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Abstract

We investigate the relationship between two kinds of vertex colorings of graphs: unique-
maximum colorings and conflict-free colorings. In a unique-maximum coloring, the colors are
ordered, and in every path of the graph the maximum color appears only once. In a conflict-free
coloring, in every path of the graph there is a color that appears only once. We also study
computational complexity aspects of conflict-free colorings and prove a completeness result.
Finally, we improve lower bounds for those chromatic numbers of the grid graph.
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1 Introduction

In this paper we study two types of vertex colorings of graphs, both related to paths. The first one
is the following:

Definition 1.1. A unique-maximum coloring with respect to paths of G = (V,E) with k colors is a
function C : V → {1, . . . , k} such that for each path p in G the maximum color occurs exactly once
on the vertices of p. The minimum k for which a graph G has a unique-maximum coloring with k
colors is called the unique-maximum chromatic number of G and is denoted by χum(G).

Unique maximum colorings are known alternatively in the literature as ordered colorings or
vertex rankings. The problem of computing unique-maximum colorings is a well-known and widely
studied problem (see e.g. [13]) with many applications including VLSI design [15] and parallel
Cholesky factorization of matrices [16]. The problem is also interesting for the Operations Research
community, because it has applications in planning efficient assembly of products in manufacturing
systems [12]. In general, it seems that the vertex ranking problem can model situations where
interrelated tasks have to be accomplished fast in parallel (assembly from parts, parallel query
optimization in databases, etc.)

The other type of vertex coloring can be seen as a relaxation of the unique-maximum coloring.

Definition 1.2. A conflict-free coloring with respect to paths of G = (V,E) with k colors is a
function C : V → {1, . . . , k} such that for each path p in G there is a color that occurs exactly once
on the vertices of p. The minimum k for which a graph G has a conflict-free coloring with k colors
is called the conflict-free chromatic number of G and is denoted by χcf(G).

Conflict-free coloring of graphs with respect to paths is a special case of conflict-free colorings
of hypergraphs, studied in Even et al. [9] and Smorodinsky [21]. One of the applications of conflict-
free colorings is that it represents a frequency assignment for cellular networks. A cellular network

1



consists of two kinds of nodes: base stations and mobile agents. Base stations have fixed positions
and provide the backbone of the network; they are represented by vertices in V . Mobile agents are
the clients of the network and they are served by base stations. This is done as follows: Every base
station has a fixed frequency; this is represented by the coloring C, i.e., colors represent frequencies.
If an agent wants to establish a link with a base station it has to tune itself to this base station’s
frequency. Since agents are mobile, they can be in the range of many different base stations. To
avoid interference, the system must assign frequencies to base stations in the following way: For
any range, there must be a base station in the range with a frequency that is not used by some other
base station in the range. One can solve the problem by assigning n different frequencies to the n
base stations. However, using many frequencies is expensive, and therefore, a scheme that reuses
frequencies, where possible, is preferable. Conflict-free coloring problems have been the subject
of many recent papers due to their practical and theoretical interest (see e.g. [18, 11, 6, 8, 3]).
Most approaches in the conflict-free coloring literature use unique-maximum colorings (a notable
exception is the ‘triples’ algorithm in [3]), because unique-maximum colorings are easier to argue
about in proofs, due to their additional structure. Another advantage of unique-maximum colorings
is the simplicity of computing the unique color in any range (it is always the maximum color), given
a unique-maximum coloring, which can be helpful if very simple mobile devices are used by the
agents.

For general graphs, finding the exact unique-maximum chromatic number of a graph is NP-
complete [20, 17] and there is a polynomial time O(log2 n) approximation algorithm [5], where n
is the number of vertices. Since the problem is hard in general, it makes sense to study specific
graphs.

The m × m grid, Gm, is the cartesian product of two paths, each of length m − 1, that is,
the vertex set of Gm is {0, . . . ,m − 1} × {0, . . . ,m − 1} and the edges are {{(x1, y1), (x2, y2)} |
|x1 − x2| + |y1 − y2| ≤ 1}. It is known [13] that for general planar graphs the unique-maximum
chromatic number is O(

√
n). Grid graphs are planar and therefore the O(

√
n) bound applies. One

might expect that, since the grid has a relatively simple and regular structure, it should not be hard
to calculate its unique-maximum chromatic number. This is why it is rather striking that, even
though it is not hard to show upper and lower bounds that are only a small constant multiplicative
factor apart, the exact value of these chromatic numbers is not known, and has been the subject
of [1, 2].

Paper organization. In the rest of this section we provide the necessary definitions and some
earlier results. In section 2, we prove that it is coNP-complete to decide whether a given vertex
coloring of a graph is conflict-free with respect to paths. In section 3, we show that for every graph
χum(G) ≤ 2χcf(G)− 1 and provide a sequence of graphs for which the ratio χum(G)/χcf(G) tends to
2. In section 4, we introduce two games on graphs that help us relate the two chromatic numbers
for the square grid graph. In section 5, we show a lower bound on the unique-maximum chromatic
number of the square grid graph, improving previous results. Conclusions and open problems are
presented in section 6.

1.1 Preliminaries

Note that definition 1.1 is not the typical definition found in the literature. Instead the more
standard definition is the following.

Definition 1.3. A unique-maximum k-coloring (with respect to paths) of a graph G is a function
C : V (G) → {1, . . . , k} such that for every pair of distinct vertices v, v′, and every path p from v
to v′, if C(v) = C(v′), there is an internal vertex v′′ of p such that C(v) < C(v′′).
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It is not hard to show that the two definitions are equivalent (see, for example, [13]).

Definition 1.4. A graph X is a minor of Y , denoted as X 4 Y , if X can be obtained from Y by
a sequence of the following three operations: vertex deletion, edge deletion, and edge contraction.
Edge contraction is the process of merging both endpoints of an edge into a new vertex, which is
connected to all vertices adjacent to the two endpoints.

It is not difficult to prove, with the help of a recoloring argument, that the unique maximum
chromatic number is monotone with respect to minors (see for example [4], lemma 4.3). We
reproduce a proof here.

Proposition 1.5. If X 4 Y , then χum(X) ≤ χum(Y ).

Proof. Given a unique-maximum coloring C of G, if G′ results from G after one of the three graph
minor operations, then there is a unique-maximum coloring C ′ of G′ with at most the number of
colors of C. For the vertex and edge deletion operations, just set C ′ to be the restriction of C
on G. Then, C ′ is unique-maximum, because G′ contains a subset of the simple paths of G. For
the edge contraction operation, say along edge {x, y}, which gives rise to the new vertex vxy, set
C ′(vxy) = max(C(x), C(y)), and for every other vertex v of G′, set C ′(v) = C(v). If a path of G′

does not contain vxy, then it has the unique-maximum property, because the same path with the
same coloring exists in G. If a path p′ of G′ contains vxy, then there is a path p in G with the
same vertex set as p′, except of course vxy, which is replaced by at least one of x, y in p. Because
of the choice of color of vxy in C ′, if p has the unique-maximum property then also p′ has the
unique-maximum property. Therefore, C ′ is unique-maximum.

The above proof implies a specific process to transform a coloring of a graph G when applying
one of the graph minor operations, so that the coloring remains unique-maximum for the resulting
graph: if you delete a vertex or an edge, leave the coloring as it is in the remaining vertices, and if
you contract an edge give to the resulting vertex the maximum color of the two endpoints of the
edge and leave the rest of the coloring as it is in the remaining vertices. Here is a lemma that will
be useful in proving lower bounds on the unique-maximum chromatic number.

Lemma 1.6. Assume C is an optimal unique-maximum coloring of G and after a sequence of graph
minor operations you get coloring C ′ of G′. If C ′ is using x colors less than C, then χum(G) ≥
χum(G′) + x.

Proof. Since C ′ is a unique-maximum coloring of G′, we have χum(G′) ≤ χum(G)− x.

The (traditional) chromatic number of a graph is denoted by χ(G) and is the smallest number
of colors in a vertex coloring for which adjacent vertices are assigned different colors. A simple
relation between the chromatic numbers we have defined so far is the following.

Proposition 1.7. For every graph G, χ(G) ≤ χcf(G) ≤ χum(G).

Proof. Since every unique-maximum coloring is also a conflict-free coloring, we have χcf(G) ≤
χum(G). A traditional coloring can be defined as a coloring in which paths of length one are conflict-
free. Therefore every conflict-free coloring is also a traditional coloring and thus χ(G) ≤ χcf(G).

Moreover, we prove that both conflict-free and unique-maximum chromatic numbers are mono-
tone under taking subgraphs.

Proposition 1.8. If X ⊆ Y , then χcf(X) ≤ χcf(Y ) and χum(X) ≤ χum(Y ).
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Proof. Take the restriction of any conflict-free or unique-maximum coloring of graph Y to the vertex
set V (X). This is a conflict-free or unique maximum coloring of graph X, respectively, because the
set of paths of graph X is a subset of all paths of Y .

If v is a vertex (resp. S is a set of vertices) of graph G = (V,E), denote by G− v (resp. G−S)
the graph obtained from G by deleting vertex v (resp. vertices of S) and adjacent edges.

Definition 1.9. A subset S ⊆ V is a separator of a connected graph G = (V,E) if G − S
is disconnected or empty. A separator S is inclusion minimal if no proper subset S′ ⊂ S is a
separator.

2 Deciding whether a coloring is conflict-free

In this section, we show a difference between the two chromatic numbers χum and χcf , from the com-
putational complexity aspect. For the notions of complexity classes, hardness, and completeness,
we refer, for example, to [19].

As we mentioned before, in [20, 17], it is shown that computing χum for general graphs is NP-
complete. To be exact the following problem is NP-complete: “Given a graph G and an integer
k, is it true that χum(G) ≤ k?”. The above fact implies that it is possible to check in polynomial
time whether a given coloring of a graph is unique-maximum with respect to paths. We remark
that both the conflict-free and the unique-maximum properties have to be true in every path of
the graph. However, a graph with n vertices can have exponential in n number of distinct sets of
vertices, each one of which is a vertex set of a simple path in the graph. For unique-maximum
colorings we can find a shortcut as follows: Given a (connected) graph G and a vertex coloring of
it, consider the set of vertices S of unique colors. Let u, v ∈ V \ S such that they both have the
maximum color that appears in V \ S. If there is a path in G − S from u to v, then this path
violates the unique maximum property. Therefore, S has to be a separator in G, which can be
checked in polynomial time, otherwise the coloring is not unique-maximum. If G−S is not empty,
we can proceed analogously for each of its components. For conflict-free colorings there is no such
shortcut, unless coNP = P, as the following theorem implies.

Theorem 2.1. It is coNP-complete to decide whether a given graph and a vertex coloring of it is
conflict-free with respect to paths.

Proof. In order to prove that the problem is coNP-complete, we prove that it is coNP-hard and
also that it belongs to coNP.

We show coNP-hardness by a reduction from the complement of the Hamiltonian path problem.
For every graph G, we construct in polynomial time a graph G∗ of polynomial size together with a
coloring C of its vertices such that G has no Hamiltonian path if and only if C is conflict-free with
respect to paths of G∗.

Assume the vertices of graph G are v1, v2, . . . , vn. Then, graph G∗ consists of two isomorphic
copies of G, denoted by Ĝ and Ǧ, with vertex sets v1, v2, . . . , vn and v1, v2, . . . , vn, respectively.
Additionally, for every 1 ≤ i ≤ n, G∗ contains the path

Pi = vi, vi,1, vi,2, . . . , vi,i−1, vi,i+1, . . . , vi,n, vi,

where, for every i, vi,1, vi,2, . . . , vi,i−1, vi,i+1, . . . , vi,n are new vertices. We use the following notation
for the two possible directions to traverse this path:

P ↓i = (vi,1, . . . , vi,i−1, vi,i+1, . . . , vi,n),

4



P ↑i = (vi,n, . . . , vi,i+1, vi,i−1, . . . , vi,1).

We call paths Pi connecting paths.
We now describe the coloring of V (G∗). For every i, we set C(vi) = C(vi) = i. For every i > j,

we set C(vi,j) = C(vj,i) = n+
(
i−1
2

)
+ j. Observe that every color occurs exactly in two vertices of

G∗.
If G has a Hamiltonian path, say v1v2 . . . vn, then there is a path through all vertices of G∗,

either
v1P

↓
1 v1v2P

↑
2 v2 . . . vn−1P

↓
n−1vn−1vnP

↑
nvn, if n is even,

or
v1P

↓
1 v1v2P

↑
2 v2 . . . vn−1P

↑
n−1vn−1vnP

↓
nvn, if n is odd.

But then, this path has no uniquely occurring color and thus C is not conflict-free.
Suppose now that C is not a conflict-free coloring. We prove that G has a Hamiltonian path.
By the assumption, there is a path P in G∗ which is not conflict-free. This path must contain

none or both vertices of each color. Therefore, P can not be completely contained in Ĝ, or in Ǧ, or
in some Pi. Also, P can not contain only one of vi and vi, for some i. Therefore, P must contain
both vi and vi for a non-empty subset of indices i.

Then, it must contain completely some Pi, because vertices in Ĝ and Ǧ can only be connected
with some complete Pi. But since each one of the n − 1 colors of this Pi occurs in a different
connecting paths, P must contain a vertex in every connecting path. But then P must contain
every vi and vi, because vertices in Pi can only be connected to the rest of the graph through one
of vi or vi.

Suppose that P is not a Hamiltonian path of G∗. Observe that if P does not contain all vertices
of some connecting path Pi, then one of its end vertices should be there. If P does not contain
vertex vi,j , then it can not contain vj,i either. But then one end vertex of P should be on Pi, the
other one on Pj , and all other vertices of G∗ are on P . Therefore, we can extend P such that it
contains vi,j and vj,i as well. So assume in the sequel that P is a Hamiltonian path of G∗.

Now we modify P , if necessary, so that both of its end-vertices e and f lie in V (Ĝ) ∪ V (Ǧ).
If e and f are adjacent in G∗, then add the edge ef to P and we get a Hamiltonian cycle of G∗.
Now remove one of its edges which is either in Ĝ, or in Ǧ and get the desired Hamiltonian path.
Suppose now that e and f are not adjacent, and e is on one of the connecting paths. Then e should
be adjacent to the end vertex e′ of that connecting path, which is in Ĝ or in Ǧ. Add edge ee′ to
P . We get a cycle and a path joined in e′. Remove the other edge of the cycle adjacent to e′. We
have a Hamiltonian path now, whose end vertex is e′ instead of e. Proceed analogously for f , if
necessary.

Now we have a Hamiltonian path P of G∗ with end-vertices in V (Ĝ)∪V (Ǧ). Then, P is in the
form, say,

v1P
↓
1 v1v2P

↑
2 v2 . . . vn−1P

↓
n−1vn−1vnP

↑
nvn, if n is even,

or
v1P

↓
1 v1v2P

↑
2 v2 . . . vn−1P

↑
n−1vn−1vnP

↓
nvn, if n is odd.

But then, v1v2 . . . vn is a Hamiltonian path in G.
Finally, the problem is in coNP because one can verify that a coloring of a given graph is not

conflict-free in polynomial time, by giving the corresponding path.

We also show an example graph G, its transformation graph G∗, and its coloring C in figure 1.

5



v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

v1,2

v1,3

v1,4

v2,1

v2,3

v2,4

v3,1

v3,2

v3,4

v4,1

v4,2

v4,3

1 2 3 4

1 2 3 4

5

6

8

5

7

9

6

7

10

8

9

10

Figure 1: Example graph G, its transformation G∗, and coloring C of G∗

3 The two chromatic numbers of general graphs

We have seen that χum(G) ≥ χcf(G) (proposition 1.7). In this section we show that χum(G) can not
be larger than an exponential function of χcf(G). We also provide an infinite sequence of graphs
H1, H2, . . . , for which limk→∞(χum(Hk)/χcf(Hk)) = 2.

The path of n vertices is denoted by Pn. It is known that χum(Pn) = blog2 nc + 1 (see for
example [9]).

Lemma 3.1. For every path Pn, χcf(Pn) = blog2 nc+ 1.

Proof. By proposition 1.7, χcf(Pn) ≤ χum(Pn). We prove a matching lower bound by induction.
We have χcf(P1) ≥ 1. For n > 1, there is a uniquely occurring color in any conflict-free coloring of
the the whole path Pn. Then, χcf(Pn) ≥ 1 + χcf(Pbn/2c), which implies χcf(Pn) ≥ blog2 nc+ 1.

Moreover, we are going to use the following result (lemma 5.1 of [13]): If the longest path of G
has k vertices, then χum(G) ≤ k.

Proposition 3.2. For every graph G, χum(G) ≤ 2χcf(G) − 1.

Proof. Set j = χcf(G). Since χcf(G) ≤ j, for any path P ⊆ G, χcf(P ) ≤ j, therefore, by lemma 3.1,
the longest path has at most 2j − 1 vertices, so by lemma 5.1 of [13], χum(G) ≤ 2j − 1.

We define recursively the following sequence of graphs: Graph H0 is a single vertex. Suppose
that we have already defined Hk−1. Then Hk consists of (a) a K2k+1−1, (b) 2k+1 − 1 copies of Hk−1,
and (c) for for each i, 1 ≤ i ≤ 2k+1 − 1, the i-th vertex of the K2k+1−1 is connected by an edge to
one of the vertices of the i-th copy of Hk−1.

Lemma 3.3. For k ≥ 0, χcf(Hk) = 2k+1 − 1.

Proof. By induction on k. For k = 0, χcf(H0) = 1. For k > 0, we have Hk ⊇ K2k+1−1, therefore,
χcf(Hk) ≥ 2k+1 − 1.

In order to prove that χcf(Hk) ≤ 2k+1− 1, it is enough to describe a conflict-free coloring of Hk

with 2k+1− 1 colors, given a conflict-free coloring of Hk−1 with 2k− 1 colors: We color the vertices
of the clique K2k+1−1 with colors 1, 2, . . . , 2k+1 − 1 such that the i-th vertex is colored with color
i. Consider these colors mod 2k+1 − 1, e. g. color 2k+1 is identical to color 1. Recall that the i-th
copy of Hk−1 has a vertex connected to the i-th vertex of K2k+1−1, and by induction we know that
χcf(Hk−1) = 2k − 1. Color the i-th copy of Hk−1, with colors i+ 1, i+ 2, . . . , i+ 2k − 1.

We claim that this vertex coloring of Hk is conflict-free. If a path is completely contained
in a copy of Hk−1, then it is conflict-free by induction. If a path is completely contained in the
clique K2k+1−1, then it is also conflict-free, because all colors in the clique part are different. If a
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path contains vertices from a single copy of Hk−1, say, the i-th copy, and the clique, then the i-th
vertex of the clique is on the path and uniquely colored. The last case is when a path contains
vertices from exactly two copies of Hk−1. Suppose that these are the i-th and j-th copies of Hk−1,
1 ≤ i < j ≤ 2k+1 − 1. If i + 2k − 1 < j, then color j is unique in the path; indeed, the i-th copy
of Hk−1 is colored with colors i+ 1, . . . i+ 2k − 1, and the j-th copy of Hk−1 is colored with colors
j + 1, . . . j + 2k − 1, while color j appears only once in K2k+1−1. Similarly, if i + 2k − 1 ≥ j, then
color i is unique in the path.

Lemma 3.4. χum(Hk) ≤ 2k+2 − k − 3.

Proof. By induction. For k = 0, χum(H0) = 1. For k > 0, in order to color Hk use the 2k+1 − 1
different highest colors for the clique part. By the inductive hypothesis χum(Hk−1) ≤ 2k+1− k− 2.
For each copy of Hk−1, use the same coloring with the 2k+1 − k − 2 lowest colors. This coloring of
Hk is unique maximum. Indeed, if a path is contained in a copy of Hk−1 then it is unique maximum
by induction, and if it contains a vertex in the clique part, then it is also unique maximum. The
total number of colors is 2k+2 − k − 3.

Lemma 3.5. If Y is a graph that consists of a K` and ` isomorphic copies of a connected graph
X, such that for 1 ≤ i ≤ ` a vertex of it i-th copy is connected to the i-th vertex of K` by an edge.
Then we have χum(Y ) ≥ `− 1 + χum(X)

Proof. By induction on `. For ` = 1, we have that χum(Y ) ≥ χum(X), because Y ⊇ X. For the
inductive step, for ` > 1, if Y consists of a Kl and ` copies of X, then Y is connected, and thus
contains a vertex v with unique color. But then, Y − v ⊇ Y ′, where Y ′ is a graph that consists of
a K`−1 and `− 1 isomorphic copies of a X, each connected to a different vertex of K`−1, and thus
χum(Y ) = 1 + χum(Y ′) ≥ `− 1 + χum(X).

Lemma 3.6. χum(Hk) ≥ 2k+2 − 2k − 3.

Proof. By induction. For k = 0, χum(H0) = 1. For k > 0, by the inductive hypothesis and
lemma 3.5, χum(Hk) ≥ 2k+1 − 1− 1 + 2k+1 − 2(k − 1)− 3 = 2k+2 − 2k − 3

Theorem 3.7. We have limk→∞(χum(Hk)/χcf(Hk)) = 2.

Proof. From lemmas 3.3, 3.4, 3.6, we have

2k+2 − 2k − 3
2k+1 − 1

≤ χum(Hk)
χcf(Hk)

≤ 2k+2 − k − 3
2k+1 − 1

which implies that the ratio tends to 2.

4 The two chromatic numbers of a square grid

In this section, we define two games on graphs, each played by two players. The first game char-
acterizes completely the unique-maximum chromatic number of the graph. The second game is
related to the conflict-free chromatic number of the graph. We use the two games to prove that the
conflict-free chromatic number of the square grid is a function of the unique-maximum chromatic
number of the square grid. This is useful because it allows to translate existing lower bounds on
the unique-maximum chromatic number of the square grid to lower bounds on the corresponding
conflict-free chromatic number.

The first game is the connected component game. It is played on a graph G by two players.
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i← 0; G0 ← G
while V (Gi) 6= ∅:

increment i by 1
Player 1 chooses a connected component Si of Gi−1

Player 2 chooses a vertex vi ∈ Si
Gi ← Gi−1[Si \ {vi}]

The game is finite, because if Gi is not empty, then Gi+1 is a strict subgraph of Gi. The result
of the game is its length, that is, the final value of i. Player 1 tries to make the final value of i as
large as possible and thus is the maximizer player. Player 2 tries to make the final value of i as
small as possible and thus is the minimizer player. If both players play optimally, then the result
is the value of the connected component game on graph G, which is denoted by vcs(G).

Proposition 4.1. In the connected component game, there is a strategy for player 2 (the mini-
mizer), so that the result of the game is at most χum(G), i.e., vcs(G) ≤ χum(G).

Proof. By induction on χum(G): If χum(G) = 0, i.e., the graph is empty, the value of the game is
0. If χum(G) = k > 0, then in the first turn some connected component S1 is chosen by player 1.
Then, the strategy of player 2 is to take an optimal unique-maximum coloring C of G and choose
a vertex v1 in S1 that has a unique color in S1. Then, G1 = G[S1 \ {v1}] ⊂ G0 and the restriction
of C to S1 \ {v1} is a unique-maximum coloring of G1 that is using at most k − 1 colors. Thus,
χum(G1) ≤ k − 1, and by the inductive hypothesis player 2 has a strategy so that the result of the
game on G1 is at most k − 1. Therefore, player 2 has a strategy so that the result of the game on
G0 = G is at most 1 + k − 1 = k.

Lemma 4.2. For every v ∈ V (G), χum(G− v) ≥ χum(G)− 1

Proof. Assume for the sake of contradiction that there exists a v ∈ V (G) for which χum(G− v) <
χum(G)− 1. Then an optimal coloring of G− v can be extended to a coloring of G, where v has a
new unique maximum color. Therefore there is a coloring of G that uses less than χum(G)−1+1 =
χum(G) colors; a contradiction.

Proposition 4.3. In the connected component game, there is a strategy for player 1 (the maxi-
mizer), so that the result of the game is at least χum(G), i.e., vcs(G) ≥ χum(G).

Proof. By induction on χum(G): If χum(G) = 0, i.e., the graph is empty, the result of the game is
zero. If χum(G) = k > 0, the strategy of player 1 is to choose a connected component S1 such that
χum(G[S1]) = k. For every choice of v1 by Player 2, by lemma 4.2, χum(G1) ≥ k − 1, and thus, by
the inductive hypothesis player 1 has a strategy so that the result of the game on G1 is at least
k − 1. Therefore, the result of the game on G0 = G is at least 1 + k − 1 = k.

Corollary 4.4. For every graph, vcs(G) = χum(G).

The second game is the path game.

i← 0; G0 ← G
while V (Gi) 6= ∅:

increment i by 1
Player 1 chooses the set of vertices Si of a path of Gi−1

Player 2 chooses a vertex vi ∈ Si
Gi ← Gi−1[Si \ {vi}]
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The only difference with the connected component game is that in the path game the vertex
set Si that maximizer chooses is the vertex set of a path of the graph Gi−1. If both players play
optimally, then the result is the value of the path game on graph G, which is denoted by vp(G).

Proposition 4.5. In the path game, there is a strategy for player 2 (the minimizer), so that the
result of the game is at most χcf(G), i.e., vp(G) ≤ χcf(G).

Proof. By induction on χcf(G): If χcf(G) = 0, i.e., the graph is empty, the value of the game is 0.
If χcf(G) = k > 0, then in the first turn some vertex set S1 of a path of G is chosen by player 1.
Then, the strategy of player 2 is to find an optimal conflict-free coloring C of G and choose a vertex
v1 in S1 that has a unique color in S1. Then, G1 = G[S1 \ {v1}] ⊂ G0 and the restriction of C to
S1 \ {v1} is a conflict-free coloring of G1 that is using at most k− 1 colors. Thus, χcf(G1) ≤ k− 1,
and by the inductive hypothesis player 2 has a strategy so that the result of the game is at most
k−1. Therefore, player 2 has a strategy so that the result of the game is at most 1+k−1 = k.

A proposition analogous to 4.3 for the path game is not true. For example, for the complete
binary tree of four levels (with 15 vertices, 8 of which are leaves), B4, it is not difficult to check
that vp(B4) = vp(P7) = 3, but χcf(B4) = 4.

Now, we are going to concentrate on the square grid graph. Assume that m is even. We intend
to translate a strategy of player 1 (the maximizer) on the connected component game for graph
Gm/2 to a strategy for player on the path game for graph Gm.

Observe that for every connected graph G, there is an ordering of its vertices, v1, v2, . . . , vn such
that the subgraph induced by the first k vertices (for every 1 ≤ k ≤ n) is also connected. Just pick
a vertex to be v1, and add the other vertices one by one such that the new vertex vi is connected
to the graph induced by v1, . . . , vi−1. This is possible, since G itself is connected. We call such an
ordering of the vertices an always-connected ordering.

Now we decompose the vertex set of Gm into groups of four vertices,

Qx,y = {(2x, 2y), (2x+ 1, 2y), (2x, 2y + 1), (2x+ 1, 2y + 1)},

for 0 ≤ x, y < m/2, called special quadruples, or briefly quadruples. LetWm = {Qx,y | 0 ≤ x, y < m/2}
and let τ(x, y) = Qx,y, a bijection between vertices of V (Gm/2) and Wm. Extend τ for subsets of
vertices of Gm/2 in a natural way, for any S ⊆ V (Gm/2), τ(S) =

⋃
(x,y)∈S τ(x, y). Define also a

kind of inverse τ ′ of τ as τ ′(x, y) = (bx/2c, by/2c) for any 0 ≤ x, y < m, and for any S ⊆ V (Gm),
τ ′(S) = {τ ′(x, y) | (x, y) ∈ S}.

Let (x, y) ∈ V (Gm/2). We call vertices (x, y + 1), (x, y − 1), (x − 1, y), and (x + 1, y), if they
exist, the upper, lower, left, and right neighbors of (x, y), respectively. Similarly, quadruples Qx,y+1,
Qx,y−1, Qx−1,y, and Qx+1,y the upper, lower, left, and right neighbors of Qx,y, respectively.

Quadruple Qx,y induces four edges in Gm, {(2x+1, 2y), (2x+1, 2y+1)}, {(2x, 2y), (2x, 2y+1)},
{(2x, 2y), (2x, 2y + 1)}, {(2x + 1, 2y), (2x + 1, 2y + 1)}, we call them upper, lower, left, and right
edges of Qx,y.

By direction d, we mean one of the four basic directions, up, down, left, right. For a given set
S ⊆ V (Gm/2), we say that v ∈ S is open in S in direction d, if its neighbor in direction d is not in
S. In this case we also say that τ(v) is open in τ(S) in direction d.

Lemma 4.6. If S induces a connected subgraph in Gm/2, then there is a path in Gm whose vertex
set is τ(S).

Proof. We prove a stronger statement: If S induces a connected subgraph in Gm/2, then there is a
cycle C in Gm whose vertex set is τ(S), and if v ∈ S is open in direction d in S, then C contains
the d-edge of τ(v).
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The proof is by induction on |S| = k. For k = 1, τ(S) is one quadruple and we can take its four
edges.

Suppose that the statement has been proved for |S| < k, and assume that |S| = k. Consider an
always-connected ordering v1, v2, . . . , vk of S. Let S′ = S \ vk. By the induction hypothesis, there
is a cycle C ′ satisfying the requirements. Vertex vk has at least one neighbor in S′, say, vk is the
neighbor of vi in direction d. But then, vi is open in direction d in S′, therefore, C ′ contains the
d-edge of τ(vi). Remove this edge from C ′ and substitute by a path of length 5, passing through
all four vertices of τ(vk). The resulting cycle, C, contains all vertices of τ(S), it contains each edge
of τ(vk), except the one in the opposite direction to d, and it contains all edges of C ′, except the
d-edge of τ(vk), but vk is not open in S in direction d. This concludes the induction step, and the
proof.

Proposition 4.7. For every m > 1, vp(Gm) ≥ vcs(Gbm/2c).

Proof. Assume, without loss of generality that m is even (if not work with graph Gm−1 instead).
In order, to prove that vp(Gm) ≥ vcs(Gbm/2c) it is enough, given a strategy for player 1 in the
connected set game for Gm/2, to construct a strategy for player 1 (the maximizer) in the path
game for Gm, so that the result of the path game is at least as much as the result of the connected
set game. We present the argument as if player 1, apart from the path game, plays in parallel a
connected set game on Gm/2 (for which player 1 has a given strategy to choose connected sets in
every round), where player 1 also chooses the moves of player 2 in the connected set game.

At round i of the path game on Gm, player 1 simulates round i of the connected set game on
Gm/2. At the start of round i, player 1 has a graph Gi−1 ⊆ Gm in the path game and a graph
Ĝi−1 ⊆ Gm/2 in the connected set game. Player 1 chooses a set Ŝi in the simulated connected
set game from his given strategy, and then constructs the path-spanned set Si = τ(Ŝi) (by lemma
4.6) and plays it in the path game. Then player 2 chooses a vertex vi ∈ Si. Player 1 computes
v̂i = τ ′(vi) and simulates the move v̂i of player 2 in the connected set game. This is a legal move
for player 2 in the connected set game because v̂i ∈ Ŝi.

We just have to prove that Si = τ(Ŝi) is a legal move for player 1 in the path game, i.e.,
Si ⊆ V (Gi−1). We also have to prove Si = τ(Ŝi) is spanned by a path in Gi−1 but this is always
true by lemma 4.6, since Ŝi is a connected vertex set in Ĝi−1. Since Si ⊆ τ(V (Ĝi−1)), it is
enough to prove that at round i, τ(V (Ĝi−1)) ⊆ V (Gi−1). The proof is by induction on i. For
i = 1, G0 = Gm, Ĝ0 = Gm/2, and thus τ(V (Ĝ0)) = V (G0). At the start of round i with i > 1,
τ(V (Ĝi−1)) ⊆ V (Gi−1), by the inductive hypothesis. Then, τ(Ŝi) = Si and τ(Ŝi \ {v̂i}) = τ(Ŝi) \
τ(v̂i) = Si \ τ(v̂i) ⊆ Si \ {vi}, because vi ∈ τ(v̂i). Thus, τ(V (Ĝi−1[Ŝi \ {v̂i}])) ⊆ V (Gi−1[Si \ {vi}]),
i.e., τ(V (Ĝi)) ⊆ V (Gi).

Theorem 4.8. For every m > 1, χcf(Gm) ≥ χum(Gbm/2c).

Proof. By proposition 4.5, χcf(Gm) ≥ vp(Gm), by proposition 4.7, vp(Gm) ≥ vcs(Gbm/2c), and by
proposition 4.3, vcs(Gbm/2c) ≥ χum(Gbm/2c).

5 Lower bounds on the chromatic numbers of the square grid

In this section, we prove an asymptotic lower bound of 5m/3 on the unique-maximum chromatic
number of the m×m grid graph. In any unique-maximum coloring of a connected graph G the set
of vertices U with uniquely occurring colors in G must be a separator. Some subset of U must be an
inclusion minimal separator, i.e., in every unique-maximum coloring of a connected graph G, there
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is an inclusion minimal separator with uniquely colored vertices. Our method for proving a lower
bound on χum(Gm) will be the following. We will consider all possible optimal unique-maximum
colorings of Gm. For each optimal coloring C, we will argue about the form of inclusion minimal
separators with uniquely colored vertices in C. Then, using the three graph minor operations, we
will get a coloring C ′ of some graph G′ 4 Gm that is using x less colors than C. Then, by lemma
1.6, χum(Gm) ≥ χum(G′) + x. Finally, we will get a lower bound on χum(Gm) by showing that G′

contains a large grid as a minor (or as a subgraph) and using induction.
We improve on the 3m/2 lower bound on χum(Gm), for m ≥ 2, given in [2]; we use a different

case analysis to prove a lower bound of 5m/3− log 5
2
m, for m ≥ 2.

Before proceeding to the proof of the lower bounds, we should state some auxiliary results,
related to separators in general, and also to the form of separators in grid-like graphs. A similar
analysis is provided in [2], but we also provide it here for completeness. We start with the following
lemma, which is mentioned without proof in [14] and is similar to an exercise in [10].

Lemma 5.1. A separator S of a connected graph G is inclusion minimal if and only if every vertex
of S has a vertex adjacent in every connected component of G− S.

Proof. If S is an inclusion minimal separator, then, for the sake of contradiction, assume there is
a vertex v ∈ S which has no vertex adjacent in some connected component C of G − S. Since
v is not adjacent with any vertex of C, every path in G from a vertex of C to a vertex in the
other connected components contains a vertex in S \ {v}. Therefore, S \ {v} is still a separator,
contradicting the inclusion minimality of S.

If every vertex v ∈ S has a vertex adjacent in every connected component of G − S, then for
every v ∈ S, G − (S \ {v}) consists of a single connected component, and thus S \ {v} is not a
separator, i.e., S is inclusion minimal.

We are now ready to state and prove some facts about the form of inclusion minimal separators
in Gm. We remark that any inclusion minimal separator S of Gm for m ≥ 2 has size |S| < m2.

Lemma 5.2. If S is an inclusion minimal separator of Gm, where m ≥ 2, then Gm − S consists
of exactly two connected components.

Proof. Assume for the sake of contradiction that Gm − S consists of at least three connected
components, say A, B and C. Without loss of generality, assume there is a vertex v = (x, y) of the
separator with adjacent vertices a = (x− 1, y), b = (x+ 1, y), and c = (x, y + 1), such that a ∈ A,
b ∈ B, and c ∈ C (see figure 2). Then, u = (x− 1, y+ 1) must be in the separator S, because of the

va b

cu w
b1

b2

a1

a2

Figure 2: Impossibility of three connected components in Gm − S

path auc, and w = (x+ 1, y + 1) must also be in the separator S, because of the path bwc. Then,
by lemma 5.1, u must be adjacent to a vertex b′ in B (at least one of vertices b1, b2 in figure 2),
and w must be adjacent to a vertex a′ in A (at least one of vertices a1, a2 in figure 2).

11



Consider the embedding of Gm in the plane with the standard drawing, where the edges are
straight line segments. Moreover, simple paths in Gm induce simple curves in the above embedding.
Since a and a′ are in the same connected component A, there is a simple path connecting a and a′

contained completely in A. There is also the simple path from a to a′ through v, c, and w, which
does not intersect with the previous path. Those two paths together form a simple closed curve Ka

in the embedding (a Jordan curve). By the Jordan curve theorem, the Jordan curve Ka divides the
plane into two maximal connected subsets, that we call regions (we do not use the more standard
term ‘connected components’ to avoid confusion with connected components of Gm−S), and each
region’s boundary is exactly the Jordan curve Ka. Consider the following two subsets of the plane:
s1 is square bvcw minus the segments vc and vw, and s2 is square avcu minus the segments av
and vc. Sets s1 and s2 are contained in different regions, because part of their boundary (i.e.,
segment vc) is contained in Ka, and because Ka does intersect neither s1 (since b /∈ Ka) nor s2
(since u /∈ Ka). Therefore, b ∈ s1 and u ∈ s2 are in different regions. Moreover, b′ and u are in the
same region, because curve Ka can not intersect the straight line segment b′u. Therefore, b and b′

are in different regions. Since b and b′ are in the same connected component B of Gm − S, there
is a simple path from b to b′ consisting only of vertices in B. This simple path induces a simple
curve Kb in the embedding of Gm and, since b and b′ are in different regions, this curve intersects
the closed curve Ka at some point. Because these curves arise from paths in Gm, they can only
intersect at some vertex point, which is a contradiction because curve Ka consists only of vertices
in A, C, and S (not B).

We say that two vertices (x1, y1), (x2, y2) of a separator of Gm are neighboring if

|x1 − x2| ≤ 1 and |y1 − y2| ≤ 1.

In other words, a vertex of a separator neighbors with any vertex directly to directions N , W , S,
E (we call these the grid directions), or directly to directions NW , SW , SE, NE (we call these
the intermediate directions). The boundary of the grid consists of the four paths, each having m
vertices, with x = 0, x = m− 1, y = 0, and y = m− 1, respectively.

Lemma 5.3. The vertices of any inclusion minimal separator S of Gm, for m ≥ 2, can be put in
a sequence v1, v2, . . . , v|S|, such that adjacent vertices in the sequence are neighboring and either
(i) the first and the last vertex of the sequence are also neighboring, or (ii) if the first and the last
vertex of the sequence are not neighboring, then the first and the last vertex of the sequence are the
only ones lying on the boundary of the grid.

Proof. By lemma 5.2 any inclusion minimal separator divides the graph into two connected com-
ponents and by lemma 5.1, every vertex of the separator is adjacent with a vertex from both
connected components. Consider a vertex of the separator which is not on the sides of the grid.
This vertex can not have less than two neighboring vertices in the separator, because then all its
adjacent vertices in the grid that are not in the separator are in the same connected component.

It is also not possible that a vertex v of the inclusion minimal separator has two neighbors
u and w such that both of these neighbors are in the grid directions and the angle uvw in the
standard drawing is right. Assume, without loss of generality, that vertex v = (x, y) has neighbors
u = (x, y − 1) and w = (x + 1, y) in the separator. Then, by lemma 5.1, since a = (x, y + 1)
and b = (x − 1, y) must be in different components, vertex z = (x − 1, y + 1) must also be in the
separator (see figure 3). But then, vertex v has three neighbors in the inclusion minimal separator
and this is a case that we will prove impossible immediately in the following.

We are now going to prove that in an inclusion minimal separator a vertex v can not have
more than two neighbors. We consider different cases on the number of neighbors at intermediate
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v

u

w

a

b

z

Figure 3: Vertex v with two grid direction neighbors in the separator

directions, ranging from one to three, as shown in figure 4 (we do not have to check the case where
three neighbors are all at grid directions, because we have already discussed it). In all cases, the

v

u

w

a

b

z

a′

b′ v

u

w
a

b

z

a′

b′

v

u

w
a

b

z

a′

b′

Figure 4: Vertex v has three neighbors of which 1, 2, and 3 are at intermediate directions

impossibility proofs are similar to the proof of lemma 5.2. In particular, with the labeling of vertices
shown in figure 4, where a and a′ are in the same component A of Gm − S and b and b′ are in the
same other component B of Gm−S, in all three cases, we consider a simple path from a to a′ which
in the standard drawing of graph Gm is embedded as a simple polygonal line. We also consider the
polygonal line avua′ which does not intersect the previous polygonal line. The two polygonal lines
form a simple closed curve Ka, which (by the Jordan curve theorem) separates the plane into two
maximal connected subsets (regions). The polygonal lines vzb and vwb′ do not intersect Ka except
at v and lie in different regions. Therefore b and b′ lie in different regions. Since b and b′ are in
the same connected component B of Gm − S, there is a simple path from b to b′ consisting only
of vertices in B. This simple path induces a simple curve Kb in the embedding of Gm and, since
b and b′ are in different regions, this curve intersects the closed curve Ka at some point. Since Kb

arises from a path in Gm and Ka is a special polygonal curve with vertices only on grid points,
curves Ka and Kb can only intersect at some vertex point, which is a contradiction because curve
Ka consists only of vertices in A and S (not B).

The four possible neighboring cases of a vertex in the inclusion minimal separator which does
not lie on the sides of the grid, ignoring rotations, are shown in figure 5.

Figure 5: Four possible neighboring cases for an inclusion minimal separator vertex

It is also impossible, in an inclusion minimal separator S, to have a vertex v ∈ S on the
boundary of the grid with only one neighbor w ∈ S, such that w is also on the boundary of the
grid, because then v has only neighbors in one connected component of Gm − S.
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Now, we are going to build a special sequence of vertices of an inclusion minimal separator S.
We consider two different cases.

• If there is no vertex with only one neighbor in the separator (case i), then we choose any
vertex v as the initial vertex of the sequence. Vertex v has two neighbors in S, say v′ and
v′′. We choose any of them, say v′, to be the next vertex in the sequence. Then, we extend
the sequence by choosing the next element to be the neighbor of the current element not
already in the sequence, until we reach the neighbor v′′ of v (this always happens because the
separator S has a finite number of elements). We claim that the built sequence includes all
vertices of separator S. Consider the closed polygonal line K with vertices in the order of the
sequence built. This curve K is a simple closed curve (i.e., it does not intersect itself). By
the Jordan curve theorem, K divides the plane in a region inside the curve and an unbounded
region outside the curve. Both regions contain vertices of the original graph, as can be seen
in figure 5 (the neighborhood of at least one vertex of S is as shown in figure 5). Every
embedding of a path in Gm connecting two vertices in different regions has to touch closed
curve K, and in particular one of its vertices. Thus, the vertices of the built sequence are
indeed a separator, and since S is inclusion minimal the built sequence includes all vertices
of S.

• If there is a vertex v with only one neighbor in S (case ii), then we choose v as the initial
vertex of the sequence (this vertex has to lie on the boundary of the grid). Then, we extend
the sequence by choosing the next element to be the neighbor of the current element not
already in the sequence, until we reach an element w with only one neighbor in S (this always
happens because the separator S has a finite number of elements). We claim that the built
sequence includes all vertices of separator S. Consider, the polygonal line K with vertices in
the order of the sequence built. With the help of the Jordan curve theorem, one can prove
that K divides the square containing the embedding of the grid in two regions. Both regions
contain vertices of the original graph, as can be seen in figure 5. Every embedding of a path in
Gm connecting two vertices in different regions has to touch closed curve K, and in particular
one of its vertices. Thus, the vertices of the built sequence are indeed a separator, and since
S is inclusion minimal the built sequence includes all vertices of S.

As a result, inclusion minimal separators are of the following two types, according to their
aforementioned built sequence:

(i) the first and the last vertex of the sequence are also neighboring,

(ii) if the first and the last vertex of the sequence are not neighboring, then the first and the last
vertex of the sequence are the only ones lying on the boundary of the grid.

Examples of the two types of inclusion minimal separators are shown in figure 6, together with
the polygonal curve induced by their sequence from lemma 5.3.

Remark 5.4. If the curve induced by the sequence of the vertices of an inclusion minimal separator
includes both a segment in the N–S direction and a segment in the E–W direction then it must
contain a segment going in one of the intermediate directions, NW–SE or NE–SW , in order to
avoid a vertex v in the separator with two neighbors u and w in the grid directions such that the
angle uvw in the standard drawing is right.

Theorem 5.5. For m ≥ 2, χum(Gm) ≥ 5
3m− log 5

2
m.

14



Figure 6: Inclusion minimal separators of types (i) and (ii)

Proof. First, we prove lower bound `(m) = 5
3m − log 5

2
m, when 2 ≤ m ≤ 4. For m = 2, we

have G2 ⊇ P4 and thus, from proposition 1.8, χum(G2) ≥ χum(P4) = 3 > `(2). For m = 3 and
m = 4, in an optimal coloring of G3 or G4 it is not possible to have an inclusion minimal separator
of type (i), i.e., only an inclusion minimal separator of type (ii) is possible. We will prove that
χum(G3) ≥ 5 > `(3) and χum(G4) ≥ 7 > `(4). Assume, without loss of generality, that the sequence
of the inclusion minimal separator starts at column x = 0. If the sequence ends at the same column
or at any of the rows y = 0 or y = m−1, then it is possible to prove that χum(Gm) ≥ 2+χum(Gm−1),
which implies the desired lower bound for m = 3 and m = 4; in fact we defer this proof for later, for
any value of m ≥ 2, in case (a) below. Otherwise, the sequence of the inclusion minimal separator
starts at column x = 0 and ends at column x = m − 1, without touching the top or bottom rows
(which are path Pm subgraphs). In that case, from lemma 1.6, χum(Gm) ≥ m + χum(Pm) which
implies the desired lower bound for m = 3 and m = 4, because χum(P3) = 2 and χum(P4) = 3.

Now consider an optimal coloring C of Gm, with m ≥ 5, and a set of unique colors in C that
induce an inclusion minimal separator S.

If the inclusion minimal separator S is of type (i), then consider the diagonals y+ x = i, where
i ∈ {0, . . . ,m − 1}. Find the minimum i for which diagonal y + x = i contains a vertex of the
separator. By checking the possible configurations of vertices in the separator, we can prove that
there is a vertex (x, y) ∈ S with maximum y in the diagonal y + x = i such that (x + 1, y − 1)
is also in S and one of (x, y + 1), (x + 1, y + 1) is also in S, and there is a different vertex
(x′, y′) ∈ S with minimum y′ in the diagonal y + x = i such that (x′ − 1, y′ + 1) is also in S
and one of (x′ + 1, y′), (x′ + 1, y′ + 1) is also in S. Then one can contract edges of Gm as shown
in figure 7 (for each gray area of the figure, all contained vertices in the area are contracted to
a single vertex), in order to get a graph G′ which contains Gm−1 as a subgraph. Observe that
in the square gray area of figure 7 two vertices of the separator are contained, and the same is
true for one of the triangular gray areas (the lowest and rightmost triangular area). As a result,
we have a coloring C ′ for G′ using two fewer colors than an optimal coloring of Gm and thus
χum(Gm) ≥ χum(G′) + 2 ≥ χum(Gm−1) + 2 ≥ 5

3(m− 1)− log 5
2

(m− 1) + 2 > 5m/3− log 5
2
m.

Figure 7: Graph Gm and its minor G′ containing Gm−1

If the inclusion minimal separator is of type (ii), then we have two cases.
In the first case (a), without loss of generality, the sequence of the inclusion minimal separator

S starts at vertex u of column x = 0 and ends at vertex v which is in column x = 0 or in row y = 0.
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Then, G−{u, v} ⊇ Gm−1, because all columns and rows of Gm, except column x = 0 and row y = 0,
are intact in G−{u, v}, and thus from lemma 1.6 χum(Gm) ≥ χum(Gm−1)+2 ≥ `(m−1)+2 > `(m).
Observe that this proof is good for any value of m ≥ 2.

In the second case (b), without loss of generality, the sequence of the inclusion minimal separator
S starts at column x = 0 and ends at column x = m − 1, touching neither row y = 0 nor row
y = m − 1. Observe that in that case, |S| ≥ m. We consider two subcases, either |S| > m, or
|S| = m.

If |S| > m, then consider the sequence of the vertices of the inclusion minimal separator
v1, v2, . . . , v|S|, with v1 in column x = 0 and v|S| in column x = m− 1. Since |S| > m, there must
exist some vi = (x, y), such that, without loss of generality, vi+1 = (x, y−1) or vi+1 = (x−1, y−1).
Consider the point vi with the above property such that i is minimum.

If the polygonal curve v1, v2, . . . , vi is not a straight line segment with slope −π/4, then there is
some i′ < i such that vi′ = (x′, y′) and either vi′−1 = (x′− 1, y′) or vi′−1 = (x′− 1, y′− 1). Consider
the point vi′ with the above property such that i′ is maximum. Then, contracting as shown in figure
8a (note the similarity with the contraction when the separator is of type i), will result in a coloring
C ′ of the resulting graph G′ ⊇ Gm−1 using two fewer colors than an optimal coloring of Gm and
thus χum(Gm) ≥ χum(G′) + 2 ≥ χum(Gm−1) + 2 ≥ 5

3(m− 1)− log 5
2

(m− 1) + 2 > 5m/3− log 5
2
m.

If the polygonal curve v1, v2, . . . , vi is a straight line segment with slope −π/4, then since v|S|
is on column m− 1, there must be some vj = (x, y), with i < j, such that either vj+1 = (x+ 1, y)
or vj+1 = (x + 1, y + 1). Consider the point vj with the above property such that j is minimum.
Moreover, there is some vj′ = (x′, y′), with i < j′ < j, such that either vj′−1 = (x′, y′ + 1) or
vj′−1 = (x′ + 1, y′ + 1). Consider the point vj′ with the above property such that j′ is maximum.
Then, contracting as shown in figure 8b (note the similarity with the contraction when the separator
is of type i), will result in a coloring C ′ of the resulting graph G′ ⊇ Gm−1 using two fewer colors
than an optimal coloring of Gm and thus χum(Gm) ≥ χum(G′) + 2 ≥ χum(Gm−1) + 2 ≥ 5

3(m− 1)−
log 5

2
(m− 1) + 2 > 5m/3− log 5

2
m.

vi

vi′

(a)

vi

vj

vj′

(b)

Figure 8: The subcase |S| > m

If |S| = m, then the sequence of vertices v1, v2, . . . , vm is such that vi = (i, yi), for every i.
If m = 5k, where k is a positive integer, we will prove that Gm − S ⊇ G2k. Consider the set of

vertices
A = {(x, y) | k ≤ x ≤ 4k − 1, 0 ≤ y ≤ 2k − 1}.

Set A induces a 3k × 2k grid graph, G3k,2k, in Gm. If A ∩ S = ∅, then Gm − S ⊇ G3k,2k ⊇ G2k;

16



A

Bvi
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A
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Figure 9: The subcase |S| = m, grids with m = 5k and m = 5k + 2

otherwise some vi ∈ S belongs to A, i.e., vi = (i, yi) with k ≤ i ≤ 4k − 1 and 0 ≤ yi ≤ 2k − 1.
Then, consider the set of vertices

Bvi = {(x, y) | i− k + 1 ≤ x ≤ i+ k, 3k ≤ y ≤ m− 1},

which induces a G2k subgraph in Gm. Adjacent vertices of the separator are neighboring, therefore,
for a vertex (x′, y′) ∈ S, we have |y′ − yi| ≤ |x′ − i|. But for vertices of S in the strip i − k + 1 ≤
x ≤ i + k, we have |x′ − i| ≤ k, and thus |y′ − yi| ≤ k, which implies y′ − yi ≤ k and y′ ≤ 3k − 1
(because yi ≤ 2k − 1). Therefore, Bvi ∩ S = ∅ and thus Gm − S ⊇ G2k (see figure 9b).

If m = 5k + 2, where k is a positive integer, we will prove that Gm − S ⊇ G2k+1. Consider the
set of vertices

A = {(x, y) | k ≤ x ≤ 4k + 1, 0 ≤ y ≤ 2k}.

Set A induces a G3k+2,2k+1 in Gm. If A ∩ S = ∅, then Gm − S ⊇ G3k+2,2k+1 ⊇ G2k+1; otherwise
some vi ∈ S belongs to A, i.e., vi = (i, yi) with k ≤ i ≤ 4k+ 1 and 0 ≤ yi ≤ 2k. Then, consider the
set of vertices

Bvi = {(x, y) | i− k ≤ x ≤ i+ k, 3k + 1 ≤ y ≤ m− 1},

which induces a G2k+1 subgraph in Gm. Adjacent vertices of the separator are neighboring, there-
fore, for a vertex (x′, y′) ∈ S, we have |y′ − yi| ≤ |x′ − i|. But for vertices of S in the strip
i− k ≤ x ≤ i+ k, we have |x′− i| ≤ k, and thus |y′− yi| ≤ k, which implies y′− yi ≤ k and y′ ≤ 3k
(because yi ≤ 2k). Therefore, Bvi ∩ S = ∅ and thus Gm − S ⊇ G2k+1 (see figure 9b).

In the subcase |S| = m, with m ≥ 5, we have proven that Gm − S contains a square grid
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subgraph Gg(m), where

g(m) =



2k, if m = 5k,
2k, if m = 5k + 1,
2k + 1, if m = 5k + 2,
2k + 1, if m = 5k + 3,
2k + 1, if m = 5k + 4,

=



2
5m, if m mod 5 = 0,
2
5m−

2
5 , if m mod 5 = 1,

2
5m+ 1

5 , if m mod 5 = 2,
2
5m−

1
5 , if m mod 5 = 3,

2
5m−

3
5 , if m mod 5 = 4.

As a result, χum(Gm) ≥ |S| + χum(Gg(m)) ≥ m + `(g(m)), by induction. However, since `(x)
is monotone increasing for real x ≥ 5, we have `(g(m)) ≥ `(2

5m −
3
5) and therefore χum(Gm) ≥

m+ `(2
5m−

3
5) = 5

3m− log 5
2

(m− 3
2) ≥ 5

3m− log 5
2
m.

An immediate corollary from theorem 4.8 is the following.

Corollary 5.6. For m ≥ 2, χcf(Gm) ≥ 5
6m−

1
2 log 5

2
m.

6 Discussion and open problems

As we mentioned in the introduction, conflict-free and unique-maximum colorings can be defined for
hypergraphs. In the literature of conflict-free coloring, hypergraphs that are induced by geometric
shapes have been in the focus. It would be interesting to show possible relations of the respective
chromatic numbers in this setting.

An interesting open problem is finding the exact value of the unique-maximum chromatic num-
ber for the square grid Gm. In this paper, we improved the lower bound asymptotically to 5m/3,
but the best known upper bound from [1, 2] is about 2.514m. We believe that a study of lower
bounds for rectangular (i.e., non-square) grids can help improve the lower bound for the square
grid.

Another area for improvement is the relation between the two chromatic numbers for general
graphs. We have only found graphs which have unique-maximum chromatic number about twice
the conflict-free chromatic number, but the only bound we have proved on χum(G) is exponential
in χcf(G).
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