ’s are locked and get
unlocked only if fe gets equal to oe during the rerouting which itself reduces
the largest fraction of used paths with common ends until it reaches γ + 1.

The constructive nature of this lemma will allow us also to get such a
flow in time polynomially related to the time for computing a Nash flow,
i.e. an analogue of Lemma 7.8 can be derived. The rerouting procedure
will have to stop either to lock or unlock a γe of an edge e or to leave an
edge empty of flow. Because each of these incidents may happen only once
for each edge, we get that the rerouting will stop at most O(|E|) number
of times. For the exact flow that gets rerouted each time, a binary search
in the space of flows has to be made, that calls several times a Nash flow
solver, which at the end returns a flow for which one of the above incidents
happens.

Parallel Links with Heterogeneous Players

The main goal is again to get a γ-modification similar to the one of Lemma
7.2. When players are heterogeneous then at equilibrium the more risk
averse players get to higher expected cost edges. We assume that the
edges are ordered according to their cost under optimal flow.

The new thing with the rerouting when trying to follow the proof of
Lemma 7.2 is that it should stop also whenever a type of risk averse players
entirely leaves an edge to get to the next one. If during the rerouting this
happens, then the rerouting should continue up to that edge until this
specific edge gets a cost equal to the cost of the next edge, where the cost
is wrt the cost of the less risk averse users on this edge. That will allow the
rerouting to continue to the next edges and the new player type to enter
the next edge.

To compute such a flow-modification pair, a more sophisticated ap-
proach than the homogeneous case is needed. We know that in such a
flow-modification pair only some of the highest cost (under optimal flow)
edges, Eh, will get no uncertainty added, only some some of the lowest cost
(under optimal flow) edges, El will get all the uncertainty they could and
all other edges, Ei, will have fe = oe. For each combination of possible
(Eh , Ei , El) triples, we do a binary search to see the amount of flow that will

126 IMPROVING SELFISH ROUTING THROUGH RISK AVERSION

go through Eh (which will directly give the amount of flow that goes through
El) in order to have a (Nash flow,γ-modification) pair with the desired prop-
erties. For some triples we will have to stop the procedure as there may be
no such pair for them, though, because of the previous lemma it ought to
be a triple for which such a pair exists and which we eventually will find.

To derive a bound on the PoA we may follow a variational inequality
approach, one for each risk aversion type. Then all these variational in-
equalities can be combined but with the risk averse factor on each edge
being the lowest one on that edge. Thus in total a PoA bound (that is in
fact tight) similar to Theorem 7.3 can be derived for the smallest risk averse
factor among the players.

The above approach was allowing γ-modification on the edges. Another
way to see γ-modifications is to allow γe ’s on the edges so as ||(γe)e∈E ||∞ ≤ γ.
So to generalize the approach we may let γe ’s to be such that ||(γe)e∈E ||p ≤ γ
for any chosen p-norm. We then can show that treating such a p-norm al-
lowable modification as in a (γ/ p

√
|E|)-modifiable CG, we can derive asymp-

totically tight results on the improvement of the PoA.

Chapter 8

Discussion

In the previous chapters we revealed our tiny contribution in the research
arena, concerning Braess Paradox in bottleneck routing games, resolving
Braess’s paradox in random networks and studying CGs with uncertain
delays and risk averse players. Yet, many things are open for research.

8.1 Braess’ Paradox in Additive Costs Games

Research on Braess’s Paradox for additive costs congestion games doesn’t
have many open fields, as there is a big portion of literature concerning
it. One open problem that seems interesting to us is the one arose when
resolving the paradox for random graphs.

Recall the steps we followed to establish the approximation algorithm.
We first simplified the random instance we were given (the good whp net-
work), then we approximately solved the simplified instance via an algo-
rithm based on an approximate version of Caratheodory’s Theorem ([12])
and finally we extended the result to the initial instance. Although the
approximation factor relies both on the solution for the simplified instance
and on the extension to the initial instance, the most costly part of the
running time of the algorithm is the intermediate one where we solved the
simplified instance.

To recall the problem see figure 8.1. Given a simplified instance, one
should suitably remove some of the internal edges (edges from neighbors
of s, Ns, to neighbors of t, Nt) so as to minimize, under traffic rate r, the
Nash flow cost in the remaining network. Edges adjacent to s or t have
affine latencies, i.e. of the form ax + b, while the internal edges have zero
latency.

The problem can be formulated as a linear program with linearly com-

127

128 DISCUSSION

Figure 8.1: A simplified network. All edges adjacent to s or t have affine latency
functions while all other edges, the internal edges, have zero latency

plementarity constraints (lplcc).

minimize l
s.t. aifi + bi = li ∀i ∈ Ns

ajfj + bj = lj ∀j ∈ Nt∑
i∈Ns fi = r∑
j∈Nt fj = r∑
j∈Nt fij = fi ∀i ∈ Ns∑
i∈Ns fij = fj ∀j ∈ Nt

fij(l − li − lj) = 0
li , lj, fi , fj, fij ≥ 0 ∀i ∈ Ns,∀j ∈ Nt

Variables fi , fj, fij correspond to the flow that is routed through the i−th
neighbor of s, ui, the j−th neighbor of t, vj, and edge {ui , vj} respectively.
Variables li and lj correspond to the costs of edges {s, ui} and {vj, t} respec-
tively, under flow fi and fj respectively. Variable fij corresponds to the flow
through edge {ui , vj}.

The first two constraints capture the relation between the flow routed
through edges neighboring to s or t and their corresponding costs. The next
four constraints model flow conservation. The complementarity constraint
ensures that if a path s − ui − vj − t takes a positive flow, i.e. fij > 0, then
its cost is l. If fij = 0 then we do not care about li + lj = l as we can remove
edge {ui , vj} in the subnetwork.

This formulation seems to tightly capture the problem. Solving general
lplcc’s is NP-hard but this case is not exactly of the form proved to be NP-
hard as l − li − lj need not be non negative and also a feasible solution can
be easily found (the equilibrium of the initial network satisfies the restric-
tions). Additionally, the size of the intermediate network, or more precisely,
the many, long and correlated paths between s and t, is a key factor in the

8.2. BRAESS’ PARADOX IN BOTTLENECK COSTS GAMES 129

NP-hardness reduction of [78]. Thus the complexity of finding the best
subnetwork in simplified networks, even for linear latencies, remains well
open (as far as we know) and seems quite intriguing.

8.2 Braess’ Paradox in Bottleneck Costs Games

As we earlier saw, the inapproximability results of [52] did not really shed
light on the approximability of the (simple, non-selective) network design
problem in the simplest, and most interesting, setting of non-atomic bottle-
neck routing games with a common origin-destination pair for all players.
In our work, concerning the paradox in bottleneck costs games, we fol-
lowed this direction and managed to prove strong NP hardness results for
detecting the paradox and approximating the best subnetwork.

In the model we studied, the players were considering the bottleneck
cost of their paths and the social cost function was equal to the bottleneck
cost of the network. Yet, there is another interesting variant of bottleneck
games where the social cost is the average (instead of the maximum) bot-
tleneck cost of the players, studied by Cole, Dodis, and Roughgarden [27]
and subsequently by Mazalov et al. [62]. For this variant of non-atomic
bottleneck congestion games, as far as we know, neither the problem of
detecting the paradox nor the one of finding the best subnetwork has been
studied. It feels like the techniques similar to the ones presented here
could be used to prove results on these problems that seem to lay in be-
tween the problems for additive costs congestion games and the problems
for bottleneck costs games with social cost function equal to the maximum
congestion.

Figure 8.2: A network with Θ(n) PoA. Optimally all the flow is splitted equally to
the k direct paths while a bad Nash flow routes the traffic through path s − u1 −

v1 − u2 − v2 − . . . uk − vk − t

Another research goal could be to derive results on the existence of

130 DISCUSSION

the paradox in random graphs under bottleneck costs. The analog of the
additive costs case, i.e. to study random Gn,p’s could be a first goal. The
intuition suggests that a proof of existence of the paradox in random bot-
tleneck costs networks should not be hard and that is because an analog
of the bad example’s ‘‘backedges" (edges going in ‘‘opposite" direction, from
neighbors of t to neighbors of s) e.g. in [27] or figure 8.2 can probably
be easily found in many models of random networks. In a bad Nash flow
these backedges are used by the players in sequence and thus all paths
from s to t cost much and the network behaves bad.

In addition to these, one could try using the techniques we used for
exploiting the paradox in random graphs under additive costs so as to
exploit the paradox. If specific expansion properties for the random graph
models hold then this goal seems tractable and would be of interest.

8.3 Stochastic Congestion Games

While the above problems seem quite interesting, our focus is turned to
stochastic congestion games and risk averse players. The natural models
we proposed for the study of risk aversion under stochastic delays do not
seem to easily ‘‘cooperate" with networks other than parallel links. This is
not a problem that arises only in our models. The players’ cost functions
used in both models, do not have the property of being the sum of the
costs of the edges on the players’ paths, i.e. the costs are non-separable,
and examining games with non separable costs is not an easy task. An
interesting task would be to formulate players’ behaviors in a ‘‘network
familiar" way so as to be able to draw meaningful results for these games
in general networks.

Staying in our model though still has some intriguing open problems.
One of them is whether games with heterogeneous stochastic players admit
an equilibrium. Our intuition is not clear. Another problem is to examine
the case of games with stochastic edges and derive results on the existence
of equilibrium and potential functions when networks are layered, with the
basic property that all s − t paths have the same length. In this case the
paths’ costs might be separable and we would be able to draw meaningful
results for networks different from parallel links.

8.4. ABUSING UNCERTAINTY 131

8.4 Abusing Uncertainty

In the direction of abusing uncertainty, we saw that when risk averse play-
ers act under uncertainty, a large portion of them might prefer choosing
heavy in expectation but low variance links rather than light in expecta-
tion but high variance links. Adding some uncertainty to the network could
help in improving its behavior. The results presented here hold for special
cases of networks and homogeneous risk averse users.

There are two main open problems in this field. One is how can hetero-
geneousness in the players risk aversion help in improving the network’s
performance. In this direction we have (almost) proved that heterogeneous-
ness can also help in improving the network’s performance, yet in the worst
case the improvement is similar to the one achieved when players are ho-
mogeneous.

The second and probably more interesting problem is how can we abuse
uncertainty in more general networks under natral player’s risk averse cost
functions and draw meaningful results on improving the price of anarchy.
When trying to analyze such cases the problem of non separable costs
arises once more requiring risk averse cost functions that are both network
familiar and capturing the averse behavior of the players.

132 DISCUSSION

Bibliography

[1] Heiner Ackermann, Heiko Röglin, and Berthold Vöcking, On the impact
of combinatorial structure on congestion games., 47th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2006), 2006.

[2] , Pure nash equilibria in player-specific and weighted congestion
games., WINE (Paul G. Spirakis, Marios Mavronicolas, and Spyros C.
Kontogiannis, eds.), Lecture Notes in Computer Science, vol. 4286,
Springer, 2006, pp. 50–61.

[3] Heiner Ackermann and Alexander Skopalik, Complexity of pure nash
equilibria in player-specific network congestion games., Internet Math-
ematics 5 (2008), no. 4, 323–342.

[4] Sebastian Aland, Dominic Dumrauf, Martin Gairing, Burkhard
Monien, and Florian Schoppmann, Exact price of anarchy for poly-
nomial congestion games, STACS, 2006, pp. 218–229.

[5] Ingo Althöfer, On sparse approximations to randomized strategies and
convex combinations, Linear Algebra and Applications 99 (1994), 339–
355.

[6] H. Angelidakis, D. Fotakis, and T. Lianeas, Stochastic congestion
games with risk-averse players, Proc. of the 6th International Sym-
posium on Algorithmic Game Theory (SAGT ’13), LNCS, vol. 8146,
2013, pp. 86–97.

[7] Itai Ashlagi, Dov Monderer, and Moshe Tennenholtz, Resource selec-
tion games with unknown number of players, Proc. of the 5th Inter-
national Conference on Autonomous Agents and Multiagent Systems
(AAMAS 06), 2006, pp. 819–825.

[8] Baruch Awerbuch, Yossi Azar, and Amir Epstein, The price of rout-
ing unsplittable flow, Proceedings of the Thirty-seventh Annual ACM

133

134 BIBLIOGRAPHY

Symposium on Theory of Computing (New York, NY, USA), STOC ’05,
ACM, 2005, pp. 57–66.

[9] Baruch Awerbuch, Yossi Azar, Amir Epstein, Vahab S. Mirrokni, and
Alexander Skopalik, Fast convergence to nearly optimal solutions in po-
tential games., ACM Conference on Electronic Commerce (Lance Fort-
now, John Riedl, and Tuomas Sandholm, eds.), ACM, 2008, pp. 264–
273.

[10] Yossi Azar and Amir Epstein, The hardness of network design for
unsplittable flow with selfish users, Proc. of the 3rd Workshop on
Approximation and Online Algorithms (WAOA ’05), LNCS, vol. 3879,
2005, pp. 41–54.

[11] Ron Banner and Ariel Orda, Bottleneck routing games in communica-
tion networks, IEEE Journal on Selected Areas in Communications
25 (2007), no. 6, 1173–1179.

[12] Siddharth Barman, Approximating carathéodory’s theorem and nash
equilibria, CoRR abs/1406.2296 (2014).

[13] Martin Beckmann, C.B. McGuire, and Christopher B. Winsten, Stud-
ies in the economics of transportation, Yale University Press, New
Haven (1956).

[14] Kshipra Bhawalkar, Martin Gairing, and Tim Roughgarden, Weighted
congestion games: Price of anarchy, universal worst-case examples,
and tightness., ESA (2) (Mark de Berg and Ulrich Meyer, eds.), Lecture
Notes in Computer Science, vol. 6347, Springer, 2010, pp. 17–28.

[15] Béla Bollobás, Random Graphs, 2nd Ed., Cambridge Studies in Ad-
vanced Mathematics, no. 73, Cambridge University Press, 2001.

[16] Vincenzo Bonifaci, Tobias Harks, and Guido Schäfer, Stackelberg rout-
ing in arbitrary networks, Math. Oper. Res. 35 (2010), no. 2, 330–346.

[17] Vincenzo Bonifaci, Mahyar Salek, and Guido Schäfer, Efficiency of
restricted tolls in non-atomic network routing games, Proceedings of
the 4th International Conference on Algorithmic Game Theory (Berlin,
Heidelberg), SAGT’11, Springer-Verlag, 2011, pp. 302–313.

[18] Costas Busch and Malik Magdon-Ismail, Atomic routing games on
maximum congestion, 410 (2009), 3337–3347.

BIBLIOGRAPHY 135

[19] Ioannis Caragiannis, Clemente Galdi, and Christos Kaklamanis, Net-
work load games, Proc. of the 16th Symposium on Algorithms and
Computation (ISAAC ’05), LNCS, vol. 3827, 2005, pp. 809–818.

[20] Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanel-
lopoulos, Taxes for linear atomic congestion games, ESA (Yossi Azar
and Thomas Erlebach, eds.), Lecture Notes in Computer Science, vol.
4168, Springer, 2006, pp. 184–195.

[21] Steve Chien and Alistair Sinclair, Convergence to approximate nash
equilibria in congestion games, Proceedings of the Eighteenth An-
nual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia,
PA, USA), SODA ’07, Society for Industrial and Applied Mathemat-
ics, 2007, pp. 169–178.

[22] George Christodoulou and Elias Koutsoupias, On the price of anar-
chy and stability of correlated equilibria of linear congestion games,,,
Proceedings of the 13th Annual European Conference on Algorithms
(Berlin, Heidelberg), ESA’05, Springer-Verlag, 2005, pp. 59–70.

[23] George Christodoulou and Elias Koutsoupias, The price of anarchy
of finite congestion games, Proceedings of the Thirty-seventh Annual
ACM Symposium on Theory of Computing (New York, NY, USA), STOC
’05, ACM, 2005, pp. 67–73.

[24] Fan Chung and Stephen J. Young, Braess’s paradox in large sparse
graphs, WINE (Amin Saberi, ed.), Lecture Notes in Computer Science,
vol. 6484, Springer, 2010, pp. 194–208.

[25] Fan Chung, Stephen J. Young, and Wenbo Zhao, Braess’s paradox in
expanders, Random Struct. Algorithms 41 (2012), no. 4, 451–468.

[26] Richard Cole, Yevgeniy Dodis, and Tim Roughgarden, Pricing network
edges for heterogeneous selfish users, STOC, ACM, 2003, pp. 521–530.

[27] , Bottleneck links, variable demand, and the tragedy of the com-
mons, 2006, pp. 668–677.

[28] José R. Correa, Andreas S. Schulz, and Nicolás E. Stier Moses, Selfish
routing in capacitated networks, Math. Oper. Res. 29 (2004), no. 4,
961–976.

[29] J.R. Correa, A.S. Schulz, and Nicolás Stier Moses, Selfish Routing
in Capacitated Networks, Mathematics of Operations Research 29
(2004), no. 4, 961–976.

136 BIBLIOGRAPHY

[30] Juliane Dunkel and Andreas S. Schulz, On the complexity of pure-
strategy nash equilibria in congestion and local-effect games, In Proc.
of the 2nd Int. Workshop on Internet and Network Economics (WINE,
Springer Verlag, 2006, pp. 62–73.

[31] Amir Epstein, Michal Feldman, and Yishay Mansour, Efficient graph
topologies in network routing games, Games and Economic Behaviour
66 (2009), no. 1, 115–125.

[32] Eyal Even-dar, Alex Kesselman, and Yishay Mansour, Convergence
time to nash equilibria, In ICALP, Springer-Verlag, 2003, pp. 502–513.

[33] Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar, The com-
plexity of pure nash equilibria, ACM Press, 2004, pp. 604–612.

[34] Amos Fiat and Christos H. Papadimitriou, When the players are not
expectation maximizers, Proc. of the 3th International Symposium on
Algorithmic Game Theory (SAGT ’10), LNCS, vol. 6386, 2010, pp. 1–
14.

[35] L. Fleischer, K. Jain, and M. Mahdian, Tolls for Heterogeneous Self-
ish Users in Multicommodity Networks and Generalized Congestion
Games, 2004, pp. 277–285.

[36] Lisa Fleischer, Kamal Jain, and Mohammad Mahdian, Tolls for het-
erogeneous selfish users in multicommodity networks and generalized
congestion games, FOCS, IEEE Computer Society, 2004, pp. 277–285.

[37] Steven Fortune, John E. Hopcroft, and James Wyllie, The directed
subgraph homeomorphism problem, Theor. Comput. Sci. 10 (1980),
111–121.

[38] Dimitris Fotakis, Stackelberg strategies for atomic congestion games,
ESA (Lars Arge, Michael Hoffmann, and Emo Welzl, eds.), Lecture
Notes in Computer Science, vol. 4698, Springer, 2007, pp. 299–310.

[39] , Congestion games with linearly independent paths: Conver-
gence time and price of anarchy, Theory of Computing Systems 47
(2010), no. 1, 113–136.

[40] Dimitris Fotakis, Alexis C. Kaporis, Thanasis Lianeas, and Paul G.
Spirakis, Resolving braess’s paradox in random networks, WINE (Yil-
ing Chen and Nicole Immorlica, eds.), Lecture Notes in Computer Sci-
ence, vol. 8289, Springer, 2013, pp. 188–201.

BIBLIOGRAPHY 137

[41] , On the hardness of network design for bottleneck routing
games, Theor. Comput. Sci. 521 (2014), 107–122.

[42] Dimitris Fotakis, Alexis C. Kaporis, and Paul G. Spirakis, Efficient
methods for selfish network design, Proc. of the 36th Colloquium on
Automata, Languages and Programming (ICALP-C ’09), LNCS, vol.
5556, 2009, pp. 459–471.

[43] Dimitris Fotakis, George Karakostas, and Stavros G. Kolliopoulos, On
the existence of optimal taxes for network congestion games with het-
erogeneous users, SAGT (Spyros C. Kontogiannis, Elias Koutsoupias,
and Paul G. Spirakis, eds.), Lecture Notes in Computer Science, vol.
6386, Springer, 2010, pp. 162–173.

[44] Dimitris Fotakis, Spyros Kontogiannis, and Paul G. Spirakis, Selfish
Unsplittable Flows, Theoretical Computer Science 348 (2005), 226–
239.

[45] Dimitris Fotakis and Paul G. Spirakis, Cost-balancing tolls for atomic
network congestion games, WINE (Xiaotie Deng and Fan Chung Gra-
ham, eds.), Lecture Notes in Computer Science, vol. 4858, Springer,
2007, pp. 179–190.

[46] Martin Gairing and Max Klimm, Congestion games with player-specific
costs revisited., SAGT (Berthold Vocking, ed.), Lecture Notes in Com-
puter Science, vol. 8146, Springer, 2013, pp. 98–109.

[47] Fan Chung Graham, Stephen J. Young, and Wenbo Zhao, Braess’s
paradox in expanders, Random Struct. Algorithms 41 (2012), no. 4,
451–468.

[48] Torben Hagerup and Christine Rüb, A guided tour of chernoff bounds,
Inf. Process. Lett. 33 (1990), no. 6, 305–308.

[49] Michael A. Hall, Properties of the equilibrium state in transportation
networks, Transportation Sci. 12(3) (1978), 208–216.

[50] Tobias Harks and Max Klimm, On the existence of pure nash equilibria
in weighted congestion games, Mathematics of Operations Research
37 (2012), no. 3, 419–436.

[51] Martin Hoefer, Lars Olbrich, and Alexander Skopalik, Taxing sub-
networks., WINE (Christos H. Papadimitriou and Shuzhong Zhang,
eds.), Lecture Notes in Computer Science, vol. 5385, Springer, 2008,
pp. 286–294.

138 BIBLIOGRAPHY

[52] Haiyang Hou and Guochuan Zhang, The hardness of selective network
design for bottleneck routing games, Proc. of the 4th Conference on
Theory and Applications of Models of Computation (TAMC ’07), LNCS,
vol. 4484, 2007, pp. 58–66.

[53] Tomas Jelinek, Marcus Klaas, and Guido Schäfer, Computing Op-
timal Tolls with Arc Restrictions and Heterogeneous Players, 31st
International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2014) (Dagstuhl, Germany) (Ernst W. Mayr and Nat-
acha Portier, eds.), Leibniz International Proceedings in Informatics
(LIPIcs), vol. 25, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2014, pp. 433–444.

[54] George Karakostas, Edge pricing of multicommodity networks for het-
erogeneous selfish users, In Proceedings of the 45th Annual Sym-
posium on Foundations of Computer Science (FOCS, Press, 2004,
pp. 268–276.

[55] George Karakostas and Stavros G. Kolliopoulos, The Efficiency of Op-
timal Taxes, Proc. of the 1st Workshop on Combinatorial and Algo-
rithmic Aspects of Networking (CAAN ’04), LNCS, vol. 3405, 2005,
pp. 3–12.

[56] Frank Kelly, The mathematics of traffic in networks, In The Prince-
ton Companion to Mathematics (Editors: T. Gowers, J. Green and I.
Leader). Princeton University Press, 2008.

[57] Elias Koutsoupias and Christos Papadimitriou, Worst-case equilibria,
STACS 1563 (1999), 404–413.

[58] Henry Lin, Tim Roughgarden, Éva Tardos, and Asher Walkover,
Braess’s Paradox, Fibonacci Numbers, and Exponential Inapproxima-
bility, LNCS, vol. 3580, 2005, pp. 497–512.

[59] Henry Lin, Tim Roughgarden, and Éva Tardos, A stronger bound on
braess’s paradox, Proceedings of the Fifteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (Philadelphia, PA, USA), SODA ’04, So-
ciety for Industrial and Applied Mathematics, 2004, pp. 340–341.

[60] Richard J. Lipton and Neal E. Young, Simple strategies for large zero-
sum games with applications to complexity theory, Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25
May 1994, Montréal, Québec, Canada, 1994, pp. 734–740.

BIBLIOGRAPHY 139

[61] Mavronicolas, Marios, Milchtaich, Igal, Monien, Burkhard, Tiemann,
and Karsten, Congestion games with player-specific constants., MFCS
(Ludek Kucera and Antonin Kucera, eds.), Lecture Notes in Computer
Science, vol. 4708, Springer, 2007, pp. 633–644.

[62] Vladimir Mazalov, Burkhard Monien, Florian Schoppmann, and Karsten
Tiemann, Wardrop equilibria and price of stability for bottleneck games
with splittable traffic, LNCS, vol. 4286, 2006, pp. 331–342.

[63] Igal Milchtaich, Congestion Games with Player-Specific Payoff Func-
tions, Games and Economic Behavior 13 (1996), 111–124.

[64] , Network topology and the efficiency of equilibrium, Games and
Economic Behavior 57 (2006), 321–346.

[65] , Network topology and equilibrium existence in weighted net-
work congestion games, 2009.

[66] Dov Monderer and Lloyd Shapley, Potential Games, Games and Eco-
nomic Behavior 14 (1996), 124–143.

[67] Evdokia Nikolova and Nicolás Stier Moses, Stochastic selfish routing,
Proc. of the 4th International Symposium on Algorithmic Game Theory
(SAGT ’11), LNCS, vol. 6982, 2011, pp. 314–325.

[68] Fernando Ordóñez and Nicolás Stier Moses, Wardrop equilibria with
risk-averse users, Transportation Science 44 (2010), no. 1, 63–86.

[69] Panagiota N. Panagopoulou and Paul G. Spirakis, Algorithms for pure
nash equilibria in weighted congestion games., ACM Journal of Experi-
mental Algorithmics 11 (2006).

[70] Arthur C. Pigou, The economics of welfare, Macmillan, 1924.

[71] Georgios Piliouras, Evdokia Nikolova, and Jeff S. Shamma, Risk sen-
sitivity of price of anarchy under uncertainty, Proceedings of the Four-
teenth ACM Conference on Electronic Commerce (New York, NY, USA),
EC ’13, ACM, 2013, pp. 715–732.

[72] R. Tyrell Rockafellar, Coherent Approaches to Risk in Optimization Un-
der Uncertainty, Tutorials in Operations Research (2007), 38–61.

[73] Robert W. Rosenthal, A class of games possessing pure-strategy nash
equilibria, International Journal of Game Theory (1973), no. 2, 65–67.

140 BIBLIOGRAPHY

[74] Tim Roughgarden, The price of anarchy is independent of the network
topology, J. Comput. Syst. Sci. 67 (2003), no. 2, 341–364.

[75] , Stackelberg scheduling strategies, SIAM J. Comput. 33 (2004),
no. 2, 332–350.

[76] , Selfish routing and the Price of Anarchy, MIT press, 2005.

[77] , Selfish Routing and the Price of Anarchy, MIT press, 2005.

[78] , On the severity of braess’s paradox: Designing networks for
selfish users is hard, J. Comput. Syst. Sci. 72 (2006), no. 5, 922–953.

[79] , Intrinsic robustness of the price of anarchy, Proceedings of the
41st Annual ACM Symposium on Theory of Computing (New York, NY,
USA), STOC ’09, ACM, 2009, pp. 513–522.

[80] Alan Siegel, Median bounds and their application, 1999, pp. 776–785.

[81] Alexander Skopalik and Berthold Vöcking, Inapproximability of pure
nash equilibria, IN PROCEEDINGS OF THE 40TH ANNUAL ACM SYM-
POSIUM ON THEORY OF COMPUTING (STOC, 2008, pp. 355–364.

[82] Chaitanya Swamy, The effectiveness of stackelberg strategies and tolls
for network congestion games, SODA (Nikhil Bansal, Kirk Pruhs, and
Clifford Stein, eds.), SIAM, 2007, pp. 1133–1142.

[83] Amos Tversky and Daniel Kahneman, Prospect theory: An analysis of
decision under risk, Econometrica 47 (1979), no. 2, 263–291.

[84] Gregory Valiant and Tim Roughgarden, Braess’s paradox in large ran-
dom graphs, Random Struct. Algorithms. (Preliminary version in Proc.
of EC’06) 37 (2010), no. 4, 495–515.

[85] László A. Végh, Strongly polynomial algorithm for a class of minimum-
cost flow problems with separable convex objectives, Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing, STOC
’12, 2012, pp. 27–40.

[86] Hai Yang and Hai-Jun Huang, The multi-class, multi-criteria traffic net-
work equilibrium and systems optimum problem, Transportation Re-
search 38 (2004), 1–15.

List of Figures

1.1 Network Congestion Games (small) map 20
1.2 Braess’s Paradox in Additive Costs Congestion Games . . . 29
1.3 Braess’s Paradox in Bottleneck Costs Congestion Games . . 31

2.1 Placement on the CGs’ map of our work on Bottleneck Games 36
2.2 The placement for the Random Networks under study . . . 38
2.3 The Stochastic Models and their positioning on CGs’ map . 41

4.1 The network of the reduction and the YES instance case . . 59
4.2 Possible subnetworks of a NO instance 60
4.3 The gap amplification’s network and the Yes instance case . 63
4.4 Subnetworks of the gap amplification network in a No instance 68

5.1 Braess Paradox in additive costs CGs revisited 78
5.2 Eliminating the ‘‘cycles’’ of a best subnetwork 84

8.1 0-simplified network with unknown BestSub’s complexity . 128
8.2 A worst case PoA network for Bottleneck CGs 129

141

Thesis proudly powered by LaTEX (and eBamp)

