
2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

2.6 The Fast Fourier Transform
Algorithms (S.Dasgupta, C.H.Papadimitriou, U.V.Vazirani)

Natalia Kotsani
Algorithms and Complexity I, MPLA

January 16, 2014

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Table of contents
2.6.0 Introduction

History of the FFT
Why multiplying polynomials?
Brute-force

2.6.1 An alternative representation of polynomials
An important property
Extended representations
Sketch of the FFT

2.6.2 Evaluation by divide-and-conquer
Point value representation
The recursion
The complex nth roots of unity

2.6.3 Interpolation
Inversion Formula
The FFT algorithm
Transform circuit

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

History of the FFT

History of the FFT

I 1965, publication (J.W. Culey, J.W. Tukey)

I 1963, presentation at IBM (J.W. Tukey)

I late 1930s, usage for hand calculations

I early 1800s, paper on interpolation, in Latin (C.F.Gauss)

J.W Tukey was reluctant to publish FFT because he felt that this
was a simple observation that was probably already known.
Typical of the period: algorithms were considered second class
mathematical objects

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Why multiplying polynomials?

Why multiplying polynomials?

Multiplying polynomials is crucial for signal processing.
A signal is any quantity that is a function of time (capture a human voice by
measuring fluctuations in air pressure, the pattern of stars in the night sky, by

measuring brightness as a function of angle etc.).

In order to extract information from a signal, we need to first digitize it by
sampling and, then, to put it through a system that will transform it. The

output is called the response of the system:

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Why multiplying polynomials?

Why multiplying polynomials?

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Brute-force

Multiplying polynomials: Brute-force
Divide-and-conquer: fast algorithms for multiplying integers and
matrices; next target is polynomials.

(a0 +a1x +...+adxd)·(b0 +b1x +...+bdxd) = c0 +c1x +...+c2dx2d

A(x) · B(x) = C (x)

(1 + 2x + 3x2) · (2 + x + 4x) = 2 + 5x + 12x2 + 11x3 + 12x4

c0 = a0b0 = 2
c1 = a0b1 + a1b0 = 5

c2 = a0b2 + a1b1 + a2b0 = 12

ck = a0bk + a1bk−1 + ... + akb0 =
k∑

i=0

aibk−1

(convolution of the input vectors a and b, denoted c = a⊗ b)

Complexity: Θ(d2)
2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

An important property

An important property

Fact
A degree-d polynomial is uniquely characterized by its values at
any d + 1 distinct points.

We can specify a degree-d polynomial A(x) = a0 + a1x + ... + adxd
by either one of the following:

I Its coefficients a0, a1, ..., ad
I The values A(x0),A(x1), ...,A(xd)

The second is the more attractive for polynomial multiplication!

C (x) = A(x) · B(x)⇒ C (xk) = A(xk) · B(xk), for any point xk

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Extended representations

Extended representations

We must face the problem, however, that
degree(C ) = degree(A) + degree(B)

I if A and B are of degree-bound d, then C is of degree-bound
2d

We must therefore begin with extended point-value representations
for A and for B consisting of 2d point-value pairs each.

Complexity: Θ(d)

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Sketch of the FFT

Sketch of the FFT

We expect the input polynomials, and also their product, to be
specified by coefficients. So we need:

I evaluation: translate from coefficients to values, which is just
a matter of evaluating the polynomial at the chosen points,

I multiplication: in the value representation,

I interpolation: translate back to coefficients.

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Sketch of the FFT

Sketch of the FFT

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Point value representation

Evaluation
Theorem (Uniqueness of an interpolating polynomial)
For any set {(x0, y0), (x1, y1)..., (xn, yn)} of n point-value pairs such that
all the xk values are distinct, there is a unique polynomial A(x) of
degree-bound n such that yk = A(xk) for k = 0, ..., n − 1.

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Point value representation

Alexandre-Théophile Vandermonde (1735-1796)
A.T.Vandermonde was a French musician, mathematician and chemist who worked
with Bézout and Lavoisier; his name is now principally associated with determinant
theory in mathematics. He was born in Paris, and died there.

Vandermonde was a violinist, and became engaged with mathematics only around
1770. In Mémoire sur la résolution des équations (1771) he reported on symmetric
functions and solution of cyclotomic polynomials. In Remarques sur des problemes de
situation (1771) he studied knight’s tours: ”Whatever the twists and turns of a system
of threads in space, one can always obtain an expression for the calculation of its
dimensions, but this expression will be of little use in practice. The craftsman who
fashions a braid, a net, or some knots will be concerned, not with questions of
measurement, but with those of position: what he sees there is the manner in which
the theads are interlaced”.

The same year he was elected to the French Academy of Sciences. Mémoire sur des
irrationnelles de différents ordres avec une application au cercle (1772) was on
combinatorics, and Mémoire sur l’élimination (1772) on the foundations of
determinant theory. These papers were presented to the Académie des Sciences, and
constitute all his published mathematical work.

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Point value representation

Point value representation

Computing a point-value representation for a polynomial given in
coefficient form is in principle straightforward:

I select n distinct points x0, x1, ..., xn
I evaluate A(xk) for k = 0, 1, ..., n

Horners method
A(x0) = a0 + x0(a1 + x0(a2 + ... + x0(an−2 + x0(an−1))...))

Complexity: O(n2).

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Point value representation

Picking the n points
Computing a point-value representation for a polynomial given in
coefficient form is in principle straightforward:

I select n distinct points x0, x1, ..., xn
I evaluate A(xk) for k = 0, 1, ..., n

Horners method
A(x0) = a0 + x0(a1 + x0(a2 + ... + x0(an−2 + x0(an−1))...))

Horners method Complexity: Θ(n)
Evaluation Complexity: Θ(n2)

IF we choose the points xk cleverly, we can accelerate this
computation to run in time Θ(nlgn)!

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Point value representation

Picking the n points
Heres an idea for how to pick the n points at which to evaluate a
polynomial A(x) of degree n − 1: positive-negative pairs

±x1,±x2, ...,±xn/2−1

the even powers of xi coincide with those of xi (overlapping).
I 3 + 4x + 6x2 + 2x3 + x4 + 10x5 = (3 + 6x2 + x4) + x(4 + 2x2 + 10x4)

A(x) = Ae(x2) + xAo(x2)

I Ae(·) polynomial with the even-numbered coefficients (degree ≤ n/2 − 1)

I Ao(·) with the odd-numbered coefficients (degree ≤ n/2 − 1)

I the terms polynomial in parentheses are polynomials in x2

evaluating A(x) at n paired points ±x1,±x2, ...,±xn/2−1 reduces to evaluating
Ae(x) and Ao(x) (which each have half the degree of A(x)) at n/2 points, x2

0 , ..., x
2
n/2−1

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

The recursion

The recursion

The original problem of size n is in this way recast as two
subproblems of size n/2, followed by some linear-time arithmetic.

T (n) = 2T (n2 ) + O(n)

Complexity: O(nlogn)

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

The recursion

The recursion: a problem

The plus-minus trick only works at the top level of the recursion!
How can a square be negative?

The reverse engineering of the process

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

The complex nth roots of unity

The complex nth roots of unity

I the n complex solutions to the equation zn = 1

I the complex numbers 1, ω, ω2, ..., ωn−1 where ω = e2pi/n

I the nth roots are plus-minus paired: ωn/2+j = −ωj

I squaring them produces the (n/2)nd roots of unity.

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

The complex nth roots of unity

The complex nth roots of unity

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Inversion Formula

Inversion Formula
I evaluation is multiplication by M = Mn(ω)
I interpolation is multiplication by M−1 = 1

nMn(ω−1).

The FFT multiplies an arbitrary n-dimensional vector (which we have

been calling the coefficient representation) by the n × n matrix:

where ω is a complex nth root of unity, and n is a power of 2.
Its (j , k)th entry (starting row-count and column-count at zero) is ωjk .

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Inversion Formula

Inversion Formula
I multiplication by M = Mn(ω) maps the kth coordinate axis (the vector

with all zeros except for a 1 at position k) onto the kth column of M

I the columns of M are orthogonal (at right angles) to each other

I the axes of an alternative coordinate system, (Fourier basis, FFT is a rigid rotation)

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

The FFT algorithm

Interpolation - The FFT

coefficients ⇔ values

Complexity: O(nlogn), when {xi} are complex nth roots of unity (1, ω, ..., ωn−1)

〈values〉 = FFT (〈coefficients〉, ω)

Interpolation is the inverse operation:

〈coefficients〉 = 1
nFFT (〈values〉, ω−1)

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

The FFT algorithm

The FFT algorithm

I M’s columns are segregated into evens and odds

I simplified entries in the bottom half of the matrix using ωn/2 = −1 and
ωn = 1

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

The FFT algorithm

The FFT algorithm

the product of Mn(ω) with vector (a0, ..., an−1), a size-n problem, can be

expressed in terms of two size-n/2 problems: the product of Mn/2(ω2) with

(a0, a2, ..., an−2) and with (a1, a3, ..., an−1).

Running time is T (n) = 2T (n/2) + O(n) = O(nlogn).

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Transform circuit

Transform circuit
The divide-and-conquer step of the FFT can be drawn as a very simple circuit.

I the edges are wires carrying complex numbers from left to right

I a weight of j means multiply the number on this wire by ωj

I when two wires come into a junction from the left, the numbers they are
carrying get added up

So the two outputs depicted are executing the commands:

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Transform circuit

Transform circuit

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Transform circuit

Transform circuit

I For n inputs there are log2n levels, each with n nodes, for a total of
n log n operations

I The inputs are arranged in the order specified by the recursion

I The resulting order in binary (000, 100, 010, 110, 001, 101, 011, 111)

is the same as the natural one (000, 001, 010, 011, 100, 101, 110, 111)

except the bits are mirrored

I There is a unique path between each input aj and each output
A(ωk)

I On the path between aj and A(ωk), the labels add up to jkmod8

I the FFT circuit is a natural for parallel computation and direct
implementation in hardware.

2.6 The Fast Fourier Transform



2.6.0 Introduction 2.6.1 An alternative representation of polynomials 2.6.2 Evaluation by divide-and-conquer 2.6.3 Interpolation

Transform circuit

Bibliography

T. Cormen and C. Leiserson and R. Rivest, Introduction to
Algorithms. MIT Press, 1990.

Sanjoy Dasgupta and Christos H. Papadimitriou and Umesh V.
Vazirani, Algorithms. McGraw-Hill, 2008.

Jon Kleinberg and Eva Tardos, Algorithm design. Pearson
Education, 2006.

2.6 The Fast Fourier Transform


	2.6.0 Introduction
	History of the FFT
	Why multiplying polynomials?
	Brute-force

	2.6.1 An alternative representation of polynomials
	An important property
	Extended representations
	Sketch of the FFT

	2.6.2 Evaluation by divide-and-conquer
	Point value representation
	The recursion
	The complex nth roots of unity

	2.6.3 Interpolation
	Inversion Formula
	The FFT algorithm
	Transform circuit


