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Abstract
We consider a nonatomic selfish routing model
with independent stochastic travel times for each
edge, represented by mean and variance latency
functions that depend on arc flows. This model
can apply to traffic in the Internet or in a road
network. Variability negatively impacts packets or
drivers, by introducing jitter in transmission delays
which lowers quality of streaming audio or video,
or by making it more difficult to predict the ar-
rival time at destination. The price of risk aver-
sion (PRA) has been defined as the worst-case ratio
of the cost of an equilibrium with risk-averse play-
ers who seek risk-minimizing paths, and that of an
equilibrium with risk-neutral users who minimize
the mean travel time of a path [Nikolova and Stier-
Moses, 2015]. This inefficiency metric captures
the degradation of system performance caused by
variability and risk aversion. In this paper, we pro-
vide the first lower bounds on the PRA. First, we
show a family of structural lower bounds, which
grow linearly with the size of the graph and players’
risk-aversion. They are tight for graph sizes that
are powers of two. We also provide asymptotically
tight functional bounds that depend on the allowed
latency functions but not on the topology. The func-
tional bounds match the price-of-anarchy bounds
for congestion games multiplied by an extra fac-
tor that accounts for risk aversion. Finally, we pro-
vide a closed-form formula of the PRA for a fam-
ily of graphs that generalize series-parallel graphs
and the Braess graph. This formula also applies
to the mean-standard deviation user objective—a
much more complex model of risk-aversion due
to the cost of a path being non-additive over edge
costs.

1 Introduction
A primary objective in many networked systems subject to
congestion such as the Internet and transportation networks
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is minimizing latencies. A secondary objective in such sys-
tems, which has received considerably less attention than the
first, is reducing variability. In telecommunication networks,
variability amounts to jitter, which causes severe degradation
in the quality of audio and video streams. In transportation
networks, variability reduces the likelihood of correctly esti-
mating the time of arrival. Consequently, this miscalculation
can make the travelers late, which may have very bad conse-
quences, or early which is less dramatic but sometimes incon-
venient. This is of paramount importance for many routing
services in online platforms such as Waze or Uber.

In both settings, a reasonable goal from the perspective of
the agent (packet or traveler) is to consider a multi-objective
shortest path problem with respect to both expected latency
and its variability. A path with slightly larger expected la-
tency and no variability may be preferred to one with a
highly-variable lower-expectation latency, even if the latter
stochastically dominates the former. As commonly done in
settings with multiple objectives, we consider their linear
combination, in this case given by the mean-variance latency
of a path choice. The coefficient that is used to sum the two
terms into one objective function typically represents agents’
risk aversion, and is readily interpreted as how much agents
can allow the expected latency to increase to reduce the vari-
ance. Since the networks we study are subject to congestion
effects, we need to embed these agents’ subproblems into a
game setting in which each agent has to minimize that ob-
jective. This game has the structure as a routing game and
its equilibrium concept is an extension of Wardrop equilib-
ria [Wardrop, 1952; Beckmann et al., 1956]. For surveys that
discuss the role of these games in the context of telecommuni-
cation and transportation networks, see, respectively, Altman
et al. [2006] and Correa and Stier-Moses [2011].

Related Work There has been an increased effort in re-
cent years to model risk-averse preferences in routing games
and understand the effect of such player preferences on net-
work equilibria [Ordóñez and Stier-Moses, 2010; Nikolova
and Stier-Moses, 2011; Nie, 2011; Angelidakis et al., 2013;
Piliouras et al., 2013; Nikolova and Stier-Moses, 2014; 2015;
Cominetti and Torrico, 2013; Fotakis et al., 2015]. We refer
the reader to a recent survey [Cominetti, 2015] for a more
extensive review of equilibrium routing under uncertainty.

In an effort to decouple the effect of risk attitudes from the
effect of selfish behavior on the degradation of system perfor-



mance, the price of risk aversion (PRA) has been defined as
the worst-case ratio of the cost of a risk-averse equilibrium to
that of a risk-neutral equilibrium (namely, the equilibria when
agents are risk-averse and risk-neutral, respectively) and has
been shown to be upper-bounded by 1 + κγn/2, where κ is
the worst-case variance-to-mean ratio of an edge at equilib-
rium, γ is the coefficient of risk-aversion and n is the number
of vertices in the graph [Nikolova and Stier-Moses, 2015].

Meir and Parkes [2015] defined biased smoothness and
provide a technique that can be used to compare an equi-
librium under modified cost functions to the social optimum
of the original game. As an example of this technique,
they derive an upper bound on the price of risk aversion of
(1 + κγ)(1 − µ)−1 when cost functions are (1, µ)-smooth.
As we establish in this paper, this upper bound and that of
Nikolova and Stier-Moses [2015] are of a different type, i.e.,
functional (based on the latency function classes) vs. struc-
tural (based on the network topology), which is why they
cannot be compared directly. In our paper, we present a new
lower bound of this functional form, as well as a simpler proof
of the functional upper bound that relies on a generalization
of the earlier price of anarchy proof based on variational in-
equalities [Correa et al., 2008]. Consequently, this method
makes possible a more direct comparison with the existing
literature including the traditional price of anarchy proofs.

Our contributions Related to AI research on autonomous
agents, our results shed light in how risk aversion experi-
enced by agents impact system-wide metrics. The main tech-
nical contributions are the first lower bounds to the price of
risk-aversion, which are tight or asymptotically tight. We
also provide a simplified analysis of the upper bound of Meir
and Parkes [2015] for the price of risk-aversion, as well as
new tight bounds for a class of graphs that apply to both
mean-variance and mean-stdev risk-averse objectives. Our
main conceptual contribution is a new structural vs. func-
tional perspective on the price or risk-aversion, demonstrat-
ing that bounds can be given either in terms of the network
structure or in terms of the class of edge latency functions
that are allowed. As such, we also provide an understand-
ing of the connection of two prior upper-bound results on
the price of risk-aversion [Nikolova and Stier-Moses, 2015;
Meir and Parkes, 2015], as well as a connection to the exten-
sive literature on price of anarchy, which has so far provided
only functional bounds.

Our first result is a tight lower bound to the price of
risk aversion of 1 + κγn/2, with number of vertices n that
are powers of two (Theorem 3), where κ is the maximum
variance-to-mean ratio, and γ is the degree of risk-aversion
of users. This bound essentially closes the gap to the previ-
ously known upper bound and characterizes the exact price of
risk aversion for an infinite number of graph sizes. We call the
bound structural, since it matches the upper bound that only
depends on the network structure and not on the latency func-
tions used. Our construction of the worst-case graph family
involves finding an instance in which an alternating path (a
path that consists of appropriately defined forward and back-
ward edges) goes through every vertex in the graph and alter-
nates between forward and backward edges at every internal

vertex. We achieve this by inductively defining a graph family
with appropriate mean and variance functions for each edge.

Our second lower bound is an asymptotically tight func-
tional bound (Theorem 5). It follows from the same induc-
tively defined family of graphs but with different appropri-
ately chosen mean and variance functions. We also give a
new proof of the functional upper bound (1 + κγ)(1− µ)−1
for (1, µ)-smooth latency functions via a variational inequal-
ity characterization of equilibria (Theorem 4). This bound
implies, for example, that the price of risk aversion is at most
(1+κγ)4/3 for linear latency functions and it generalizes the
classic result that the price of anarchy is (1 − µ)−1 [Rough-
garden, 2003] because, when there is no variability, κ = 0.
We remark that for unrestricted functions, the functional up-
per bounds become vacuous since µ = 1, which provides
further support for the structural analysis of Section 3.

Finally, we provide a closed-form formula for the price of
risk aversion under the alternative mean-stdev model of risk-
aversion where players minimize a linear combination of the
mean and standard deviation of the route travel time. This
model is significantly more difficult to analyze than the mean-
var model due to its non-additive nature, namely the mean
plus standard deviation of a path cannot be decomposed as a
sum of costs over the edges in the path. The formula is valid
for a family of graphs that generalizes series-parallel graphs
(specifically, the family of graphs where the domino-with-
ears graph, shown in Fig. 3(b), is a forbidden minor). This
formula extends to the mean-var model as well, and it refines
our understanding on the topology of graphs for which the
price of risk aversion is 1 + 2κγ, as opposed to the cruder
bound in terms of number of vertices only.

Both our structural and functional lower bounds also read-
ily provide corresponding lower bounds in the mean-stdev
model. Showing a structural and functional upper bound for
general graphs in that model remains an open problem.

2 Model and Preliminaries
We consider a directed graph G = (V,E) with a single
source-sink pair (s, t) and an aggregate demand of d units
of flow that need to be routed from s to t. We let P be the set
of all feasible paths between s and t. We encode the players’
decisions as a flow vector f = (fp)p∈P ∈ R|P|+ over all paths.
Such a flow is feasible when demand is satisfied, as given by
the constraint

∑
p∈P fp = d. For notational simplicity, we

denote the flow on an edge e by fe =
∑
p3e fp. When we

need multiple flow variables, we use x, xp, xe and z, zp, ze.
The network is subject to congestion, modeled with

stochastic delay functions `e(fe) + ξe(fe) for each edge
e ∈ E. Here, the deterministic function `e(fe) measures
the expected delay when the edge has flow fe, and ξe(fe)
is a random variable that represents a noise term on the delay.
Functions `e(·), generally referred to as latency functions, are
assumed continuous and non-decreasing. The expected la-
tency along a path p is given by `p(f) :=

∑
e∈p `e(fe). Ran-

dom variables ξe(fe) are pairwise independent, have expec-
tation zero and standard deviation σe(fe), for arbitrary con-
tinuous functions σe(·). For the variational inequality char-
acterization used in Section 4, we further assume that mean-



variance objective of users, defined below, is non-decreasing.
The variance along a path equals vp(f) =

∑
e∈p σ

2
e(fe), and

the standard deviation (stdev) is σp(f) = (vp(f))
1/2.

We consider the nonatomic version of the routing game
where infinitely many players control an infinitesimal amount
of flow each so that the path choice of a single player does not
unilaterally affect the costs experienced by other players.

Players are risk-averse and strategically choose paths tak-
ing into account the variability of delays by considering a
mean-var objective Qγp(f) = `p(f) + γvp(f). We refer to
this objective simply as the path cost (as opposed to latency).
Here, γ ≥ 0 is a constant that quantifies the risk-aversion
of the players, which we assume homogeneous. The special
case of γ = 0 corresponds to risk-neutrality. In the last sec-
tion, we consider the mean-stdev objective where the variance
in the objective is replaced with the standard deviation of the
path.

The variability of delays is usually not too large with re-
spect to the expected latency. Following previous work, we
assume that ve(xe)/`e(xe) is bounded from above by a fixed
constant κ for all e ∈ E at the equilibrium flow of interest
xe ∈ R+. This means that the variance cannot be larger than
κ times the expected latency in any edge at equilibrium.

In summary, an instance of the problem is given by the
tuple (G, d, `, v, γ), which represents the topology, demand,
latency functions, variability functions, and degree of player
risk-aversion. The following definition captures that at equi-
librium players route flow along paths with minimum cost.
Definition 1 (Equilibrium). A γ-equilibrium of a stochastic
nonatomic routing game is a flow f such that for every path
p ∈ P with positive flow, the path cost Qγp(f) ≤ Qγq (f) for
any other path q ∈ P . For a fixed risk-aversion parame-
ter γ, we refer to a γ-equilibrium as a risk-averse Wardrop
equilibrium (RAWE), denoted by x. For γ = 0, we call the
equilibrium a risk-neutral Wardrop equilibrium (RNWE).

Notice that since the variance decomposes as a sum over
all the edges on the path, the previous definition represents a
standard Wardrop equilibrium with respect to modified costs
`e(fe) + γve(fe). For the existence of the equilibrium, it is
sufficient that the modified cost functions are increasing.

Our goal is to investigate the effect that risk-averse players
have on the quality of equilibria. The quality of a solution
that represents collective decisions can be quantified by the
cost of equilibria with respect to expected delays since, over
time, different realizations of delays average out to the mean
by the law of large numbers. For this reason, a social plan-
ner, who is concerned about the long term, is typically risk
neutral. Furthermore, the social planner may aim to reduce
long-term emissions, which would be better captured by the
total expected delay of all users.
Definition 2. The social cost of a flow f is defined as
the sum of the expected latencies of all players: C(f) :=∑
p∈P fp`p(f) =

∑
e∈E fe`e(fe) .

Although one could have measured total cost as the
weighted sum of the costs Qγp(f) of all users, this captures
users’ utilities but not the system’s benefit. Such a cost func-
tion was previously considered to compute the price of anar-
chy [Nikolova and Stier-Moses, 2014]. In contrast, our goal is

to compare across different values of risk aversion so we want
the various flow costs to be measured with the same units.

The next definition captures the increase in social cost at
equilibrium introduced by user risk-aversion, compared to the
social cost if users were risk-neutral.

Definition 3 ([Nikolova and Stier-Moses, 2015]). Consider-
ing an instance family F of a routing game with uncertain
delays, the price of risk aversion (PRA) associated with γ
and κ (the risk-aversion coefficient and the variance-to-mean
ratio) is defined by PRA(F , γ, κ) := supG,d,`,v

{
C(x)
C(z) :

(G, d, `, v, γ) ∈ F and v(x) ≤ κ`(x)
}
, where x and z are

the risk-averse and the risk-neutral Wardrop equilibria of the
corresponding instance.

3 Structural Lower Bounds
In this section, we prove two lower bounds on the price of
risk aversion, both matching the upper bounds presented by
Nikolova and Stier-Moses [2015]. The first bound for PRA is
with respect to the minimum number of alternations among
all alternating paths as defined below, while the second bound
is with respect to the number of vertices in the graph. In fact,
the same bounds hold in the mean-standard deviation model,
but we defer that discussion to Section 5.

Given an instance, we denote a RNWE flow associated
with it by z, and a RAWE flow by x. To define alternating
paths, we partition the edge-set E into A = {e ∈ E : xe ≤
ze} and B = {e ∈ E : ze < xe}. Conceptually, an alter-
nating path is an s-t-path in the graph where edges in B are
reversed (see Fig. 3(c) for an illustration of the definition).

Definition 4 ([Nikolova and Stier-Moses, 2015]). A gener-
alized path π = A1-B1-A2-B2-· · · -At-Bt-At+1, composed
of a sequence of subpaths, is an alternating path when every
edge in Ai ⊆ A is directed in the direction of the path, and
every edge in Bi ⊆ B is directed in the opposite direction
from the path. We say that such a path has t + 1 disjoint
forward subpaths, and t alternations.

The definition of alternating paths was motivated by the
following result.

Theorem 1 ([Nikolova and Stier-Moses, 2015]). Consider-
ing the set of instances with arbitrary mean and variance la-
tency functions that admit an alternating path with up to η
disjoint forward subpaths, PRA ≤ 1 + ηγκ.

The theorem implies that for the set of instances on graphs
with n vertices, PRA ≤ 1 + γκdn−12 e since in that case an
alternating path cannot have more than d(n − 1)/2e disjoint
forward subpaths. We are going to prove that those upper
bounds are tight. To get there, we first prove a more general
result that shows how instances with high price of risk aver-
sion can be constructed.

Theorem 2. For an i ∈ N>0, consider riA, r
i
N ∈ R≥0 such

that 2iriA > (2i − 1)riN . There exists an instance based on a
graph Gi(riA, r

i
N ) that satisfies the following two properties.

• If riA risk-averse players are routed throughGi(riA, r
i
N ),

then the path cost along used paths at the RAWE flow x,



Figure 1: The base case G1(r1A, r
1
N ) is a Braess graph.

as well as the expected latency, is 1 + 2iγκ. The social
cost is C(x) = (1 + 2iγκ)riA.

• If riN risk-neutral players are routed through
Gi(riA, r

i
N ), then the expected latency along each

used path at the RNWE flow z is 1. The social cost is
C(z) = riN .

The proof is by induction on i. We will recursively con-
struct the instance for i by forming a Braess instance with the
graph resulting for the i − 1 case. At each step we will need
to find a mean latency function that makes the properties in
the statement work.

Proof. For the base case i = 1, we let G1(r1A, r
1
N ) be the

Braess graph, shown in Fig. 1. Indeed, consider any r1A, r
1
N

such that r1A > r1N/2 as indicated in the statement of the
result. We define the mean latency function a1(x) to be any
function that is strictly increasing for x ≥ r1N/2 and such
that a1(r1N/2) = 0 and a1(r1A) = γκ. Note that in order
for a1(x) to be strictly increasing, it is necessary that r1A >
r1N/2, which holds by hypothesis.

The RAWE flow x routes the r1A risk-averse players along
the zig-zag path. Hence, the mean-var objective in the upper-
left and the lower-right edges, as well as the mean latency,
will each be γκ, totalling 1 + 2γκ for each player in both
cases. Hence, C(x) = (1 + 21γκ)r1A. Instead, the RNWE
flow z routes the r1N risk-neutral players along the top and
bottom paths, half and half. Hence, the cost for each player
is 1 and C(z) = r1N , proving the base case.

Let us consider the inductive step where we assume we
have an instance satisfying the properties for i − 1 and con-
struct the instance for step i. Starting from riA and riN
satisfying the condition in the statement for case i, we set
ri−1A = (2iriA − riN )/2i+1 and ri−1N = riN/2. We first
verify that these values satisfy the hypothesis for the case
i − 1. Indeed, ri−1A > 2i−1−1

2i−1 ri−1N because by hypothe-

sis riA > 2i−1
2i riN ⇔

riA
2 > 2i−1

2i+1 r
i
N which implies that

riA
2 −

riN
2i+1 >

2i−1
2i+1 r

i
N − 1

2i+1 r
i
N = 2i−1−1

2i−1

riN
2 .

Using the graph corresponding to step i − 1 and the val-
ues of ri−1A and ri−1N specified previously, we construct graph
Gi(riA, r

i
N ) with those components as shown in Fig. 2. We

define the mean latency function ai(x) to be any function
that is strictly increasing for x ≥ riN/2 and such that

a1(r
i
N/2) = 0 and ai(

riA
2 +

riN
2i+1 ) = 2i−1γκ. Note that

in order for ai(x) to be strictly increasing, it is necessary that
riA
2 +

riN
2i+1 >

riN
2 , which actually holds because, by hypothe-

sis, riA >
2i−1
2i riN ⇔

riA
2 > 2i−1

2i+1 r
i
N .

The RAWE flow x routes the riA risk-averse players as fol-

lows: riA
2 −

riN
2i+1 units along the upper path, r

i
N

2i units along

Figure 2: The recursive construction of Gi(riA, r
i
N ) by form-

ing a Braess graph topology using components of the earlier
step.

the zig-zag path, and riA
2 −

riN
2i+1 units along the lower path.

The mean-var objective of the upper-left and the lower-right
edges, as well as the mean latency, will each be 2i−1γκ since
the flow through them is equal to riA

2 +
riN
2i+1 . The flow inside

each of the copies of Gi−1(ri−1A , ri−1N ) is a RAWE for which
we know, by induction, that all players perceive a path cost
of 1 + 2i−1γκ, which additionally, by induction, is the mean
latency of all used paths. Thus, the path cost that players per-
ceive in Gi(riA, r

i
N ) under the RAWE flow x is 1 + 2iγκ,

which additionally is the mean latency of all used paths, and
the social cost is C(x) = (1 + 2iγκ)riA.

The RNWE flow z routes the riN risk-neutral players along
the top and bottom paths, half and half. Hence, the path
cost for perceived by each player is 1, as the mean-var ob-
jective in the upper-left and lower-right edges is equal to 0,
and, by induction, passing through either of both copies of
Gi−1(ri−1A , ri−1N ) has a mean-var objective of 1. This implies
that C(z) = riN , which completes the proof.

The previous result provides a constructive way to generate
instances with high price of risk aversion. Notice that the
paths of the instances resulting from these constructions have
at most one edge with non-zero variance. This fact is useful
to extend our lower bounds to the mean-stdev model, since in
that case summing and taking square roots is not needed.

Another useful observation is that the prevailing value for
mean latency functions aj under the RNWE flow z is 0, and
under the RAWE flow x is 2j−1. This can be easily proved
by induction and will be used when establishing functional
lower bounds on the PRA in the next section.

We now use the previous result to get lower bounds for
PRA matching the upper bound specified earlier.

Corollary 1. For any n0 ∈ N, there is an instance on a graph
Gwith n ≥ n0 vertices such that its equilibria satisfyC(x) ≥
(1 + γκd(n− 1)/2e)C(z).

Proof. Consider an arbitrary demand d, and apply Theorem 2
with riA = riN = d and i = min{j ∈ N : n0 ≤ 2j} to get
instance Gi(riA, r

i
N ). Consequently, x and z satisfy: C(x)

C(z) =



(1+2iγκ)d
d = 1+γκn2 , because Gi(riA, r

i
N ) has 2i+1 vertices

by construction. The result holds, as n is a power of two.

The previous lower bound together with the upper bound
given in the paragraph after Theorem 1 imply that the PRA
with respect to the set of instances on graphs with up to n
vertices is exactly equal to 1 + γκd(n − 1)/2e when n is a
power of 2. From there, the bound is tight infinitely often.
Although for other values of n the bounds are not tight, they
are close together so these results provide an understanding
of the asymptotic growth of the PRA. We now refine this
observation to the bound in Theorem 1.
Theorem 3. The upper bound for the price of risk-aversion
shown in Theorem 1 and the lower bound shown in Corol-
lary 1 coincide for graphs of size that is a power of 2. Other-
wise, the gap between them is less than 2.

In conclusion, PRA = 1 + ηγκ when the family of in-
stances is defined as graphs with arbitrary mean and variance
functions that admit alternating paths with up to η disjoint for-
ward subpaths, for η equal to a power of 2. We have equality
because the supremum in the definition of PRA is attained by
the instance constructed previously.

4 Functional Bounds
In this section, we turn our attention to instances with mean
latency functions restricted to be in a certain family (as, e.g.,
affine functions). We prove upper and lower bounds for the
PRA that are asymptotically tight as γκ increases. The re-
sults rely on the variational inequality approach that was first
used by Correa et al. [2008] to prove price of anarchy (POA)
bounds for fixed families of functions. This approach was
based on the properties of the allowed functions. Since then,
these properties have been successively refined [Harks, 2011;
Roughgarden and Schoppmann, 2015], and they are now usu-
ally referred to as the local smoothness property. Although
not really needed for the results here, we use the latter termi-
nology since it has become standard by now. To characterize
a family of mean latency functions, we rely on the smooth-
ness property, defined below.
Definition 5 ([Roughgarden and Schoppmann, 2015]). A
function ` : R≥0 → R≥0 is said to be (λ, µ)-smooth around
x ∈ R≥0 if y`(x) ≤ λy`(y) + µx`(x) for all y ∈ R≥0.

Using the previous definition, we construct an upper bound
for the PRA when mean latency functions {`e}e∈E are (1, µ)-
smooth around the RAWE flow xe for all edges e ∈ E. Meir
and Parkes [2015] proved a similar bound using a related ap-
proach in which they generalize the smoothness definition to
biased smoothness which holds with respect to a modified
latency function. In our case, the modified latency function
would be `e + γve. One advantage of our approach is its
simplicity; it is a straightforward generalization of the POA
proof given in Correa et al. [2008]. We provide a proof cor-
responding to our assumptions, matching what is needed to
get our asymptotically-tight lower bounds.
Theorem 4. Consider the set of general instances with mean
latency functions {`e}e∈E that are (1, µ)-smooth around any
RAWE flow xe for all e ∈ E. Then, with respect to that set of
instances, PRA ≤ (1 + γκ) 1

1−µ .

Proof. We consider an instance within the family, a cor-
responding RAWE flow x, and a RNWE flow z. Fur-
ther, we let A = {e ∈ E|xe ≤ ze} and B = {e ∈
E|ze < xe}. Using a variational inequality formulation
for the RAWE, we get

∑
e∈E xe(`e(xe) + γve(xe)) ≤∑

e∈E ze(`e(xe) + γve(xe)) . Partitioning the sum over E
at both sides into terms for A and B, subtracting from
it the inequality

∑
e∈A xeve(xe) +

∑
e∈B xeve(xe) ≥∑

e∈B zeve(xe) , and further bounding ve(xe) by κ`e(xe),
we get that C(x) =

∑
e∈A xe`e(xe) +

∑
e∈B xe`e(xe) ≤∑

e∈A(1+γκ)ze`e(xe)+
∑
e∈B ze`e(xe).Applying the def-

inition of A to the first term and the (1, µ)-smoothness condi-
tion to the second, we get: C(x) ≤

∑
e∈A(1+γκ)ze`e(ze)+∑

e∈B(ze`e(ze)+µxe`e(xe)) ≤ (1+γκ)C(z)+µC(x).

The bound in the previous result is similar to that for the
POA for nonatomic games with no uncertainty. Indeed, the
result there is that POA ≤ (1−µ)−1 , the same without the 1+
γκ factor. The values of (1 − µ)−1 have been computed for
different families of functions in previous work. On the other
hand, for unrestricted functions this value is infinite so the
bound becomes vacuous in that case, which provides support
for the structural analysis of Section 3.

To evaluate the tightness of our upper bounds, we now pro-
pose lower bounds for the PRA. More specifically, we pro-
vide a family of instances indexed by i whose latency func-
tions are (1, µi)-smooth, for µi = 1 − 2−i, for which the
bound is approximately tight. These instances imply lower
bounds equal to 1 + γκ(1− µi)−1 = 1 + γκ2i. First, notice
that although the lower and upper bounds do not match, they
are similar. The difference is whether the 1 is or is not multi-
plied by the µ factor. When the γκ term is large, both bounds
are essentially equal. Second, notice that for large values of
i, necessarily the number of alternations of the longest alter-
nating path must grow exponentially large to simultaneously
match the structural upper bound presented in Theorem 1.

Theorem 5. For any i > 0, letting µi = 1 − 2−i, PRA ≥
1 + γκ(1 − µi)−1 for the family of instances satisfying the
(1, µi)-smoothness property.

Proof sketch. To get the result we use the recursively con-
structed graph Gi of Theorem 2 for riA = riN = 1, but
with the non-constant cost functions satisfying the (1, µi)-
smoothness condition around the RAWE: for 1 ≤ j ≤ i we

let aj(x) = max

{
0, 2j−1γκ

2j−1

2i−1
− 2j−1

2i

(
x− 2j−1

2i

)}
.

In Gi there are 2i parallel paths, i.e. paths not containing
any vertical edge, and 2i− 1 zig-zag paths, i.e. the rest of the
paths. The RNWE flow z splits the unit flow equally along
the 2i parallel paths and each aj gets 2j−1/2i units of flow
and has 0 cost, exactly as in Theorem 2, implying C(z) = 1.
The RAWE flow x splits the unit flow equally along the 2i−1
zig-zag paths and each aj gets 2j−1/(2i−1) units of flow and
has cost equal to 2j−1γκ, exactly as in Theorem 2, implying
C(x) = 1 + 2iγκ, and thus the bound for PRA follows.

To conclude, some technical work is needed for proving
that the aj’s are (1, µi)-smooth around xe for all e. The other
cost functions are constants, thus (1, µi)-smooth.



5 The Mean-Stdev Model
In this section, we turn to the mean-standard deviation model
and prove upper and lower structural bounds on PRA, now
assuming that κ is the maximum coefficient of variation
CVe(fe) among edges, where CV is defined as the ratio be-
tween the standard deviation (stdev) and the mean. The lower
bounds follow from the instances used to prove the lower
bounds in the mean-variance case in Section 3. Consider-
ing families of graphs with up to τ forward disjoint subpaths
and general mean latency and stdev functions, we prove up-
per bounds for the cases τ = {1, 2}, and lower bounds for
arbitrary τ . For τ ≤ 2, both bounds coincide, so the PRA for
the stdev case gets characterized exactly.

Since we are now dealing with standard deviations, we
redefine Qγp(f) = `p(f) + γσp(f), where σp(f) =

(
∑
e∈p σ

2
e(fe))

1/2. Given an instance based on a graph G,
we refer to a RNWE flow by z and to a RAWE flow by y.
Further, we denote the path cost perceived by players at the
RAWE y by Qγ(y) and the expected latencies perceived by
players at the RNWE z byQ0(z). The definition for the price
of risk aversion is analogous to that given in Section 2.

Our first result provides inequalities that relate the social
cost at equilibrium with the perceived utilities. The first part
is known and the second is a generalization.
Proposition 1. For an arbitrary instance, C(z) = d ·Q0(z)
and C(y) ≤ d ·Qγ(y), where d is the traffic demand.

As in Section 3, we partition the edge-set E into two:
A = {e ∈ E : ye ≤ ze} and B = {e ∈ E : ze < ye}.
We assume that all edges in E are used by either flow y or z.
This is without loss of generality because unused edges can
be deleted without any consequence. The definition of B im-
plies that ye > 0 for all e ∈ B, while the assumption im-
plies that ze > 0 for all e ∈ A. To prove an upper bound
on PRA, we rely again on alternating paths, the existence of
which is guaranteed by Lemma 4.5 of Nikolova and Stier-
Moses [2015]. The next result bounds the PRA for graphs
that admit simple alternating paths (i.e., actual s-t paths), or
alternating paths with a single alternation.
Lemma 1. For τ ∈ {1, 2}, considering the set of instances
on general topologies with arbitrary mean latency and stdev
functions that admit alternating paths with τ−1 alternations,
PRA ≤ 1 + τγκ.

Proof sketch. For τ = 1, we simply use the equilibrium
conditions together with the monotonicity of the cost func-
tions and the stdev-to-mean ratio bound. For τ = 2, we let
π = A1-B1-A2 be the alternating path. Figure 3 (c) for η = 1
illustrates the topology of these subpaths.

Consider a RAWE flow y and a flow-carrying path C1-B1-
D1 under y. Using the equilibrium conditions for y, by sep-
arately examining on whether σ2

C1
(y) + σ2

B1
(y) + σ2

D1
(y) ≤

σ2
A1

(y)+σ2
D1

(y), and by using some properties of the square
root we manage to derive in both cases that `C1(y)+`B1(y)+

γ
√
σ2
C1

(y) + σ2
B1

(y) ≤ (1 + γκ)`A1
(y). Using a similar ar-

gument for the path C1-A2 instead of A1-D1, we further de-
rive that `D1

(y)+γσD1
(y) ≤ (1+γκ)`A2

(y)−`B1
(y). Since

path C1-B1-D1 is used under y, Qγ(y) = `C1
(y)+ `B1

(y)+

Figure 3: (a) The Braess graph. (b) The domino-with-ears
graph. (c) A subgraph of a graph admitting an alternating
path with η alternations. Since the edges of the alternating
path receive flow, there must exist paths Ci’s, and Di’s that
bring flow from the source to the edges in Ai’s and Bi’s and
take flow from them and deliver it to the sink, respectively.

`D1
(y)+γ

√
σ2
C1

(y) + σ2
B1

(y) + σ2
D1

(y). Using the inequal-
ities above, Qγ(y) ≤ (1 + γκ)(`A1(z) + `A2(z))− `B1(z).

For the RNWE flow z using the equilibrium conditions we
can derive Q0(z) ≥ `A1(z) + `A2(z) − `B1(z). Combin-
ing it with the inequality above it, the fact that Q0(z) is an
upper bound for both `A1

(z) and `A2
(z), and the definition

of sets A and B we get Qγ(y) ≤ (1 + 2γκ)Q0(z). The re-
sult follows since by Proposition 1: C(y) ≤ d · Qγ(y) ≤
d · (1 + 2γκ)Q0(z) = (1 + 2γκ)C(z).

Lemma 1 for τ = 1 implies that series-parallel graphs sat-
isfy that PRA ≤ 1 + γκ and it is well known that those
graphs can be characterized as not containing the Braess
graph. Along that line, we provide a forbidden minor charac-
terization of Lemma 1 for τ = 2: the topology of instances
for which PRA ≤ 1 + 2γκ is characterized by graphs not
containing the domino-with-ears graph as a minor (Fig 3(b)).
Theorem 6. Instances on general topologies with arbitrary
mean latency and stdev functions that do not have domino-
with-ears as a minor satisfy PRA ≤ 1 + 2γκ.

The proof is by contradiction: Assume that the statement
is false. By Lemma 1, this implies that any alternating path
has at least τ ≥ 2 alternations and thus the graph of Fig. 3(c)
for η = τ lies inside the network. But this is a contradiction
as this graph admits the domino-with-ears as a minor.

The previous proof implies that any graph that has the
domino-with-ears graph as a minor cannot belong to the fam-
ily of instances for which PRA ≤ 1 + 2γκ. Lemma 1 and
Theorem 6 together imply that PRA ≤ 1 + τγκ holds for
the set of instances admitting alternating paths in which the
number of disjoint forward subpaths is not more than τ , for
τ ≤ 2. Although this does not fully generalize Theorem 1 to
the standard deviations case, it is a first step in that direction.

To provide matching lower bounds for the results of this
section, we note that all paths in the proof of Theorem 2 have
at most one edge with nonzero variance. Thus, all the lower
bounds in Section 3 work by reinterpreting the variances as
standard deviations and the variance-to-mean ratios as coeffi-
cients of variation. This is summarized below.
Corollary 2. The upper bounds PRA ≤ 1 + γκ and PRA ≤
1+2γκ corresponding to graphs that admit alternating paths
with 1 and 2 disjoint forward subpaths, respectively, are tight.
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