
Conflict-free coloring with respect to a subset of intervals

Panagiotis Cheilaris∗ Shakhar Smorodinsky†

Abstract

Given a hypergraph H = (V, E), a coloring of its vertices is said to be conflict-free if for
every hyperedge S ∈ E there is at least one vertex in S whose color is distinct from the colors
of all other vertices in S. The discrete interval hypergraph Hn is the hypergraph with vertex
set {1, . . . , n} and hyperedge set the family of all subsets of consecutive integers in {1, . . . , n}.
We provide a polynomial time algorithm for conflict-free coloring any subhypergraph of Hn, we
show that the algorithm has approximation ratio 2, and we prove that our analysis is tight,
i.e., there is a subhypergraph for which the algorithm computes a solution which uses twice the
number of colors of the optimal solution. We also show that the problem of deciding whether
a given subhypergraph of Hn can be colored with at most k colors has a quasipolynomial time
algorithm.

1 Introduction

A hypergraph H is a pair (V, E), where V is a finite set and E is a family of non-empty subsets of
V . We denote by Z+ the set of positive integers and by N the set of non-negative integers.

Definition 1.1. Let H = (V, E) be a hypergraph and let C be a coloring C : V → Z+: We say that
C is a conflict-free coloring (cf-coloring in short) if for every hyperedge e ∈ E there exists a color
i ∈ Z+ such that |e ∩ C−1(i)| = 1. That is, every hyperedge e ∈ E contains some vertex whose
color is unique in e.

The study of cf-coloring was initiated in the work of Even et al. [9] and of Smorodinsky [16]
and was extended by numerous other papers (c.f., [1, 2, 3, 5, 6, 7, 10, 12, 13, 14]). The study
was initially motivated by its application to frequency assignment for cellular networks. A cellular
network consists of two kinds of nodes: base stations and mobile clients. Base stations have fixed
positions, modeled by a finite set of points in the plane, and provide the backbone of the network.
Every base station emits at a fixed frequency. If a client wants to establish a link with a base
station it has to tune itself to this base station’s frequency. Clients, however, can be in the range
of many different base stations. To avoid interference, the system must assign frequencies to base
stations in the following way: For any closed disk d in the plane (representing the communication
range of a client located at the center of this disk), there must be at least one base station which is
contained in d and has a frequency that is not used by any other base station contained in d. Since
frequencies are limited and costly, a scheme that reuses frequencies, where possible, is desirable.

Here is a more general, formal definition: Let P be a set of n points in the plane and let R be a
family of regions in the plane (e.g., all closed discs). We denote by H = HR(P) the hypergraph on
the set P whose hyperedges are all subsets P ′ that can be cut off from P by a region in R. That

∗Department of Informatics, Università della Svizzera italiana, 6900 Lugano, Switzerland. cheilarp@usi.ch
†Mathematics department, Ben-Gurion University, Be’er Sheva 84105, Israel. shakhar@math.bgu.ac.il

1

is, all subsets P ′ such that there exists some region r ∈ R with r ∩ P = P ′. We refer to such a
hypergraph as the hypergraph induced by P with respect to R.

Now, consider the hypergraph induced by a set of n collinear points with respect to the family
of closed disks in the plane. It is not difficult to see that this hypergraph is isomorphic to the
hypergraph induced by a set of n real numbers with respect to the family of closed intervals, which
is also isomorphic to the following discrete interval hypergraph.

Definition 1.2. Let [n] = {1, . . . , n}. For s ≤ t, s, t ∈ [n], we define the (discrete) interval
[s, t] = {i ∈ [n] | s ≤ i ≤ t}. The discrete interval hypergraph Hn has vertex set [n] and hyperedge
set In = {[s, t] | s ≤ t, s, t ∈ [n]}.

It is not difficult to prove that blog2 nc+1 colors are necessary and sufficient in order to cf-color
Hn (see, e.g., [9]). An online variation of this cf-coloring problem in which vertices appear one by
one and the algorithm has to commit to a color for each point as soon as it appears, maintaining
the conflict-free property of the point set at every time, was introduced in [5] and further studied
in [4].

In this paper, we are interested in cf-coloring subhypergraphs of Hn of the following form:
H = ([n], I), where I ⊆ In. Then, H is a hypergraph induced by n points on the real line with
respect to a subset of all possible intervals. Cf-colorings of such hypergraphs were studied in the
online setting in [4]. Katz et al., in [11], claim a 4-approximation polynomial time cf-coloring
for any such hypergraph H (in the offline setting). Studying cf-coloring for subhypergraphs of
geometric hypergraphs can be justified by applications where only a given subset of the hyperedge
set is required to have the conflict-free property.

In section 2, we describe an algorithm for computing cf-colorings for general hypergraphs, based
on hitting sets. In section 3, we show how the above algorithm and an appropriate choice of the
hitting set can give a 2-approximation polynomial time algorithm for cf-coloring a subhypergraph
of the discrete interval hypergraph, improving on the 4-approximation algorithm of Katz et al.
In section 4, we show that the above analysis is tight, i.e., there are subhypergraphs of Hn for
which the algorithm computes a cf-coloring with twice the optimal (minimum) number of colors.
In section 5, we show that the decision problem whether a given subhypergraph of Hn can be cf-
colored with at most k colors has a quasipolynomial time algorithm; this implies that this decision
problem is probably not NP-complete.

2 A hitting-set algorithm for conflict-free coloring

In this section, we present an algorithm for conflict-free coloring a hypergraph. It is based on
repeatedly computing a minimal hitting set in hypergraphs.

Definition 2.1. A hitting set of a hypergraph H = (V, E) is a subset S ⊆ V such that for every
e ∈ E there exists some v ∈ S with v ∈ e. A hitting set S is minimal if for every v ∈ S, S \ {v} is
not a hitting set.

In the literature, a conflict-free coloring is an assignment of colors (positive integers) to the
vertices of the hypergraph. In this work, we introduce and consider a slight variation of conflict-free
coloring, in which we allow some vertices to not be assigned colors, as long as in every hyperedge,
there exists a vertex with assigned color that is uniquely occurring in the hyperedge. In other words,
we allow the coloring function C : V → Z+ in definition 1.1 to be a partial function. Alternatively,
we can use a special color ‘0’ given to vertices that are not assigned any positive color and obtain
a total function C : V → N. Then, we arrive at the following variant of definition 1.1.

2

Definition 2.2. Let H = (V, E) be a hypergraph and let C : V → N: We say that C is a conflict-
free coloring if for every hyperedge S ∈ E there exists a color i ∈ Z+ such that |S ∩ C−1(i)| = 1. We
denote by χcf(H) the minimum integer k for which H admits a cf-coloring with colors in {0, . . . , k}.

Remark 2.3. We claim that this variation of conflict-free coloring, with the partial coloring function
or the placeholder color ‘0’, is interesting from the point of view of applications. As mentioned
in section 1, vertices model base stations in a cellular network. A vertex with no positive color
assigned to it can model a situation where a base station is not activated at all, and therefore the
base station does not consume energy. One can also think of a bi-criteria optimization problem
where a conflict-free assignment of frequencies has to be found with small number of frequencies
(in order to conserve the frequency spectrum) and few activated base stations (in order to conserve
energy).

We describe algorithm 1 for conflict-free coloring any hypergraph H = (V, E).

Algorithm 1 A hitting set algorithm for conflict-free coloring H = (V, E)

`← 0; V 0 ← V ; E0 ← E
while E` 6= ∅ do
S` ← a minimal hitting set for (V `, E`)
color every v ∈ V ` \ S` with color `
V `+1 ← S`

E`+1 ← {e ∩ S` | e ∈ E` and |e ∩ S`| > 1}
`← `+ 1

end while
if V ` 6= ∅ then color every v ∈ V ` with color ` end if

Lemma 2.4. Algorithm 1 terminates.

Proof. At every iteration of the loop, there is some hyperedge e ∈ E` for which |e ∩ S`| = 1. This
follows from the minimality of S`. Thus, |E`| > |E`+1|. Therefore, the number of hyperedges de-
creases at every iteration of the loop, and necessarily reaches zero after a finite number of iterations
of the loop.

Lemma 2.5. Algorithm 1 produces a conflict-free coloring.

Proof. We first show that for every hyperedge e ∈ E , there is some ` for which |e ∩ S`| = 1. Notice
that for every iteration i > 0, we have Si−1 ⊇ Si. If |e ∩ S0| > 1, consider the maximum i for
which |e ∩ Si| > 1. Then, hyperedge e ∩ Si = e ∩ V i+1 belongs to E i+1 and has to be hit by Si+1,
i.e., (e∩Si)∩Si+1 = e∩Si+1 is non-empty and thus |e ∩ Si+1| = 1, because of the maximality of i.

Let v be the one element of e ∩ S`. Vertex v is colored with some color greater than ` by the
algorithm and all other vertices of e are colored with colors which are at most of value `. Thus, e
has the conflict-free property.

3 A 2-approximation algorithm for a set of intervals

We use algorithm 1, described in the previous section, to conflict-free color a subhypergraph of Hn

which is comprised of a given subset I ⊆ In of intervals. It is necessary to specify how to compute
the minimal hitting set.

3

The minimal hitting set S is computed as follows (in fact, we compute a minimum cardinality
hitting set, but we do not need this stronger fact):

First, we compute a special independent set of intervals F ⊆ I (i.e., in F no two intervals
have a common vertex). We compute this independent set F of intervals incrementally.
Initially, there is nothing in the independent set. We scan vertices from 1 to n and we
include in the independent set the interval [i, j] ∈ I with minimum j such that [i, j] does
not intersect anything already in the independent set. After computing F , for every
interval [i, j] ∈ F , we take in S the vertex j (i.e., the maximum or rightmost vertex).

Lemma 3.1. S is a minimal hitting set.

Proof. Set S is a hitting set because no interval is completely contained between two vertices in
S, no interval ends before the first interval in F , and no interval starts after the last interval in
F ; otherwise such intervals would be chosen in the independent set F . Set S is minimal, because
removing any element j of it, means that the interval with right endpoint j in F is not hit any
more.

Remark 3.2. The computation of the maximal (in fact maximum) independent set of intervals given
above is also known as a solution to the activity selection problem. See for example [8, section 16.1].

Notice that the time complexity of the algorithm is O(n log n): We sort the intervals according
to their right endpoints. Then, at every iteration of the loop we can choose the hitting set in linear
time. There is at most a logarithmic number of iterations of the loop, because χcf(H) ≤ χcf(Hn) =
blog2 nc+ 1.

We intend to compare colorings produced by the above algorithm with optimal colorings. We
define recursively the following families of sets of intervals of Z+.

Definition 3.3. Family J1 exactly contains all singleton sets of intervals. For k > 1, set of
intervals I is in family Jk if and only if it can be expressed as a union I = L ∪ R ∪ {ι}, where
both L, R ∈ Jk−1, no interval from L has a common point with an interval from R, and interval ι
includes every interval in L and every interval in R.

We refer to a set of intervals in family Jk as a Jk configuration.

Lemma 3.4. Any conflict-free coloring uses at least k colors for a set of intervals that is a superset
of a Jk configuration.

Proof. We use induction on k. For k = 1, the statement is trivially true. Assume it is true for k,
we will prove it for k+1. Assume, for the sake of contradiction, that there is a conflict-free coloring
C with just k colors of a set of intervals I ′ that is a superset of a Jk+1 configuration I. Then,
by definition of Jk+1, I = L ∪ R ∪ {ι}, where both L, R ∈ Jk, no interval from L has a common
point with an interval from R, and interval ι includes every interval in L and every interval in R.
By the inductive hypothesis, the points contained in intervals of L use k colors and also the points
contained in intervals of R use k colors. The above two pointsets are disjoint and the interval ι
includes both pointsets. As a result, ι is not conflict-free colored, which is a contradiction.

We are now ready to bound the approximation ratio of the proposed algorithm.

Theorem 3.5. The conflict-free coloring algorithm for hypergraphs with respect to a subset of
intervals is a 2-approximation algorithm.

4

Proof. It is enough to prove that if some hyperedge (or interval), say ι, reaches iteration with
` = k− 1 of the loop (i.e., the algorithm uses at least k colors), then the input contains as a subset
a Jdk/2e configuration and moreover this configuration is entirely contained in ι.

We prove it by induction. For k = 1, 2, it is true, because there is at least one interval in
the input, and therefore at least one non-zero color is needed in any optimal coloring. For k > 2,
assume there is a vertex v that gets color k. Then at iteration with ` = k − 1 of the loop there is
an interval ι with its rightmost vertex being v ∈ S` (see figure 1).

u w v

ι

ι′1 ι′2

ι′′1 ι′′2

Figure 1: Intervals in an input using k colors

Since ι was not removed in the previous iteration ` − 1, there were two vertices of ι in S`−1,
say u and v, with u < v. Also, since u and v are in S`−1 there are two intervals with them as
right endpoints in the independent set computed at iteration `− 1, say ι′1 and ι′2. Since ι′2 was not
removed in the iteration `− 2, there were two vertices of ι′2 in S`−2, say w and v, with u < w < v.
Also, since u, w, and v are in S`−2 there are three intervals with them as right endpoints in the
independent set computed at iteration `−2; call ι′′1 the one ending at w and ι′′2 the one ending at v.
Since the three intervals are independent, ι′′1 and ι′′2 start after u, therefore they are fully contained
in ι (which contains u). By the inductive hypothesis, since each of ι′′1, ι′′2 reach iteration `− 2, each
of them entirely contains a Jd(k−2)/2e configuration, and, since ι′′1 and ι′′2 are disjoint, together with
ι they constitute a Jdk/2e configuration.

4 A tight instance for the 2-approximation algorithm

For k ≥ 2, we intend to define an input Ik that is a tight instance for the approximation algorithm,
i.e., an instance that forces the algorithm to use at least twice the number of colors in an optimal
coloring. Before doing that, we define some notation that will prove useful.

Definition 4.1. Given a set of intervals I and a natural number d, we define I+d to be the set of
intervals, where all intervals of I are shifted d to the right, i.e.,

I+d = {[i+ d, j + d] | [i, j] ∈ I}.

Definition 4.2. Given a set of intervals I, we define the length of I, denoted len(I) to be the
rightmost point occurring in any of the intervals of I minus the leftmost point occurring in any of
the intervals of I plus one.

Now, we are ready to proceed with the definition of the tight instance.

Definition 4.3. For k = 2 the input I2 has length equal to four and consists of three intervals.

I2 = {[1, 2], [3, 3], [2, 4]}

5

For k > 2 the input is defined recursively as follows.

Ik+1 = Ik ∪ I
+len(Ik)
k ∪ {[len(Ik)− k + 1, 2len(Ik) + 1]}

Abusing notation, we call the Ik component the left Ik part of Ik+1 and the I
+len(Ik)
k component

the right Ik part of Ik+1. These left and right parts are disjoint. Input I4 is shown in figure 2.
Moreover, in the figure, under the vertices of the input we give the coloring produced by the
2-approximation algorithm and then an optimal conflict-free coloring.

0 1 2 0 0 1 3 0 0 0 1 2 0 0 1 4 0 0 0
1 0 1 2 1 0 1 0 0 1 0 1 2 1 0 1 0 0 0

Figure 2: Input I4, algorithm cf-coloring, and optimal cf-coloring

It is not difficult to see that the length of the instance satisfies the recurrence relation

len(Ik+1) = 2len(Ik) + 1, (1)

which implies, since len(I2) = 4, that len(Ik) = 5 · 2k−2 − 1.

Another notion that will prove useful is the level of each interval in the above instance that we
define in the following.

Definition 4.4. In input I2, intervals [1, 2] and [3, 3] are of level 1 and interval [2, 4] is of level 2.
In the recursively defined instance

Ik+1 = Ik ∪ I
+len(Ik)
k ∪ {[len(Ik)− k + 1, 2len(Ik) + 1]}

the intervals of the Ik part have the same levels as the corresponding intervals in the Ik instance, the

intervals of the I
+len(Ik)
k part have the same levels as the corresponding intervals of the Ik instance

before the ‘+len(Ik)’ operation, and interval [len(Ik)− k + 1, 2len(Ik) + 1] has level k + 1.

In fact, in figure 2 the vertical coordinate of each interval signifies its level, with higher intervals
having higher level.

Lemma 4.5. For k ≥ 3, in Ik, the leftmost point of the level k interval is the same as the rightmost
level 1 interval in the left Ik−1 part of Ik.

Proof. We prove by induction that the rightmost level 1 interval of the left Ik−1 part of Ik is at
position len(Ik−1)−(k−1)+1. For I3, the rightmost level 1 interval of the left I2 part of I3 consists
of point 4− (3− 1) + 1 = 3. By the inductive hypothesis, the rightmost level 1 interval of the left
Ik−1 part of Ik is at len(Ik−1)− (k− 1) + 1. Then for Ik+1, the rightmost level 1 interval of its left
Ik part is at

len(Ik−1)− (k − 1) + 1 + len(Ik−1) = (2len(Ik−1) + 1) + k − 1 = len(Ik) + k − 1.

The last equality is implied by equation (1).

6

Lemma 4.6. Instance Ik contains a Jdk/2e configuration as a subset.

Proof. By induction. It is true for k = 2 and k = 3, because I2 contains a J1 configuration and I3
contains a J2 configuration. For k > 3, in instance Ik, the interval of level k contains completely a
copy of Ik−1, in which two disjoint copies of Ik−2 are contained. By the inductive hypothesis, in each
copy of Ik−2, a Jd(k−2)/2e configuration is contained. These two disjoint Jd(k−2)/2e configurations,
together with the level k interval constitute a Jdk/2e configuration in Ik.

Lemma 4.7. There is a conflict-free coloring of Ik with dk/2e colors.

Proof. We define recursively a coloring of Ik that uses dk/2e colors and we prove by induction that
it is conflict-free.

For k = 2 the coloring is 1010, which can be easily checked to be conflict-free.

If k is odd, take a coloring of Ik−1 and in its rightmost position use color dk/2e, concatenate
a coloring of Ik−1, and then concatenate color ‘0’. By induction, the left Ik−1 part is conflict-free
because we started with a conflict-free coloring and we introduced a new color dk/2e, the right
Ik−1 part is conflict-free because it is colored with a conflict-free coloring. The level k interval is
conflict-free because of color dk/2e that occurs uniquely.

If k is even, with k > 2, take a coloring of Ik−1, concatenate a coloring of Ik−1, and then
concatenate color ‘0’. By induction, the left Ik−1 part is conflict-free because it is colored with a
conflict-free coloring, the right Ik−1 part is conflict-free because it is colored with a conflict-free
coloring. The level k interval is conflict-free because of color dk/2e that occurs in the right Ik−1
part and because its leftmost point, by lemma 4.5, is to the right of the dk/2e color occurring in
the left Ik−2 part of the left Ik−1 part.

Corollary 4.8. An optimal coloring of Ik uses dk/2e colors.

We now describe a family of hypergraphs that arise after the first iteration of the while loop of
the 2-approximation algorithm, if the initial input is Ik.

Definition 4.9. The instance L0 is on one vertex, namely the vertex set is {1}, and contains no
interval, i.e, L0 = {}. The length of instance L0 is defined to be 1. For k > 0, Lk+1 is defined
recursively, as follows.

Lk+1 = Lk ∪ L
+len(Lk)
k ∪ {[len(Lk), 2len(Lk)]}

It is not difficult to see that the length satisfies the recurrence relation len(Lk+1) = 2len(Lk),
which implies len(Lk) = 2k. We say that Lk+1 consists of a left Lk part, a right Lk part, and the
interval [2k, 2k+1].

Proposition 4.10. The 2-approximation algorithm colors Ik with k colors.

Proof. Assume input Ik is given to the 2-approximation algorithm. In the iteration of the while loop
where the algorithm colors points with color ` (` = 0, 1, . . .), the algorithm considers a hypergraph
H`. We will prove that the algorithm considers the hypergraphs

H0 = Ik, H1 = Lk−1, . . . ,Hk−1 = L1, Hk = L0,

and then it terminates, i.e., it uses k colors. We say that Hi is followed by Hi+1, to show that two
hypergraphs Hi, Hi+1 are considered successively by the algorithm, in that order.

First, we prove that for every k ≥ 2, Ik is followed by Lk−1, by induction on k. It is not
difficult to see that, when Ik is considered, the independent set of intervals chosen consists of all

7

level 1 intervals of Ik and the hitting set that is chosen consists of the right endpoints of all level 1
intervals of Ik (a formal proof can be carried out by induction on k). For k = 2 it is not difficult to
check that I2 is followed by L1. For k > 2, Ik consists of a left Ik−1 part which induces a left Lk−2
part and a right Ik part, which induces a right Lk−2 part (we use the inductive hypothesis). From
lemma 4.5, the leftmost point of the level k interval is the same as the rightmost level 1 interval in
the left Ik−1 part of Ik, and therefore the level k interval induces an interval that starts from the
last point of the left Lk−2 part of the hypergraph that follows Ik and ends at the last point of the
right Lk−2 part of the hypergraph that follows Ik. To summarize, the Ik is followed by a left Lk−2
part, a right Lk−2 part and interval [2k−2, 2k−1], i.e., it is Lk−1.

Then, we prove that for k > 0, Lk is followed by Lk−1, by induction on k. For k = 1, it is not
difficult to see that for L1 the interval [1, 2] is chosen and its right endpoint, i.e., 2, makes up the
hitting set. Then, easily, L1 is followed by L0. For k > 1, when Lk is considered, the independent
set of intervals that is chosen consists of the intervals of length two of the left Lk−1 part

{[1, 2], [3, 4], . . . , [2k−1 − 1, 2k−1]}

and the intervals of length two of the right Lk−1 part

{[2k−1 + 1, 2k−1 + 2], [2k−1 + 3, 2k−1 + 4], . . . , [2k − 1, 2k]}.

Therefore the hitting set is

{2, 4, . . . 2k−1} ∪ {2k−1 + 2, 2k−1 + 4, . . . , 2k} = {i : odd | 2 ≤ i ≤ 2k}

and consists of 2k−1 elements. By induction, after removal of the points of the hitting set, the left
Lk−1 part induces a Lk−2 part, and the right Lk−1 part induces a Lk−2 part. The interval [2k−1, 2k]
of Lk contains all points in {2k−1 + 2, 2k−1 + 4, . . . , 2k} of the right Lk−1 part and just point 2k−1

of the left Lk−1 part, and therefore induces [2k−2, 2k−1] in the hypergraph that follows Lk. To
summarize, the Lk is followed by a left Lk−2 part, a right Lk−2 part and interval [2k−2, 2k−1], i.e.,
it is Lk−1.

Finally, we prove that when L0 is reached, no hypergraph follows, and the algorithm terminates.
This is true, because L0 contains no interval (hyperedge).

Remark 4.11. From the above proof of proposition 4.10, it is immediate that if Lk is given as an
input to the 2-approximation algorithm, the following sequence of hypergraphs

H0 = Lk, H1 = Lk−1, . . . ,Hk−1 = L1, Hk = L0

is considered in the iterations of the while loop. Moreover, it can also be proved, with a proof similar
to those of lemmata 4.6 and 4.7, that an optimal coloring for Lk uses dk/2e colors. Therefore, the
family of instances Lk is also a family of tight instances for the 2-approximation algorithm. However,
the family of instances Ik has the additional property that no two intervals in it share a common
right endpoint.

5 A quasipolynomial time algorithm

Consider the decision problem CFSubsetIntervals:

“Given a subhypergraph H = ([n], I) of the discrete interval hypergraph Hn and a
natural number k, is it true that χcf(H) ≤ k?”

8

Notice that the above problem is non-trivial only when k < blog2 nc + 1; if k ≥ blog2 nc + 1 the
answer is always yes, since χcf(Hn) = blog2 nc+ 1.

Algorithm 2 is a non-deterministic algorithm for CFSubsetIntervals.

The algorithm scans points from 1 to n, tries non-deterministically every color in {0, . . . , k}
at the current point and checks if all intervals in I ending at the current point have the conflict-
free property. If some interval in I has not the conflict-free property under a non-deterministic
assignment, the algorithm answers ‘no’. If all intervals in I have the conflict-free property under
some non-deterministic assignment, the algorithm answers ‘yes’.

We check if an interval in I that ends at the current point, say t, has the conflict-free property
in the following space-efficient way. For every color c in {0, . . . , k}, we keep track of:

(a) the closest point to t colored with c in variable pc and

(b) the second closest point to t colored with c in variable sc.

Then, color c is occurring exactly one time in [j, t] ∈ I if and only if sc < j ≤ pc.

Algorithm 2 A non-deterministic algorithm deciding whether χcf(H) ≤ k for H = ([n], I)

for c← 0 to k do
sc ← 0
pc ← 0

end for
for t← 1 to n do

choose c non-deterministically from {0, . . . , k}
sc ← pc
pc ← t
for j ∈ {j | [j, t] ∈ I} do

IntervalConflict ← True
for c← 1 to k do

if sc < j ≤ pc then
IntervalConflict ← False

end if
end for
if IntervalConflict then

return NO
end if

end for
end for
return YES

Lemma 5.1. The space complexity of algorithm 2 is O(log2 n).

Proof. Since k = O(log n) and each point position can be encoded with O(log n) bits, the arrays p
and s (indexed by color) take space O(log2 n). All other variables in the algorithm can be imple-
mented in O(log n) space. Therefore the above non-deterministic algorithm has space complexity
O(log2 n).

Corollary 5.2. CFSubsetIntervals has a quasipolynomial time deterministic algorithm.

9

Proof. By standard computational complexity theory arguments (see, e.g., [15]), we can transform

algorithm 2 to a deterministic algorithm solving the same problem with time complexity 2O(log2 n),
i.e., CFSubsetIntervals has a quasipolynomial time deterministic algorithm.

6 Discussion and open problems

The exact complexity of computing an optimal cf-coloring for a subhypergraph of the discrete
interval hypergraph remains an open problem. We have provided a 2-approximation algorithm.
One might try to improve the approximation ratio, find a polynomial time approximation scheme,
or even find a polynomial time exact algorithm. The last possibility is supported by the fact that
the decision version of the problem, CFSubsetIntervals, is unlikely to be NP-complete, unless
NP-complete problems have quasipolynomial time algorithms.

It would also be interesting to study the complexity of computing optimal conflict-free colorings
for subhypergraphs of other geometric hypergraphs, like the hypergraph induced by a set of n points
in the plane with respect to a given set of closed disks in the plane.

Finally, we introduced a slightly different cf-coloring function C : V → N, for which vertices
colored with ‘0’ can not act as uniquely-colored vertices in a hyperedge. Naturally, one could
try to study the bi-criteria optimization problem, in which there two minimization goals: (a) the
number of colors used, maxv∈V C(v) (minimization of frequency spectrum use) and (b) the number
of vertices with positive colors, |{v ∈ V | C(v) > 0}| (minimization of activated base stations).

Acknowledgments.

We wish to thank Matya Katz and Asaf Levin for helpful discussions concerning the problems
studied in this paper.

References

[1] D. Ajwani, K. Elbassioni, S. Govindarajan, and S. Ray. Conflict-free coloring for rectangle
ranges using Õ(n.382+ε) colors. In Proc. 19th ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), pages 181–187, 2007.

[2] N. Alon and S. Smorodinsky. Conflict-free colorings of shallow discs. Internat. J. Comput.
Geom. Appl., 18(6):599–604, 2008.

[3] A. Bar-Noy, P. Cheilaris, S. Olonetsky, and S. Smorodinsky. Online conflict-free colouring for
hypergraphs. Combin. Probab. Comput., 19:493–516, 2010.

[4] A. Bar-Noy, P. Cheilaris, and S. Smorodinsky. Deterministic conflict-free coloring for intervals:
from offline to online. ACM Transactions on Algorithms, 4(4):44.1–44.18, 2008.

[5] K. Chen, A. Fiat, M. Levy, J. Matoušek, E. Mossel, J. Pach, M. Sharir, S. Smorodinsky,
U. Wagner, and E. Welzl. Online conflict-free coloring for intervals. SIAM J. Comput., 36:545–
554, 2006.

[6] K. Chen, H. Kaplan, and M. Sharir. Online conflict free coloring for halfplanes, congruent
disks, and axis-parallel rectangles. ACM Transactions on Algorithms, 5(2):16.1–16.24, 2009.

10

[7] X. Chen, J. Pach, M. Szegedy, and G. Tardos. Delaunay graphs of point sets in the plane with
respect to axis-parallel rectangles. Random Struct. Algorithms, 34(1):11–23, 2009.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2nd edition, 2001.

[9] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. Conflict-free colorings of simple geometric
regions with applications to frequency assignment in cellular networks. SIAM J. Comput.,
33:94–136, 2003.

[10] S. Har-Peled and S. Smorodinsky. Conflict-free coloring of points and simple regions in the
plane. Discrete Comput. Geom., 34(1):47–70, 2005.

[11] M.J. Katz, N. Lev-Tov, and G. Morgenstern. Conflict-free coloring of points on a line with
respect to a set of intervals. In CCCG ’07: Proc. 19th Canadian Conference on Computational
Geometry, 2007.

[12] N. Lev-Tov and D. Peleg. Conflict-free coloring of unit disks. Discrete Appl. Math.,
157(7):1521–1532, 2009.

[13] J. Pach and G. Tardos. Conflict-free colourings of graphs and hypergraphs. Combin. Probab.
Comput., 18(5):819–834, 2009.

[14] J. Pach and G. Tóth. Conflict free colorings. Discrete & Computational Geometry, The
Goodman-Pollack Festschrift, pages 665–671, 2003.

[15] C. Papadimitriou. Computational Complexity. Addison Wesley, 1993.

[16] S. Smorodinsky. Combinatorial Problems in Computational Geometry. PhD thesis, School of
Computer Science, Tel-Aviv University, 2003.

11

